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Abstract

In this work we analyze from the numerical viewpoint the class of

projection methods for solving pseudomonotone variational inequality

problems. We focus on some specific extragradient-type methods that

do not require differentiability of the operator and we address partic-

ular attention to the steplength choice. Subsequently, we analyze the

hyperplane projection methods in which we construct an appropriate

hyperplane which strictly separates the current iterate from the solu-

tions of the problem. Finally, in order to illustrate the effectiveness of

the proposed methods, we report the results of a numerical experimen-

tation.

1 Introduction

We consider the classical variational inequality problem VIP(F,C), which

is to find a point x∗ such that

x∗ ∈ C < F (x∗), x− x∗ >≥ 0 ∀x ∈ C, (1)

where C is a nonempty closed convex subset of <n, < ·, · > the usual inner

product in <n and F : <n → <n is a continuous function. Let C∗ be the set

of the solutions.
∗Italian FIRB Project, Grant n. RBAU01JYPN
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In the special case where C = <n
+, the problem (1) is a nonlinear comple-

mentary problem (NCP):

x∗ ≥ 0, F (x∗) ≥ 0 and < x∗, F (x∗) >= 0. (2)

If F is affine, F (x) = Mx + q where M ∈ <n×n and q ∈ <n, then the

problem (1) is an affine variational inequality problem and (2) is a linear

complementary problem (LCP).

Many methods have been proposed to solve VIP(F,C). The simplest of these

is the projection method, which, starting from any x0 ∈ C, iteratively up-

dates x according to the formula

xk+1 = PC(xk − αF (xk)),

where PC(.) denotes the orthogonal projection map onto C and α is a judi-

ciously chosen positive steplength. Here, PC(xk−αF (xk)) is the solution of

the following quadratic programming problem

min
x∈C

1
2
xT x− (xk − αF (xk))T x.

The projection method is based on the observation that x∗ ∈ C is a solution

of (1) if and only if

x∗ = PC(x∗ − αF (x∗)). (3)

This method is very simple; indeed it uses only function evaluations and

projections onto C, then it is easy to implement, uses little storage, and

can readily exploit any sparsity or separable structure in F or in C. Fur-

thermore, the projection is easy to be obtained where C is defined by linear

and/or box constraints. However, the projection methods require restric-

tive assumption on F for the convergence. The convergence analysis for the

projection methods is based on the contractive properties of the operator

x → x− αF (x):

if F is strongly monotone (with constant l), i.e.

∃l > 0 s.t. < F (x)−F (y), (x−y) >≥ l‖x−y‖2 ∀x, y ∈ C x 6= y,

and F (x) Lipschitz continuous on C (with Lipschitz constant L), i.e.

∃L > 0 s.t. ‖F (x)− F (y)‖ ≤ L‖x− y‖ ∀x, y ∈ C,
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and if α ∈ (0, 2l/L2), the projection method determines a succession {xk}
convergent to a solution of (1) (see page 24 [15], [16]).

Marcotte and Wu [11] have shown that the projection algorithm converges

for cocoercive variational inequalities. We recall that the mapping F is

cocoercive on C if there exist a positive constant l̃ such that

< F (y)− F (x), y − x >≥ l̃‖F (y)− F (x)‖2 ∀x, y ∈ C.

Any strongly monotone (with constant l) and Lipschitz continuous mapping

(with Lipschitz constant L) is cocoecive with the constant l̃ = l
L2 .

Furthermore, any cocoercive mapping is monotone, that is < F (x)−F (y), x−
y >≥ 0 ∀x, y ∈ C, and Lipschitz continuous (L = 1

l̃
), but the converse in

not true. If C∗ 6= ∅ and α ∈ (0, 2l̃), the cocoercivity of the operator F is

sufficient to assure the convergence of the projection algorithm.

To relax the strong hypotheses required by the projection method enlarging

the class of the problems that we can solve, the extragradient method was

proposed; because of (3), x∗ ∈ C is a solution of (1) if and only if

x∗ = PC(x∗ − αF (PC(x∗ − αF (x∗))));

then the basic idea of this method is to update x according to the double

projection formula

xk+1 = PC(xk − αF (PC(xk − αF (xk)))).

The extragradient method was proposed in the first time by Korpelevich [9]

as follows. Given x0 ∈ C, we generate a succession {xk} such that

xk = PC(xk − αF (xk)) xk+1 = PC(xk − αF (xk)). (4)

where α is constant for all iterations. In [1] and [19] the convergence of the

extragradient method is proved under the following hypothesis: C∗ 6= ∅, F

is a monotone and Lipschitz continuous mapping and α ∈ (0, 1/L) where L

is the Lipschitz constant.

