
Contents

Introduction 3

Acknowledgements 7

1 Optimization framework 9
1.1 Optimality conditions . 9
1.2 Optimization in Banach spaces 11

2 Newton’s methods 15
2.1 Classical Newton’s method 16

2.1.1 Globally convergent modifications of Newton’s method 19
2.2 Inexact Newton methods . 26

2.2.1 Local convergence . 29
2.2.2 Global Inexact Newton methods 33
2.2.3 Line–Search Inexact Newton methods 35
2.2.4 Trust–Region methods 38
2.2.5 Nonmonotone Inexact Newton methods 41

2.3 Newton methods and dynamic systems 51

3 Interior–Point Methods 63
3.1 Barrier methods . 63
3.2 Perturbed Karush–Kuhn–Tucker systems 65
3.3 Newton Interior–Point Methods 68

3.3.1 Newton Line–Search IP Methods 69
3.4 Newton Interior-Point Methods as Inexact Newton Methods . 76
3.5 Previously proposed IP algorithms 79

3.5.1 LOQO . 79
3.5.2 KNITRO . 80
3.5.3 IPOPT . 83

1

2 CONTENTS

4 Description of the algorithm 85
4.1 The interior–point iteration 86
4.2 The search direction . 89

4.2.1 The direct approach 90
4.2.2 The iterative approach: Hestenes method 90
4.2.3 The iterative approach: PCG 93

4.3 The nonmonotone version . 97

5 Convergence analysis 99
5.1 Convergence theorems . 99
5.2 Convergence in the nonmonotone case 112
5.3 A global convergence failure 114

6 Description of the test problems 117
6.1 Elliptic boundary control problems 117

6.1.1 Optimality condition in a special case: boundary ellip-
tic control problem with Neumann boundary conditions117

6.1.2 Statement of the problem 121
6.1.3 Discretization and optimization formulation 122
6.1.4 Test problems: general description 127
6.1.5 Test problems: discretization technique. 129

6.2 Elliptic distributed control problems 143
6.2.1 Statement of the problem 143
6.2.2 Discretization and optimization formulation 145
6.2.3 Test problems: general description 146
6.2.4 Test problems: discretization techniques 147

6.3 Figures . 158

7 Numerical experience 169
7.1 Implementation of the algorithm 169
7.2 The results . 171
7.3 Results in the nonmononone case 173
7.4 Tables . 175

Bibliography 191

Introduction

This thesis is concerned with the three following main topics: the analysis
of the Newton interior–point methods for nonlinear programming, the anal-
ysis of the inexact Newton method for the solution of nonlinear system of
equations and the numerical solution of optimal control problems by means
of mathematical programming techniques.
The theory of interior–point methods has been developed since the 70’s and
they were initially proposed for linear programming, but they became un-
popular soon because of their inherent ill-conditioning. Only recently, the
introduction of new algorithms with “global” convergence properties led to a
rediscovery of these methods and, in particular, good practical performances
has been observed in nonlinear programming.
The study presented here is about a special class of interior–point methods,
the Newton interior–point methods, which, in a more general framework,
address to systems of nonlinear equations with nonnegativity bounds on
some variables.
This remark allows the point of view adopted in this thesis, which consists
in considering the Newton interior–point method as a special case of the
inexact Newton methods for the solution of nonlinear systems of equations.
In this framework, an interior–point algorithm has been proposed, and for
this algorithm the convergence theory has been developed.
Furthermore, the analysis of the inexact Newton methods has yielded the
introduction of the nonmonotone inexact Newton methods, and thus the
introduction of a nonmonotone interior–point algorithm.
Crucial issues, which are deeply investigated here, in the analysis of the
Newton interior–point methods are the solution, at each iterate, of the per-
turbed Newton equation, that is a linear system with symmetric coefficients
matrix, and the modification of the computed direction, in order to guaran-
tee the “global” convergence of the sequence of the iterates.
Finally, the study presented in this thesis is motivated by the intention of
producing an efficient algorithm for the numerical solution optimal control

3

4 CONTENTS

problems. Indeed, from the continuous formulation of an optimal control
problem, a discrete version can be formulated as a large scale nonlinear
programming problem involving structured and sparse jacobian and hessian
matrices.
The transcription of a set of elliptic control problems into mathematical
programming problems has been examined, taking into account also the re-
lations between the continuous and the discrete formulation.
The numerical experience showed the good stability and efficiency of the
proposed software. The performances obtained are better or comparable
with the ones of some existing softwares.

