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Abstract

In order to give a uniform basis for testing several algorithms, in

this work, we have collected a set of variational inequality problems.

At the URL (http://dm.unife.it/pn2o/software.html) the MatLab M-

script and M-function files related to the considered test problems are

downloadable (TESTVIPs).

Introduction

We consider the classical variational inequality problem VIP(F,C), which

is to find a point x∗ such that

x∗ ∈ C < F (x∗), x− x∗ >≥ 0 ∀x ∈ C (1)

where C is a nonempty closed convex subset of <n, < ., . > the usual inner

product in <n and F : <n → <n is a continuous function. Let C∗ be the set

of the solutions.

In the special case where C = <n
+, problem (1) is a nonlinear complementary

problem (NCP):

x∗ ≥ 0, F (x∗) ≥ 0 and < x∗, F (x∗) >= 0. (2)

If F is affine, F (x) = Mx + q where M ∈ <nxn (is a positive semidefinite

matrix) and q ∈ <n, then the problem (1) is an affine variational inequality
∗Italian FIRB Project, Grant n. RBAU01JYPN
†Department of Pure and Applied Mathematics, University of Padua, Italy.
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problem and (2) is a linear complementary problem (LCP).

In this work we collect a set of test problems arising from the literature.

For any problem, we report at least a solution and we propose an initial

point to start an iterative method.

Each test problem is related to two files: the first is an M-script file where the

constraints and other parameters of the problem are defined. The variable

fs is put equal to the string containing the name of the M-function file

containing the definition of F .

For example, the first test problem (Mathiesen’s problem) is related to the

following two files inputmathiesen.m and mathiesen.m:

• %script (inputmathiesen.m)

%

%constraint (VIP)

n=3; %dimension

A=[1,-1,-1]; %constraint (A*x<=b)

b=0;

Aeq=[1 1 1]; %equality constraint (Aeq*x=beq)

beq=1;

lb=[eps,eps,0]’; %lower bound

ub=[]; %upper bound

%

%starting point

x=[.1 .8 .1]’;

%x=[0.4, 0.3,0.3]’;

%

%function F

fs=’mathiesen’;

• %M-function (mathiesen.m)

function [f]=mathiesen(x)

%

%Reference:
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%L. Mathiesen,

% ’An algorithm based on a sequence of linear

% complementary problems applied to a Walrasian

% equilibrium model: an example’,

%Mathematical Programming, 37 (1987), pp.1-18.

%

f=-[0.9*(5*x(2)+3*x(3))/x(1)

0.1*(5*x(2)+3*x(3))/x(2)-5

-3];

In order to use test problem it is sufficient to insert the following instruction

in the code implementing a method:

eval(’inputmathiesen’)

1 Test Problems

1.1 Mathiesen’s Problem

This problem was used first by Mathiesen [7]. The function F : <3 → <3 is

F(x) = −




0.9(5x2 + 3x3)/x1

0.1(5x2 + 3x3)/x2 − 5

−3


 ,

and its feasible set is:

C = {x ∈ <3
+|x1 + x2 + x3 = 1, x1 − x2 − x3 ≤ 0}.

This example is an Walrasian model in which the consumer demand func-

tion is determined by a single consumer; there is one production activity,

and three goods.

The M-files corresponding to the problem are: inputmathiesen.m and matiesen.m.

We propose to use as starting points are x0 = (0.1, 0.8, 0.1) or x0 = (0.4, 0.3, 0.3).

A solution of the problem is x∗ = (0.5, 0.08, 0.41).
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1.2 Kojima-Shindo’s Problem

In this problem test [4], the function F : <4 → <4 is defined as follows:

F(x) =




3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3




.

If the feasible set is the following simplex:

C = {x ∈ <4
+|x1 + x2 + x3 + x4 = 4},

we have a VIP.

A possible choice of the starting point is x0 = (2, 0, 0, 2) and, for this exam-

ple, we can obtain as solution to this problem the point:x1 = (1.22, 0, 0, 0.5).

In this case the two M-files are inputkojshi.m and kojshi.m.

If the feasible region is the nonnegavite orthant of <4, x ∈ <4
+, we have a

NCP. In this case a possible choice of the starting point is x0 = (2, 0, 0, 2) and

for this example we can obtain as solution the point: x1 = (1.22, 0, 0, 0.50).

In this case the two M-files are inputkojshibox.m and kojshi.m.

1.3 Braess Network Problem

In [6], Marcotte considers the Braess paradox network with the separable

linear cost function illustrated in Figure 1, in which the arcs are ordered as

follows:

(1, 2), (1, 3), (2, 3), (2, 4), (3, 4).