A drawback is the choice of α when L is unknown. Indeed, if α is too small,

the convergence is slow; when α is too large, there might be no convergence

at all. This remark is confirmed by the numerical results shown in Table
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1 where we report the number of iteration (iter), the number of function

evaluations (nf), and the number of projections (np) for different choice of

α when the extragradient method is applied on some test problems. The

test problems are described in Table 3 of the Section 3.

Table 1: Analysis of the convergence of the extragradient method (4) for

different values of α.

α np/nf iter

Kojima Shindo

10−2 442/442 221

10−1 76/76 38

1 −/− −
User OPT

10−3 1326/1326 663

10−2 184/184 92

10−1 − −
Braess Net

10−2 472/472 236

10−1 80/80 40

1 −/− −

Then, Khobotov in [8] introduces the idea to perform an adaptive choice of

α, changing its value at each iteration as described in Section 2. If C∗ 6= ∅,
F (x) is a monotone mapping and α choice suitable (see Section 2), then,

the convergence of the scheme is proved.

The hypothesis on the Lipschitz continuity of F is removed and an auto-

matic (algorithmic) rule is devised to make easy a convenient choice of the

steplength.

Furthermore, as we see in the following, we can generalize the results on the

convergence of the scheme to pseudomonotone VIPs, enlarging the class of

the problems that we can solve.

Consequently, the general scheme of the algorithm becomes:

xk = PC(xk − αkF (xk)) xk+1 = PC(xk − ηkF (xk)), (5)
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where x0 ∈ C is the starting point. In addition to the scheme in [8], we have

analyzed other variants of (5) (see [10], [7]), in which the values of αk, ηk are

found using backtracking schemes similar to that of the Armijo steplength

rule. The aim of these variants is to accelerate the convergence.

In [8], [10], the choice of the steplength rules follows an adaptive rule but

they assume that αk = ηk, while in [6] and [7], the extragradient method uses

αk 6= ηk with different backtracking procedures to determine the steplength

αk. In the first case [6], one projection is required for any tentative step

of the search, while in [7] only one evaluation of function is performed for

any tentative step of the search. The last method is advantageous especially

when the projection is computationally expensive.

Another class of the extragradient methods is the so called projection-contrac-

tion methods [17], where in the second projection a more general operator

is used.

The idea of these algorithms is to choose a symmetric positive definite ma-

trix M ∈ Rn×n and a starting point x0 ∈ C, and to iteratively update xk,

as follows:

xk+1 = xk − γM−1(Tα(xk)− Tα(PC(xk − αF (xk))), (6)

where γ ∈ <+ and Tα = (I − αF ) in which I is the identity matrix, α is

chosen dynamically (in according to an Armijo type rule), so Tα is strongly

monotone.

The geometric interpretation of the methods in [6] and [7] has been further

on developed recently by Solodov in [18], devising an effective method. It

consists of two steps per iteration: in the first step, an appropriate hyper-

plane is found which separates the current iterate from the solution of the

problem; in the second step the next iterate is determined as the projection

of the current iterate onto the intersection of the feasible set with the half-

space containing the solution set.

In all the algorithms with structure as in (5), (except that in [17], that

requires the monotonicity of F ), the convergence is stated under the as-

sumptions that C∗ 6= ∅ and the continuous mapping F is pseudomonotone.

This is shown in the theorems reported in Section 2 that generalize to pseu-
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domonotone case the results of the convergence obtained in [8], [6], [7]. See

also [15] and [3].

It is not required F to be Lipschitz continuous.

We recall that the mapping F is pseudomonotone when the following con-

dition holds

< F (y), x− y >≥ 0 →< F (x), x− y >≥ 0 ∀x, y ∈ C. (7)

The paper is organized as follows.

In the Section 2 we give a survey of the above methods, pointing out its

numerical features and we describe the different adaptive choices of αk.

To evaluate the effectiveness of the proposed methods, we have implemented

them as M-script files of MatLab, downloadable at the URL

http://dm.unife.it/pn2o/software.html.

Since we assume that C is defined by linear equalities and inequalities, in

order to compute the projection PC(x), the quadratic program solver quad-

prog.m is used (see the MatLab optimization toolbox [13]).

In the last section we report the numerical results obtained by running these

codes on a set of test problems arising from the literature and collected at

URL

http://dm.unife.it/pn2o/software.html.

2 Numerical features of the class of extragradient

methods

2.1 Khobotov’s method

In [8] Khobotov proves that if F (x) is a continuous monotone function and α

suitable choice of the steplength is performed, the extragradient method (4)

is convergent to a solution of (1). The proof is interesting since it includes

a discussion about the choice of αk.

We extended the Khobotov’s theorem to a function F (x) pseudomonotone.