In summary, the following significant contributions have been produced:

1. A “global” convergence theory (Chapter 5) of the Newton line–search
interior–point method for the solution of Karush–Kuhn–Tucker sys-
tems has been formulated in the framework of the inexact Newton
method (Section 2.2), allowing an approximate solution of the per-
turbed Newton equation, for example by means of an iterative inner
solver.

2. A nonmonotone “global” convergence theory has been introduced and
formulated for the inexact Newton method for the solution of nonlinear
systems (Section 2.2.5) and for the line–search Newton interior–point
method for KKT systems (Section 5.2). The nonmonotone case allows
less restrictive choices of the perturbation parameter, of the inner stop-
ping criterion and of the line–search acceptance rule (Section 4.3).

3. Different solvers of the perturbed Newton equation for the computa-
tion of the direction have been considered. In particular:

(a) By employing elimination techniques to the perturbed Newton
equation, the inner linear system at each iterate can be writ-
ten in a “condensed” form (Section 3.3.1), which is equivalent to
the optimality conditions of a quadratic programming problem.
Thus, the Hestenes multipliers method has been proposed as iter-
ative solver of the perturbed Newton equation in condensed form
(Section 4.2.2). At each iteration of the Hestenes method, a linear
system whose coefficients matrix is of the same dimension of the
primal optimization variable, symmetric and positive definite, is
solved.

(b) The system in condensed form has been also solved by means
of the conjugate gradient method with a suitable preconditioner

CONTENTS 5

(PCG) (Section 4.2.3); in this case the main computational task
at each interior–point iteration is the factorization of the precon-
ditioner. The implementation choices adopted here lead to two
different algorithms. The first one performs a block factorization
of the preconditioner, which requires the Choleski factorization of
a symmetric positive definite matrix of the same dimension of the
equality constraints. The other one, provides the factorization of
the whole preconditioner, which is a quasidefinite matrix whose
dimension is the number of the primal variables plus the number
of the equality constraints.

(c) An algorithm for the supernodal block factorization of quasidefi-
nite matrices performing the minimum degree reordering has been
proposed, allowing a dynamic regularization. This algorithm is a
variant of the package of Ng and Peyton for sparse, symmetric,
positive definite matrices and it has been employed for the direct
factorization of the whole preconditoner.

(d) The performances of the algorithms implementing an iterative
inner solver have been compared to the ones obtained by the al-
gorithm employing a direct factorization of the condensed matrix
(Section 4.2.1). The factorization routine chosen for this task is
the MA27 subroutine, of the Harwell Subroutine Library.

4. The algorithm in the four versions described above has been coded
in Fortran 90, also in the nonmonotone case. The evaluation of such
software has been made on a testset of nonlinear and quadratic pro-
gramming problems arising from the finite differences discretization of
elliptic control problems (Chapter 6). The best version of the proposed
method is the one implementing the PCG method with the direct fac-
torization of the whole preconditioner, which has been able to solve
problems with up to one million primal variables. The performances
of this variant of the algorithm have shown to be better of the per-
formances of LOQO, KNITRO and IPOPT (Table 3.1 in Chapter 3,
Table 7.13 in Chapter 7), while the performances of the other variants
with iterative inner solver are also comparable with the ones of these
existing softwares.

6 CONTENTS

Acknowledgments

I am very indebted to Professor Hans Mittelmann, for his precious sugges-
tions and observations which have enriched my thesis. I thank him for his
warm hospitality during my visit at the Arizona State University as well as
his valuable scientific advices.

7

8 CONTENTS

Chapter 1

Optimization framework

In this chapter the basic topics in constrained optimization are introduced.
The finite dimension case is considered and the classical optimality con-
ditions are reported. For sake of completeness, in the second section we
briefly recall the basic results in the more general case of the optimization
in Banach spaces, which also includes the optimal control theory.