The delay function is:

F(x) =




10 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 10







x12

x13

x23

x24

x34




+




0

50

10

50

0




.
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Figure 1: The Braess paradox network

In this example the feasible set is:

C = {x ∈ <5
+|Bx = b},

where the node-arc incidence matrix and b are respectively as follows:

B =




1 1 0 0 0

−1 0 1 1 0

0 −1 −1 0 1

0 0 0 −1 −1




b =




6

0

0

−6




.

This matrix has rank three; then we have considered the full row-rank B̂

submatrix of B, and the vector b, as follows

B̂ =



−1 0 1 1 0

0 −1 −1 0 1

0 0 0 −1 −1


 b̂ =




0

0

−6


 .

A reasonable choice of the starting point is x0 = (6, 0, 6, 0, 6) and the solution

is x∗ = (4, 2, 2, 2, 4).

In this case the M-files corresponding to the problem are inputbraessnet.m

and braessnet.m.

1.4 User-Optimized Traffic Pattern

In [2], Dafermos computes user-optimization traffic pattern for the sim-

5



Figure 2: Network

ple network shown in Figure 2 , with only two nodes x, y and five links

a1, a2, a3, b1, b2, where a1, a2, a3 are directed from x to y and b1, b2 are the

return of a1, a2 respectively.

The travel cost functions are given by

F(x) =




10 0 0 5 0

0 15 0 0 5

0 0 20 0 0

2 0 0 20 0

0 1 0 0 25







xa1

xa2

xa3

xb1

xb2




+




1000

950

3000

1000

1300




;

further the problem is subjected to the following constraints:

C = {x ∈ <5
+|xa1 + xa2 + xa3 = 210, xb1 + xb2 = 120}.

We have chosen the starting point x0 = (70, 70, 70, 60, 60) and we have

obtained the solution x∗ = (120, 90, 0, 70, 50).

In this case the M-files corresponding to the problem are useropt.m and

inputuseropt.m.

1.5 Harker’s Nash-Cournot Problem

In [5], Harker carries this test problem defined as follows.

We assume

N number of firms i = 1, .., N ;
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x = (xi) production vector i = 1, .., N ,

firm i produces a quantity xi of the good;

Q =
∑

xi the total sum of the goods;

p(Q) inverse demand function;

Ci(xi) the production cost for firm i.

In our example, the functions Ci(xi), p(Q) are defined as follows:

p(Q) = 5000
1
γ Q

− 1
γ

Ci(xi) = cixi +
bi

1 + bi
L

1
bi
i x

bi+1

bi
i .

The function is given by:

Fi(x) = C
′
i(xi)− p(Q)− xip

′
(Q);

in vectorial form the function can be expressed as:

F (x) =
[
c + L

1
b x

1
b − p(Q)(e− x

γQ
)
]

with ci, Li, bi, γ ∈ <+ and γ ≥ 1.

We have implemented the example in two cases:

• N = 5

c = [10, 8, 64, 2]T

b = [1.2, 1.10, 1, 0.9, 0.8]T

L = [5, 5, 5, 5, 5]T

e = [1, 1, 1, 1, 1]T

γ = 1.1

If the feasible region is

C = {x ∈ <5
+|x1 + x2 + x3 + x4 + x5 = 5}

we have a VIP.

Possible starting points are:
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x0 = (1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10),

x0 = (5, 0, 0, 0, 0)

and the solution is x∗ = (0.97, 0.99, 1.00, 1.01, 1.01).

In this case the M-files corresponding to the problem are inputHar-

nashc5.m, and Harnashc5.m.

If the feasible set is

C = {x ∈ <5|x ≥ 0}

we have an NCP.

Possible starting points are:

x0 = (1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10),

x0 = (5, 0, 0, 0, 0)

and the solution is x∗ = (15.41, 12.50, 9.66, 7.16, 5.13).

In this case the M-files corresponding to the problem are: inputHar-

nashc5box.m, and Harnashc5.m

• N = 10

c = [5, 3, 8, 5, 1, 3, 7, 4, 6, 3]T

b = [1.2, 1, 0.9, 0.6, 1.5, 1, 0.7, 1.1, 0.95, 0.75]T

L = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]T

e = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T

γ = 1.2

If the feasible region is

C = {x ∈ <10
+ |

10∑

i=1

xi = 10},
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we have a VIP.

We may used one of these starting points:

x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

and the solution obtained is

x∗ = (1.20, 1.12, 0.83, 0.55, 1.58, 1.12, 0.64, 1.17, 0.95, 0.79).