For completeness, we report the convergence theorem:
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Theorem 2.1. (see [8])

Let the set C∗ of solutions of (1) be non-empty, let C be a closed convex set,

F (x) a continuous pseudomonotone operator in x. Then, from any initial

point x0 ∈ C, if αk is such that

0 < αk ≤ min
{

α, β
‖xk − xk‖

‖F (xk)− F (xk)‖

}
(8)

with β ∈ (0, 1) and α is equal to the maximum value of the step, then the

extragradient method (4) is convergent to a solution x∗ of (1), i.e.,

lim
k→∞

min
x∗

‖x∗ − xk‖2 = 0 x∗ ∈ C∗.

Proof. The proof of the theorem is based on the following condition

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk‖2 + α2
k‖F (xk)− F (xk)‖2. (9)

We proof that this condition (9) holds under the pseudomonotonicity of the

operator F (x);

we see that, ∀u, v ∈ C,

‖u− v‖2 = ‖u− PC(u) + PC(u)− v‖2

= ‖u− PC(u)‖2 + ‖v − PC(u)‖2 − 2 < u− PC(u), v − PC(u) >;

by the properties of the projection onto the convex set C

< u− PC(u), v − PC(u) >≤ 0 ∀v ∈ C; ∀u ∈ <n, (10)

we obtain:

‖u− v‖2 ≥ ‖u− PC(u)‖2 + ‖v − PC(u)‖2.

Taking v = x∗, u = xk −αkF (xk), (with xk+1 = PC(xk −αF (xk))), we have

‖xk − αkF (xk)− x∗‖2 ≥ ‖xk − αkF (xk)− xk+1‖2 + ‖x∗ − xk+1‖2,

which leads to the inequality

‖xk+1 − x∗‖2 ≤ ‖xk − αkF (xk)− x∗‖2 − ‖xk − αkF (xk)− xk+1‖2

= ‖xk − x∗‖2 + ‖αkF (xk)‖2 − 2 < αkF (xk), xk − x∗ > −‖xk − xk+1‖2 +

−‖αkF (xk)‖2 + 2 < αkF (xk), xk − xk+1 >

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2 < αkF (xk), x∗ − xk+1 > (11)
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Recalling that the operator F (u) is pseudomonotone, since x∗ ∈ C∗ ⊂ C,

< F (x∗), x− x∗ >≥ 0 →< F (x), x− x∗ >≥ 0 x ∈ C

Consequently, if x = xk, < F (xk), x∗ − xk >≤ 0 and we have

< F (xk), x∗ − xk+1 > = < F (xk), x∗ − xk > + < F (xk), xk − xk+1 >

≤ < F (xk), xk − xk+1 > .

Then we have from (11):

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2αk < F (xk), x∗ − xk+1 >

≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2αk < F (xk), xk − xk+1 >

≤ ‖xk − x∗‖2 − ‖xk − xk‖2 − ‖xk − xk+1‖2+

−2 < xk − xk, xk − xk+1 > +

+2αk < F (xk), xk − xk+1 >

= ‖xk − x∗‖2 − ‖xk − xk‖2 − ‖xk − xk+1‖2+

+2 < xk − αkF (xk)− xk, xk+1 − xk >

≤ ‖xk − x∗‖2 − ‖xk − xk‖2 − ‖xk − xk+1‖2+

+2 < xk − αkF (xk)− xk, xk+1 − xk > +

+2 < αkF (xk)− αkF (xk), xk+1 − xk > .

Using (10), with v = xk+1, u = xk − αkF (xk), we obtain:

< xk − αkF (xk)− xk, xk+1 − xk >≤ 0.

Then, it follows

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−‖xk−xk‖2−‖xk−xk+1‖2+2αk‖F (xk)−F (xk)‖‖xk+1−xk‖.
(12)

For any xk+1, xk, xk, αk, we have:

‖xk+1 − xk‖2 + α2
k‖F (xk)− F (xk)‖2 ≥ 2αk‖F (xk)− F (xk)‖‖xk+1 − xk‖;

then we obtain from (12):

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk‖2 + α2
k‖F (xk)− F (xk)‖2.

Furthermore, the proof runs as in [8].
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In the proof of the Khobotov’s theorem, at each k -th iteration it is

possible to find a compact subset of C, Ĉk, where the function F is Lipschitz

continuous; we denote by Lk the locally Lipschitz constant.

Since Ĉk ⊃ Ĉk+1 ⊃ ..., it follows that

L0 ≥ L1 ≥ ... ≥ Lk ≥ .. (13)

and it must αk ∈ (0, 1/Lk).

Then, if {Lk} are known, the succession {αk} could be nondecreasing.