1.1 Optimality conditions

The more general form of a nonlinear programming problem (NLP) is the
following

min f(x)

s.t.
g1(x) = 0
g2(x) ≥ 0

(1.1)

where the objective function f : Rn → R, the equality and inequality con-
straints g1 : Rn → Rneq, g2 : Rn → Rm are supposed to be twice continuously
differentiable. The symbol ∇f(x) denotes the gradient of the objective func-
tion ∇f = (∂f

∂x1
, ..., ∂f

∂xn
)t, while the matrices ∇g1(x) and ∇g2(x) denote the

transpose of the jacobian of the constraints, i.e.

∇g1(x) =

∂(g1)1(x)
∂x1

...
∂(g1)neq(x)

∂x1
...

...
∂(g1)1(x)

∂xn
...

∂(g1)neq(x)
∂xn

 ∇g2(x) =

∂(g2)1(x)
∂x1

... ∂(g2)m(x)
∂x1

...
...

∂(g2)1(x)
∂xn

... ∂(g1)m(x)
∂xn

 .

Here (g1)i(x) or (g2)i(x) denote the generic i–th component of g1(x) and
g2(x) respectively.
The Lagrangian function associated to the problem (1.1) can be written as

L(x, λ, w) = f(x)− λtg1(x)− wtg2(x) (1.2)

9

10 CHAPTER 1. OPTIMIZATION FRAMEWORK

where the vectors λ and w are the Lagrange multipliers for the equality and
inequality constraints respectively.
A point x∗ is a local solution of the minimum problem (1.1) if it is feasible,
which means that the equality and inequality constraints are satisfied in x∗,
and if f(x∗) ≤ f(x) for any x in the neighborhood of x∗ Nδ(x∗) = {x ∈
Rn : ‖x − x∗‖ < δ}, for some δ > 0. Under suitable assumptions on the
constraints, necessary and sufficient conditions can be given to characterize
the local minima. One of these assumptions involves the notion of regularity
of a point x ∈ Rn with respect to a set of constraints.

Definition 1.1 A feasible point x satisfying (g2)i(x) = 0 ∀i ∈ I(x), where
I(x) is a subset of I = {i ∈ N : 1 ≤ i ≤ m}, is said to be a regular point of
the constraints g1 and g2 if the gradient vectors ∇(g1)i(x) ∇(g2)j(x) with
i = 1, · · · , neq, and j ∈ I(x) are linearly independent.

Definition 1.2 A point x is a Karush-Kuhn-Tucker (KKT) point if there
exist two vectors λ1 ∈ Rneq and λ2 ∈ Rm such that

∇f(x)−∇g1(x)λ−∇g2(x)w = 0 (1.3)
g1(x) = 0 (1.4)

wtg2(x) = 0 (1.5)
w ≥ 0 g2(x) ≥ 0 (1.6)

The condition (1.3) is equivalent to set the gradient of the lagrangian func-
tion respect to the variables x1, ...xn equal to zero. Condition (1.5) is usually
called complementarity condition: indeed, from (1.5) and (1.6) it follows

wi(g2)i(x) = 0 (1.7)

Conditions (1.3)–(1.6) are the first order necessary conditions for the mini-
mum problem (1.1), also called Karush-Kuhn-Tucker optimality conditions.

Proposition 1.1 If a regular point x∗ is a local minimum for the problem
(1.1), then x∗ is a KKT point.

The proof of the proposition above can be found for example in [54, p. 314].
Sufficient conditions can be stated with some more information about the
convexity of the lagrangian function in a neighborhood of the KKT point.

1.2. OPTIMIZATION IN BANACH SPACES 11

Proposition 1.2 Let x∗ be a regular point for the problem (1.1). If x∗ is
a KKT point such that the hessian matrix of the lagrangian function

∇2
xxL(x∗, λ, w)) = ∇2f(x∗)−

neq∑

1=1

λi∇2(g1)i(x∗)−
m∑

1=1

wi∇2(g2)i(x∗)

is positive definite on the space

M = {y ∈ Rn : ∇g1(x∗)ty = 0,∇(g2)i(x∗)ty = 0, ∀i ∈ A(x∗)}

where
A(x∗) = {i : 1 ≤ i ≤ m, (g2)i(x∗) = 0, wi > 0}

then x∗ is a minimum point.