In this case the M-files corresponding to the problem are: inputHarnashc10.m,

and Harnashc10.m.

If the feasible region is

C = {x ∈ <10|x ≥ 0},

we have NCP.

We may used one of these starting points:

x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

and the solution obtained is

x∗ = (7.44, 4.09, 2.59, 0.93, 17.93, 4.09, 1.3, 5.59, 3.22, 1.67).

In this case the M-files corresponding to the problem are: inputHarnashc10box.m,

and Harnashc10.m.

When we choice the starting point x0 = [10, .., 10] we observe that x0 /∈ C;

then the true starting point is x1 obtained in the first iteration.

The examples are also used in MCPLIB (see [3]).

1.6 Pang and Murphy’s Nash-Cournot Problem

The following test problem is defined in [4] and in [8]. We assume

N number of firms i = 1, .., N ;
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x = (xi) production vector i = 1, .., N ,

firm i produces a quantity xi of the good;

Q =
∑

xi the total sum of the goods;

p(Q) inverse demand function;

Ci(xi) the production cost for firm i.

In our example the functions Ci(xi) and p(Q) are defined as follows:

p(Q) = 5000
1
γ Q

− 1
γ

Ci(xi) = cixi +
bi

1 + bi
L
− 1

bi
i x

bi+1

bi
i .

The function is given by

Fi(x) = C
′
i(xi)− p(Q)− xip

′
(Q)

in vectorial form the function can be expressed as follows

F (x) =
[
c + L−

1
b x

1
b − p(Q)(e− x

γQ
)
]
,

with ci, Li, bi, γ ∈ <+ and γ ≥ 1.

We have implemented the example in two cases:

• N = 5

c = [10, 8, 6, 4, 2]T

b = [1.2, 1.10, 1, 0.9, 0.8]T

L = [5, 5, 5, 5, 5]T

e = [1, 1, 1, 1, 1]T

γ = 1.1

If the feasible region is

C = {x ∈ <5
+|x1 + x2 + x3 + x4 + x5 = 5}

we have a VIP.

Several possible the starting points are:
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x0 = (1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10),

x0 = (5, 0, 0, 0, 0)

and a solution is x∗ = (0.95, 0.97, 0.99, 1.02, 1.04).

In this case the M-files corresponding to the problem are: inputPM-

nashc5.m and PMnashc5.m.

If the feasible set is

C = {x ∈ <5|x ≥ 0},

we have a NCP.

Several possible the starting points are:

x0 = (1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10),

x0 = (5, 0, 0, 0, 0)

and a solution is x∗ = (36.92, 41.73, 43.68, 42.68, 39.19).

In this case the M-files corresponding to the problem are: inputPM-

nashc5box.m and PMnashc5.m.

• N = 10

c = [5, 3, 8, 5, 1, 3, 7, 4, 6, 3]T

b = [1.2, 1, 0.9, 0.6, 1.5, 1, 0.7, 1.1, 0.95, 0.75]T

L = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]T

e = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T

γ = 1.2

If the feasible region is

C = {x ∈ <10+|
10∑

i=1

xi = 10},
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we have a VIP.

We may used one of these starting points:

x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

and the solution obtained is

x∗ = (0.96, 1.1, 0.76, 0.97, 1.22, 1.10, 0.83, 1.03, 0.89, 1.10).

In this case the M-files corresponding to the problem are: inputPMnashc10.m

and PMnashc10.m.

If the feasible region is

C = {x ∈ <10|x ≥ 0},

we have NCP.

We may used one of these starting points:

x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x0 = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

and the solution obtained is

x∗ = (35.37, 46.57, 4.72, 19.91, 120.93, 46.57, 12, 42.56, 20.59, 32.98).

In this case the M-files corresponding to the problem are: inputPMnashc10box.m

and PMnashc10.m.

When we choice the starting point x0 = [10, .., 10] we observe that x0 /∈ C;

then the true starting point is x1 obtained in the first iteration.

1.7 HPHard problem test

In [5], Harker describes a procedure to build an affine function F (x):

F (x) = Mx + q,

where the matrix M is randomly generated as:

M = AAT + B + D.

12



there any entry of the square nxn matrix A and of the nxn skew-symmetric

matrix B is uniformly generated from (−5, 5), and any entry of the diagonal

matrix D is uniformly generated from (0, 0.3); consequently, the matrix M

is positive definite.

The vector q has been uniformly generated from (−500, 0).