In the practice, estimates L̃k for Lk must be used; then for L̃k, (13) does

not hold and αk is found from the following rule

0 < α̂ ≤ αk ≤ min
{

α, β
‖xk − xk‖

‖F (xk)− F (xk)‖

}

where α is the maximum value of the step, 0 < β < 1 (usually β ≈ 0.8, 0.9)

and α̂ = min(α, β/L0).

From the proof of the theorem, we can state the following Algorithm (Algorithm

choice-α) for the choice of the steplength αk.

Algorithm choice-α

a α = αk−1
∗(initial step)

b compute F (xk)

c compute xk = PC(xk − αF (xk)) and F (xk)

If F (xk) = 0 then xk ∈ C∗

else if

α > β
‖xk − xk‖

‖F (xk)− F (xk)‖ (14)

a reduction rule of α is applied

and go to (c)

else αk = α, and

xk+1 = PC(xk − αF (xk)).
∗At the initial iteration α = α
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We enumerate several techniques for the reduction of αk; the following re-

duction rule at the step (c) is suggested by Marcotte, in [10]:

α = min
{

α

2
,

‖xk − xk‖√
2‖F (xk)− F (xk)‖

}
. (15)

We note that this rule is not always effective: this arises when, at the initial

iterations, αk assumes a small value and, because of the initialization step

α = αk−1, this value does not change in all the next iterations. Figure

(1) shows the behavior of the stepsize αk, as k increases, when we use the

reduction rule (15); this rule does not exploit the opportunity of an adaptive

alteration of the initial value of αk.

A variant of Marcotte’s algorithm consists in to modified the initialization

rule at the step (a) of the Algorithm choice-α as follows:

α = αk−1 +
(

β
‖xk−1 − xk−1‖

‖F (xk−1)− F (xk−1)‖ − αk−1

)
· γ, (16)

where γ ∈ (0, 1), β ∈ (0, 1).

By this rule we enable the increase of the value of α with respect to αk−1.

Then we devise the following reduction rule at the step (c)

α = max
{

α̂, min
{

ξ · α, β
‖xk − xk‖

‖F (xk)− F (xk)‖

}}
, (17)

where ξ ∈ (0, 1).

Figure (2) shows the behavior of αk for different test problems when the

formulas (16), (17) are used, with β = 0.7, ξ = 0.8, γ = 0.9.

We observe that in general, the number of iterations decreases, since the

rules (16), (17) enable to exploit the possibility to use convenient values of

αk at any iteration.

Since αk is an estimate of the inverse of the local Lipschitz constant we

can substitute the Algorithm choice-α α with the following rule

αk = β
‖xk − xk−1‖

‖F (xk)− F (xk−1)‖ , (18)

avoiding the loop of the algorithm.
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In this case, for the same test problem in Fig. 2, the behavior of αk defined

by (18), is similar to that observed for αk stated by (16), (17) (see Fig. 3).

Nevertheless, in this case the convergence is not assured. The sequence xk

is convergent if αk defined by (18) is such that

αk ≤ β
‖xk − xk‖

‖F (xk)− F (xk)‖
where β > β. This is not true in general, but in all the examined test

problems the convergence is obtained.

2.2 The Extragradient method with αk 6= ηk

In [6], the author proposes the iterative scheme as in (5), where αk > 0 is

located through a bracketing search and ηk = <F (xk),xk−xk>

‖F (xk)‖2 .

The idea behind the algorithm is the following.

Let ∂Hk = {x ∈ <n| < F (xk), xk − x >= 0} be an hyperplane normal to

F (xk) passing through xk; all solutions x∗ of VIP(F,C) lie on one side of

∂Hk; indeed for the pseudomonotonicity of F , for any x∗ ∈ C∗, we have

< F (x∗), xk − x∗ >≥ 0 and, consequently, < F (xk), xk − x∗ >≥ 0.

If xk is on the other side, i.e. < F (xk), xk − xk >< 0, then ∂Hk separates

xk from the solutions of VIP(F,C) (see Prop. 6, [6]).

If ηk = <F (xk),xk−xk>

‖F (xk)‖2 , xk − ηkF (xk) is the orthogonal projection of xk onto

∂Hk. Then xk+1, obtained by the second equation of (4), is the orthogonal

projection of xk onto this hyperplane ∂Hk and onto C.

Iusem’s algorithm requires three constants: ε ∈ (0, 1) and α̂, α̃ such that

α̃ ≥ α̂ > 0; the sequence αk is computed so that < F (xk), xk − xk >≤ 0,

which is guaranteed to happen when αk ∈ [α̂, α̃].