Here we denote by ∇2f , ∇2(g1)i(x) and ∇2(g2)i(x) the hessian matrices of
f(x), (g1)i(x), i = 1, ...neq, (g2)i(x), i = 1, ...m. For instance:

∂2f(x)
∂x2

1
... ∂2f(x)

∂x1∂xn

...
...

∂2f(x)
∂x1∂xn

... ∂2f(x)
∂x2

n

 .

The proof of the proposition can be found in [54, p. 316]. The set {(g2)i(x) :
i ∈ A(x)} is referred as the set of the constraints which are active at the
point x.

1.2 Optimization in Banach spaces

The previous theorems can be incorporated in a more general theory where
an optimization problem can be expressed as: given a subset of a vector
space, find the vector which minimizes a given functional in that subset.
For example, any variational problem and any optimal control problem be-
long to this class. In the following we report the theorems which characterize
the solution of the minimum problem when the feasible subset is defined by
means of functional equalities or inequalities.

Consider the problem
min f(x)
s.t. H(x) = 0

(1.8)

12 CHAPTER 1. OPTIMIZATION FRAMEWORK

where f is a real valued functional on a Banach space X and H is a mapping
from X into a Banach space Z. In analogy with the definition of regular
point given in the previous section, we report the definition of regular point
for the mapping H and the Lagrange multiplier’s theorem.

Definition 1.3 Let H be a continuously Fréchet differentiable 1 transfor-
mation from an open set D in a Banach space X into a Banach space Y .
If x0 ∈ D is such that H ′(x0) maps X onto Y , the point x0 is said to be a
regular point of the transformation H.

Theorem 1.1 (Lagrange multiplier’s theorem [53, p.243]) If the continu-
ously differentiable functional f has a local extremum subject to the con-
straint H(x) = 0 at the regular point x0, then there exists an element z∗0 in
the dual space 2 Z∗ of Z such that the lagrangian functional

L(x) = f(x) + z∗0H(x)

is stationary at x0, i.e. f ′(x0) + z∗0H
′(x0) = 0.

For the inequality constraints, we have to define a relation which indi-
cates the positivity of the elements in a vector space.

Definition 1.4 Let P a convex cone in a vector space X. For x, y ∈ X,
we write x ≥ y (with respect to P) if x − y ∈ P . The cone P defining this
relation is called the positive cone in X.

Now we can consider the following inequality constrained minimum problem

min f(x)
s.t. G(x) ≥ 0

(1.9)

where f is defined in a vector space X and G is a mapping from X into the
normed space Z having positive cone P . Under some assumption (see [53, p.

1Let be T a transformation defined on an open domain D in a normed space X and
having range in a normed space Y . If, for fixed x ∈ D and each h ∈ X, there exists
δT (x; h) ∈ Y which is linear and continuous with respect to h such that

lim
‖h‖→0

‖T (x + h)− T (x)− δT (x; h)‖
‖h‖ = 0

then T is said to be Fréchet differentiable at x and δT (x; h) is said to be the Fréchet
differential of T at x with increment h [53, p.172].

2The dual space X∗ of a normed vector space X is the space of all bounded linear
functionals on X [53, p. 106].

1.2. OPTIMIZATION IN BANACH SPACES 13

249, problem 9, p.267]) it is possible to prove the Generalized Kuhn–Tucker
Theorem, which ensures the existence of a multiplier z∗ corresponding to a
minimum x∗ of the problem (1.9) such that z∗ ∈ Z∗ and that the Lagrangian

f(x) + 〈G(x), z∗〉

is stationary at x∗, where 〈, 〉 indicates the inner product in the space Z.
Furthermore the complementarity condition 〈G(x∗), z∗〉 holds in the solu-
tion.