• If the feasible region is

C = {x ∈ <n
+|

n∑

i=1

xi = n},

we have a VIP. A possible starting point is x0 = (1, ..., 1) and the

solution.

We have analyzed two case:

– if n = 20, the solution is

x∗ = (0, 0, 1.71, 3.22, 1.95, 0, 0, 2.37, 0, 1.86,

1.93, 1.18, 0, 0, 0, 0.39, 1.68, 0.36, 1.44, 1.84)

and the M-files corresponding to the problem are inputHpHard.m

and Hphard.m.

– if n = 30, the solution is

x∗ = (0, 0, 1.13, 2.61, 0, 0.51, 0, 1.31, 2.52, 0.16, 3.43, 1.88, 0, 0, 0.80,

0, 0.61, 0, 3.36, 2.17, 0, 0, 0, 1.16, 1.09, 2.06, 2.80, 0.79, 0, 1.52)

and the M-files corresponding to the problem are inputHpHard30.m

and Hphard.m.

• If the feasible region is

C = {x ∈ <n|x ≥ 0},

we have a NCP.

– if n = 20, the solution is

x∗ = (0.09, 1.31, 4.81, 23.31, 1.12, 0, 0, 22.35, 0, 12.60,
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5.50, 6.36, 0, 15.69, 0, 0, 6.16, 12.23, 4.81, 11.94).

and the M-files corresponding to the problem are inputHpHard-

box.m and Hphard.m.

– if n = 30, the solution is

x∗ = (0, 0, 5.28, 9.84, 0, 2.35, 0.61, 3.83, 11.06, 0, 8.08, 3.71, 0, 0.19, 1.57,

0, 0.05, 7, 10.95, 6.31, 0.42, 0, 0, 5.42, 2.13, 5.11, 7.35, 2.90, 0, 5.08)

and the M-files corresponding to the problem are inputHpHard30box.m

and Hphard.m.

1.8 Obstacle problem

The obstacle problem [1] consist of finding the equilibrium position of

an elastic membrane subject to vertical force pushing upward.

The membrane’s equilibrium position is its position of minimum energy,

where the discretized energy is given by the quadratic function f(x) in the

following quadratic problem:

min
xl≤xi≤xu

f(x) =
1
2
xT MxT − qT x

The optimality condition for minimizing the discretized f(x) can be written

as following:

F (x)−ΠT
l λl + ΠT

u λu = 0

λT
l (xl − l) = 0

λT
u (u− xu) = 0

λl ≥ 0, λu ≥ 0

we can write Mixed Complementarity Problem (MCP):

Fi(x) > 0 and xl = l

Fi(x) = 0 and xl < x < xu

Fi(x) < 0 and xu = u
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We consider a block diagonal matrix M ∈ <N×N in which every block is a

tridiagonal submatrix Ai ∈ <n×n, with this form:

M =




A1 0 0 0 0 0 0 0 ...0

0 A2 0 0 0 0 0 0 ...0

0 0 ... 0 0 0 0 0 ...0

0 0 0 ... 0 0 0 0 ...0

0 0 0 0 ... 0 0 0 ...0

...

...

0 0 0 0 0 0 0 0 ...AN




.

with

Ai =




−4 −1 0 0 0 0

−1 −4 −1 0 0 0

0 .. .. .. 0 0

0 0 ... ... ... 0

0 0 0 ... ... ...

0 0 0 0 −1 −4




.

We have chosen n = 6, N = n ∗ n and q = − k
(N+1)∗(N+1) with k = 1.

The feasible set is C = {x ∈ <n|xl ≤ xi ≤ xu}, where xl, xu are computed

as follows:

do j = 1 : N

do i = 1 : N

xl(i + (j − 1) ∗N) =

(sin(9.2 ∗ (i− 1)/(N + 1.0)) ∗ sin(9.3 ∗ (j − 1)/(N + 1.0)))3

xu(i + (j − 1) ∗N) =

(sin(9.2 ∗ (i− 1)/(N + 1.0)) ∗ sin(9.3 ∗ (j − 1)/(N + 1.0)))2 + 0.02

enddo

enddo

We have chosen the starting point x0 = (0.1, ..., 0.1) and we have obtained
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the solution

x∗ = [0.0151, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.828, 0.247, 0.1262

0.0854, 0.0408, 0.02, 0.2229, 0.0722, 0.1319, 0.1341, 0.0375, 0.02, 0.1187

0.1304, 0.1878, 0.2612, 0.0651, 0.02, 0.0811, 0.1223, 0.2075, 0.3503, 0.0749

0.02, 0.0428, 0.0428, 0.0839, 0.1106, 0.03]
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