Then the algorithm can be stated as follows [6]:

Algorithm I

a given x0 ∈ C, k = 0, rx = e†;

b if ‖rx‖ < TOL‡ then stop

else
†e is a vector with entries equal to one.
‡TOL is the final tolerance.



2 NUMERICAL FEATURES OF EXTRAGRADIENT METHODS 12

chosen the initial value of the bracketing procedure α̃k ∈ [α̂, α̃],where

α̃k denote certain “candidate” of the steplength αk.

c compute x̃k = PC(xk − α̃kF (xk)) and F (x̃k)

d If F (x̃k) = 0 then x̃k ∈ C∗ stop

else (selection of αk trough a finite bracketing procedure:)

if

‖F (x̃k)− F (xk)‖ ≤ ‖x̃k − xk‖2

2α̃2
k‖F (xk)‖

then xk = x̃k

else find αk ∈ (0, α̃k), such that

ε
‖x̃k − xk‖2

2α̃2
k‖F (xk)‖ ≤ ‖F (PC(xk − αkF (xk))− F (xk)‖ ≤ ‖x̃k − xk‖2

2α̃2
k‖F (xk)‖

(19)

xk = PC(xk − αkF (xk))

endif

if F (xk) = 0 then xk ∈ C∗ stop

else compute

xk+1 = PC

(
xk − < F (xk), xk − xk >

‖F (xk)‖2
F (xk)

)
(20)

rx = xk+1 − xk;

k = k + 1;

and go to (b).

endif

endif

endif

In the step (b) of the Iusem’s algorithm, one possible rule to choose the

initial value α̃k is

α̃k = median(α̂, θk, α̃),

where θk is suitably chosen.

In order to determine the stepsize α satisfying the required inequality (19), it
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is necessary to evaluate PC(xk−αF (xk)) at any step of the search procedure.

This means that the projections at the k-th iteration are those required for

the bracketing search to determine α, plus one more in the computation of

xk+1.

In [6] (see Prop. 7), Iusem proves that if C∗ 6= 0 and F (x) is a continuous

monotone function then this method is convergent to a solution of (1).

We extended the Prop. 7 to a function F (x) continuous pseudomonotone,

as follows:

Proposizione 2.2. (in [6])

Let the set C∗ of solutions of (1) be non-empty, let C be a closed convex set,

F (x) a continuous pseudomonotone operator in x. Then, from any initial

point x0 ∈ C, the sequence {xk} generated by Algorithm I is convergent to a

solution of (1).

Proof. The proof of this proposition is based on the following condition

‖x∗ − xk+1‖2 ≤ ‖x∗ − xk‖2 − ‖PHk
(xk)− xk‖2 − ‖xk+1 − PHk

(xk)‖2, (21)

where x∗ ∈ C∗,Hk = {x ∈ <n| < F (xk), xk − x >≥ 0}.
We proof the condition (21) under the pseudomonotonicity of the operator

F (x).

From (7) with x = xk, y = x∗ we obtain

< F (x∗), xk − x∗ >≥ 0 →< F (xk), xk − x∗ >≥ 0;

then x∗ ∈ C ∩Hk, so PC(PHk
(x∗)) = PHk

(x∗) = x∗.

Let vk = xk − ηkF (xk) the orthogonal projection of xk onto the hyperplane

∂Hk, where ∂Hk separes xk from the solution of VIP(F,C); by Prop. 6 in

[6], we obtain xk /∈ Hk , then vk = PHk
(xk).

It follows from (20) that xk+1 = PC(PHk
(xk)), then

‖x∗ − xk+1‖2 = ‖PC(PHk
(x∗))− PC(PHk

(xk))‖2.

We apply the propriety of the projection onto the convex set C (Prop. 2(ii)

in [6]):

‖PC(x)−PC(y)‖2 ≤ ‖x−y‖2−‖PC(x)−x+y−PC(y)‖2 ∀x, y ∈ <n (22)
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first with PC(.) and then with PHk
(.) as follows

‖x∗ − xk+1‖2 ≤ ‖PHk
(x∗)− PHk

(xk)‖2+

−‖PC(PHk
(x∗))− PHk

(x∗) + PHk
(xk)− PC(PHk

(xk))‖2

≤ ‖x∗ − xk‖2 − ‖PHk
(x∗)− x∗ + xk − PHk

(xk)‖2+

−‖PC(PHk
(x∗))− PHk

(x∗) + PHk
(xk)− PC(PHk

(xk))‖2

≤ ‖x∗ − xk‖2 − ‖PHk
(xk)− xk‖2 − ‖xk+1 − PHk

(xk)‖2.

Then, the proof runs as in Prop. 7 in [6].

In [7], Iusem and Svaiter present a method with the scheme similar to the

previous algorithm but that requires just one projection onto C for the

computation of xk and another one for xk+1, i.e. only two projections per

iteration, as in Korpelevich’s method.