14 CHAPTER 1. OPTIMIZATION FRAMEWORK

Chapter 2

Newton’s methods

The Newton’s method is strictly related to the idea of optimization: it can
be considered an optimization method itself for the unconstrained case and
furthermore, for the constrained case, it can be used to solve the optimality
conditions in order to find a Karush–Kuhn–Tucker point. In the first section
the classical Newton’s method is presented, and for sake of completeness, its
basic principles, features and convergence results are also reported. Then,
particular attention is given to the class of the inexact Newton methods,
whose convergence theorems have been revisited and reported in the second
section. In Section 2.2.5 the inexact Newton method is extended to the
nonmonotone case for which it has been possible to prove convergence results
analogous to the one stated in the classical monotone case. The “global”
convergence of a nonmonotone line–search backtracking algorithm is proved
with Theorem 2.13.
The introduction of the nonmonotone inexact Newton method is an original
contribution of this thesis.
Finally, in the third section, some observations about the relations between
Newton’s method and Eulero’s method for the solution of a dynamic system
are explained, following the line proposed in [40].
From this point of view, the failure of the Newton method in some examples
known in literature can be justified with new arguments.

15

16 CHAPTER 2. NEWTON’S METHODS

2.1 Classical Newton’s method

The Newton’s method’s is based on the linearization idea, which means to
construct a linear approximation of the nonlinear problem

f1(x)
...

fn(x)

 = 0

that in vector form can be written as

F (x) = 0 (2.1)

where F : Rn → Rn denotes a mapping defined in some open subset E of
Rn, whose components are the fi.
The more natural linear model of F in a neighborhood of a given point xk

can be obtained by the Taylor’s expansion of F of the first order:

Lk(x) = F (xk) + F ′(xk)(x− xk),

where F ′(x) is the jacobian matrix of F defined by

F ′(x) =

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
...

∂fn(x)
∂x1

· · · ∂fn(x)
∂xn

 .

The linear function Lk(x) has the property to agree with F at xk and it is
a good approximation of F in a neighborhood of xk.
The classical Newton’s method builds a sequence of points xk such that
Lk(xk+1) = 0, which means that, the iterates can be computed by solving
the Newton equation

F ′(xk)sN
k + F (xk) = 0 (2.2)

where the solution vector sN
k is the Newton step, and with the updating rule

xk+1 = xk + sN
k .

We recall the local convergence results for the Newton method which can
be derived from the fixed–point theorem. Indeed, the Newton iteration can
be written as

xk+1 = xk − F ′(xk)−1F (xk) (2.3)

2.1. CLASSICAL NEWTON’S METHOD 17

which is a special case of a method of successive approximations

xk+1 = K(xk). (2.4)

We recall the standard fixed–point theorem and the definition of contraction
mapping:

Definition 2.1 Let E ⊂ Rn. A mapping K : E → Rn is a contraction
mapping on E if K is Lipschitz continuous 1 on E with Lipschitz constant
γ < 1.

Theorem 2.1 (Contraction Mapping Theorem) Let C a closed subset
of E and let K a contraction mapping on C with Lipschitz constant γ < 1
such that K(x) ∈ C for any x ∈ C. Then, there exists a unique fixed point
x∗ of K such that x∗ = K(x∗) in C and the sequence {xk} generated by the
iteration defined in (2.4) converges Q–linearly 2 to x∗ for all initial iterate
x0 ∈ C.

For the proof of the previous theorem see for example [63, p.36].
The contraction mapping theorem can be also applied to the Newton itera-
tion (2.3), but it allows to show only linear convergence, as pointed out in
[47], thus the convergence of the Newton’s method is proved following other
ways. Indeed, there exist many local convergence theorems for the New-
ton’s method, which also give an estimate of the convergence speed. We can

1A function K(x) is Lipschitz continuous on a set E with Lipschitz constant γ if

‖K(x)−K(y)‖ ≤ γ‖x− y‖
for all x, y ∈ E.