The algorithm requires the following parameters: ε ∈ (0, 1) and α̂, α̃ such

that α̃ ≥ α̂ > 0; the sequence αk must be contained in [α̂, α̃]; the scheme of

the algorithm is:

Algorithm I-S

a given x0 ∈ C, k = 0, rx = e;

b if ‖rx‖ < TOL then stop

else

take an arbitrary stepsize αk ∈ [α̂, α̃],

c compute zk = xk − αkF (xk), vk = PC(zk)

d if F (vk) = 0 then vk ∈ C∗ stop

e else

• compute

j = min
j∈Z+

{< F (2−jPC(zk)+(1−2−j)xk), xk−PC(zk) >≥ ε

αk
‖xk−PC(zk)‖2}

(23)

• compute βk = 2−j
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• compute yk = βkvk + (1− βk)xk

• compute ηk = <F (yk),xk−yk>
‖F (yk)‖2

• compute the orthogonal projection of xk onto the hyperplane

∂Hk:

wk = xk − ηkF (yk) (24)

• compute

xk+1 = PC(wk) (25)

rx = xk+1 − xk;

k = k + 1;

then go to (b).

endif

endif

In [7], Iusem and Svaiter observe that αk−1βk−1 is an upper bound for the

actual stepsize of the whole step from xk−1 to xk, and they suggest that

αk−1, in the step (b), should be taken as

αk−1 = median{α̂, θβk−1αk−1, α̃}

where θ > 1 but not too large (for example θ = 2).

Note that along the search for the appropriate βk, the right hand side of

(23) is kept constant; then we evaluate F at several points in the segment

between vk and xk, no orthogonal projection onto C is required during the

search, besides the computation of vk and xk+1.

We observe that a too small value of ε might induce a loss of precision of the

algorithm; on the other hand, a value of ε close to 1, make the inequality

in (23) too tight, increasing the value of j, and therefore decreasing βk, and

lengthening the bracketing search. It follows that ε should not be close to

either 0 or 1.

In [7] (see Prop. 4), Iusem and Svaiter prove that if C∗ 6= 0 and F (x) is a

continuous monotone function then this method is convergent to a solution

of (1).

We extended the Prop. 4 to a function F (x) continuous pseudomonotone,

as follows:
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Proposizione 2.3. (in [7])

Let the set C∗ of solutions of (1) be non-empty, let C be a closed convex set,

F (x) a continuous pseudomonotone operator in x. Then from any initial

point x0 ∈ C, the sequence {xk} generated by Algorithm I-S is convergent to

a solution of (1).

Proof. The proof of this proposition is based on the following condition

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖wk − xk‖2 − ‖PC(wk)− wk‖2, (26)

where x∗ ∈ C∗.

Let Lk = {x ∈ <n| < F (yk), xk− y >≤ 0}; using the pseudomonotonicity of

F ,

< F (x∗), yk − x∗ >≥ 0 →< F (yk), yk − x∗ >≥ 0,

we obtain that x∗ ∈ Lk; on the other hand, PC(x∗) = x∗.

By Prop. 3(iii) in [7], xk does not belong to Lk; then using (24), it follows

PLK
(xk) = P∂HK

(xk) = wk

Then, from the propriety of the projection (22) and from (25) we obtain

‖xk+1 − x∗‖2 = ‖PC(wk)− PC(x∗)‖2

≤ ‖wk − x∗‖2 − ‖PC(wk)− wk‖2

= ‖PLK
(xk)− PLK

(x∗)‖2 − ‖PC(wk)− wk‖2

≤ ‖xk − x∗‖2 − ‖PLK
(xk)− xk‖2 − ‖PC(wk)− wk‖2.

Then, the proof runs as in Prop. 4 in [7].

From the computational point of view this method appears not effective

since the convergence is very slowly, then we do not report in Section 3 the

numerical results of this method, because they were rather poor. Indeed,

we observe that frequently the hyperplane ∂Hk is near to the point xk and

the next iteration xk+1 = PC(xk) is not much different from xk and the

convergence of the algorithm is very slow.

The interest forward the methods in [6] and [7] is justified by the fact that

they are based on the same idea of the method of Solodov and Svaiter,

discussed later in 2.4.
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2.3 Solodov and Tseng (S-T) method

In [17], Solodov and Tseng propose a new class of methods for solving varia-

tional inequality problem, called projection-contraction methods, where the

second projection is a more general operator:

xk = PC(xk − αkF (xk)), xk+1 = xk − γM−1(Tα(xk)− Tα(PC(xk)),

where γ ∈ <+ and Tα = (I −αF ); here I is the identity matrix, α is chosen

dynamically (in according to an Armijo type rule), such that Tα is strongly

monotone.

Unlike the classical extragradient method (5), these methods require only

one projection per iteration, rather then two, and they have an additional

parameter, the scaling matrix M , that can be chosen to accelerate the con-

vergence.

M must be a symmetric positive matrix.

The scheme of the method is the following.

Algorithm S-T

a choose x0 ∈ <n, α−1 > 0, θ ∈ (0, 2), ρ ∈ (0, 1), β ∈ (0, 1),M ∈ <n×n

b x0 = 0, k = 0, rx = e

c if ‖rx‖ < TOL then stop

else

α = αk−1, f lag = 0;

d if F (xk) = 0 then xk ∈ C∗ stop

else

while

(α(xk − xk)T (F (xk)−F (xk)) > (1− ρ)‖xk − xk‖2)or(flag = 0) (27)

if flag 6= 0 then α = αk−1β endif ;

update xk = PC(xk − αF (xk)), compute F (xk)

flag = flag + 1;
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endwhile

f update αk = α;

g compute γ = θρ‖xk−xk‖2/‖M−1/2(xk−xk−αkF (xk)+αkF (xk))‖2

h compute xk+1 = xk − γM−1(xk − xk − αkF (xk) + αkF (xk))

rx = xk+1 − xk;

k=k+1;

go to (c)

i endif

endif

In this algorithm the condition (27) may be viewed as a local approximation

to the condition α < 1/Lk, where the local Lipschitz constant Lk is given

by

Lk = (xk − xk)T (F (xk)− F (xk))/‖xk − xk‖2.

Then (27) reduces to α ≤ (1− ρ)/Lk.

The convergence is proved under the assumption that a solution of (1) exists

and that the operator F is monotone.

The rule (27) requires one projection and one function evaluation for any

step of the search procedure. Another function evaluation is required to

complete any iteration.

In Table 2, we shown, for β = 0.3 and M = I, the behavior of the method as

θ and ρ assumes different values. In general, the choice of these parameters

significantly affects the effectiveness of the method.
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Figure 1: Behavior of αk with reduction rule (15).
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Figure 2: Behavior of αk with rules (16), (17); β = 0.7, ξ = 0.8, γ = 0.9.
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Figure 3: Behavior of αk with rule(18); β = 0.7, β̃ = 0.9.
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2.4 Solodov and Svaiter (S-S) method

Finally, we have analyzed a projection algorithm that was proposed by

Solodov and Svaiter, in [18].

This algorithm allows a geometric interpretation as in [6] and [7] (see Fig.

4):

let xk be the current approximation of the solution of VIP(F,C); first, we

compute the point PC(xk − µkF (xk)); next, we search the line segment

between xk and PC(xk − µkF (xk)) for a point zi such that the hyperplane

∂Hk = {x ∈ <n| < F (zk), x− zk >= 0}

strictly separes xk from the solution of the VIP(F,C) x∗.

To compute zk, an Armijo-type procedure is used, i.e., zk = xk−ηkr(xk, µk)

where ηk = γiµk with i being the smallest nonnegative integer i satisfying

< F (xk − γiµkr(xk, µk)), r(xk, µk) >≥ σ

µk
‖r(xk, µk)‖2}

and r(xk, µk) = xk − PC(xk − µkF (xk)) is the projected residual function;

after the hyperplane ∂Hk is constructed, the next iterate xk+1 is computing

by projecting xk onto the intersection between the feasible set C with the

halfspace Hk = {x ∈ <n| < F (zk), x− zk >≤ 0} which contain the solution

set C∗.

The scheme of the Solodov and Svaiter algorithm is reported in the following.

Algorithm S-S

a choose x0 ∈ C, η−1 > 0, γ ∈ (0, 1), σ ∈ (0, 1), θ > 1, k = 0, rx = e

b if ‖rx‖ < TOL then stop

else

compute µk = min{θηk−1, 1}

c if r(xk, µk) := xk − PC(xk − µkF (xk)) = 0 then xk ∈ C∗ stop

d else compute

i = min
i∈Z+

{< F (xk − γiµkr(xk, µk)), r(xk, µk) >≥ σ

µk
‖r(xk, µk)‖2}
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where ηk = γiµk

e compute zk = xk − ηkr(xk, µk)

f compute the halfspace Hk = {x ∈ <n| < F (zk), x− zk >≤ 0}

g compute xk+1 = PC∩Hk
(xk)

rx = xk+1 − xk;

k = k + 1;

go to (b)

h endif

endif

Also in this method are needed only two projection per iteration.

This method should be especially effective when feasible sets are “no sim-

pler” than general polyhedra; in this case, adding one more linear constraint

to perform a projection onto C ∩Hk doesn’t increase the cost compared to

projecting onto the feasible set C.

Figure 4: Comparison between Iusem Svaiter method [7] and Solodov and

Svaiter method [18]

In Figure 4,we analyze the differences between the Iusem and Svaiter method

in [7] and the Solodov’s method. In [7], xk is projected first onto the sep-

arating hyperplane ∂Hk and then onto C. If x∗ near ∂Hk, PC(xk) can

computationally are equal to xk and the algorithm does not converge.
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In [18], the second projection step in our method is onto the intersection

C ∩Hk. We can observe that the iterate xk+1 is closer to the solution set

C∗ than the iterate computed by the method in [7].

In [18] it is shown that this method is convergent to a solution of the vari-

ational inequality problem under the only assumption that F is continuous

and pseudomonotone.
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3 Computational experience

In order to evaluate the effectiveness of the extragradient methods dis-

cussed in the previous section, we consider a set of test problems arising

from the literature (see the list in Table 3).

The M-function files implementing the considered test problems are down-

loadable at URL (http://dm.unife.it/pn2o/software.html).

We report in Table 4 the numerical results obtained by the MatLab M-script

files implementing the considered methods. These codes can be download-

able at the URL (http://dm.unife.it/pn2o/software.html).

For the test problems with the suffix ’box’ in the name of the input script

files, the feasible region is given by the nonnegative orthant x ∈ <n
+; they

are NCPs. The other test problems are VIPs.

We choose very simple feasible regions so that the solver for inner quadratic

programming problem has a low cost.

The starting point for all methods are feasible.

But, if we start from an unfeasible point, the first projection enables us to

determine a feasible point that can be used as initial iterate.

All MatLab codes are run on a Notebook personal computer (ACER Trav-

elMate 435LC, P-IV 3.06GHz) under MatLab version 6.5.0.180913a R13.

The following remarks can be drawn:

• between the three variants of the extragradient method, those related

to (16)-(17) and (18) are more effective; the scheme related to (18)

has near the same number of iterations with respect that related to

(16)-(17) but the number of the projections and the number of the

function evaluations are smaller; we remark the effectiveness of the

extragradient method combined with (18) when we have to solve an

NCP;

• the convergence of the S-T method is holds for monotone maps; the

method has a better performance with respect the extragradient meth-

ods and it is very efficient for an affine VIP (see the test problem
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HPHard); for several test problems the number of iterations of this

method appears convenient with respect to the S-S method; neverthe-

less the execution time of the S-S method can be smaller than that

of the S-T method; but half of the projections of the S-S method has

a different feasible region and then the number of projections are not

comparable. Furthermore, the behavior of the S-T method strongly

depends on the choices of its parameters (see Table 2).

For monotone VIPs, we can be find convenient parameters so that the

method is competitive with the others.

• For pseudomonotone VIPs, the S-S method appears in general very

effective (only for the test problem HpHard the behavior of the S-S

method is poor); indeed, the numbers of iterations of the S-S method

is less than those of all the other methods (except for the S-T method,

however, that requires the monotonicity of F ); but the complexity of

each iteration can be larger of that of the other methods. Indeed the

number of function evaluations can be greater than those of the extra-

gradient method combined with the rule method (18) or (16) (17) and

half of the projections has a different computational complexity since

the feasible region is complicated by an additional (linear) constraint.

Then the effectiveness of the S-S method can depend on the struc-

ture of the feasible region, on the performance of the solver for the

inner quadratic programming problem and on the analytical form of

the mapping F .

We remark, in particular, the loss of the efficient for the NCPs, where

the feasible region given by the nonnegative orthant significantly changes

by the addition of a linear inequality.
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4 Conclusion

In this paper we reported a numerical analysis of the behavior of a set of

extragradient-type methods that enable us to solve pseudomonotone VIPs

and NCPs. In particular, we devised a convenient variant of the Khobotov’s

extragradient method that appears numerically effective above all for NCPs

where one projection on the nonnegative orthant is very simple.

We compared other two extragradient-type methods: the first proposed by

Solodov and Tseng can be very convenient for monotone VIPs while the

second proposed by Solodov and Svaiter and called hyperplane projection

method can be solve also pseudomonotone VIPs. This method appears very

effective when the addition of a linear inequality constraint to the original

feasible region does not increase too much the computational complexity of

the special projections required by the scheme.

All the numerical results are reproducible by the codes available on the web

site URL(http://dm.unife.it/pn2o/software.html).

This work is in progress, since we intend to update in the site by adding

new significant test problems and by collecting further numerical results

on the considered schemes and on the new schemes in the framework of

extragradient-type methods.
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