2The convergence rate considered here is the Q–order convergence rate. For sake of
completeness we report the definitions. Let {xk} be a sequence in Rn that converges to
x∗. The convergence is Q–linear if there exists a positive constant t < 1 such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ t

for k sufficiently large.
The convergence is said to be Q–superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0

for k sufficiently large. Q-quadratic convergence is obtained if

‖xk+1 − x∗‖
‖xk − x∗‖2 ≤ M

for k sufficiently large where M is a positive constant.

18 CHAPTER 2. NEWTON’S METHODS

distinguish two approaches: the more standard approach is to state some
assumptions on F and on the jacobian matrix F ′ in a neighborhood of the
solution or at the solution itself, while the Kantorovich approach provides
conditions on the starting point x0. The standard assumption are

A1 There exists a solution x∗ of the problem 2.1.

A2 F ′(x∗) is nonsingular.

A3 The jacobian F ′ : E → Rn×n is Lipschitz continuous, where E is a
neighborhood of x∗.

or the following affine invariant assumption

A3’ There exists a ω ≥ 0 such that

‖F ′(x)−1(F ′(x + sv)− F ′(x))v‖ ≤ sω‖v‖2

for all s ∈ [0, 1], v ∈ Rn and for any x ∈ D, x + vs ∈ D, where D is a
neighborhood of x∗ in which F ′(x) is nonsingular.

and they guarantee the convergence of the Newton sequence, starting from
an initial point sufficiently close to the solution, as claimed in the following
result.

Theorem 2.2 Suppose that A1 and A2 hold. If the hypothesis A3 or the
hypothesis A3’ is verified, then there exists a positive number δ such that
if Nδ(x∗) ⊂ E ∩ D 3 and if x0 ∈ Nδ(x∗), then the Newton iteration (2.3)
converges quadratically to x∗.

Proof. If A3 holds, then the thesis follows from Theorem 5.1.2 in [47, p.71]
or also Theorem 5.2.1 in [26, p.90].
Suppose now that A3’ is verified. We observe that, for the continuity of
F ′, from A1 there exists a positive number δ̄ such that the matrix F ′(x) is
nonsingular for any x ∈ Nδ̄(x∗). Then, if δ = min{δ̄, 2

ω}, the thesis follows
from Theorem 4.10 in [27, p.97]. ¤
Remark. Under the affine invariant condition A3’, the radius of attraction
δ of the Newton method depends on the quantity 2/ω, where ω is the affine
invariance constant. An analogous result can be obtained under the as-
sumption A3: in this case the radius of the attraction region for the Newton

3Here and in the following Nδ(x∗) denotes the neighbourhood of x∗ with radius δ, i.e.
the set {x ∈ Rn : ‖x− x∗‖ ≤ δ}.

2.1. CLASSICAL NEWTON’S METHOD 19

method is δ ≤ 2/(3γ‖F ′(x∗)−1‖) (see [63, p.44]).

As mentioned before, in the Kantorovich approach the convergence theo-
rem is proved under suitable hypotheses on the starting point x0. Such
hypotheses are

K1 ‖F ′(x0)‖ is nonsingular.

K2 There exist two positive constants β and η such that

‖F ′(x0)‖ ≤ β, and ‖F ′(x0)−1F (x0)‖ ≤ η

K3 There exists δ such that F ′ is Lipschitz continuous with Lipschitz
constant γ in Nδ(x0).

Theorem 2.3 (Kantorovich) Assume that K1–K3 hold. If βηγ ≤ 1/2
and δ > δ0 where δ0 = (1 − √1− 2βηγ)/(βγ), then there exists a unique
solution x∗ of the problem (2.1) in the closure of Nδ0(x0) and the iteration
(2.3) is well defined and converges to x∗ with a R–quadratic convergence
rate4.

For a proof of the Kantorovich theorem we refer to [61], we only observe that
the form of Theorem 2.3 is similar to the form of the contraction mapping
theorem 2.1, as pointed out also in [26]. Indeed, both theorems identify
a region in which, under some assumptions a unique root of F exists and,
starting from a point belonging to that region, the iterations of type (2.4)
converge to the solution.

2.1.1 Globally convergent modifications of Newton’s method

In the previous section, the Newton’s method has been shown to be Q–
quadratically convergent to a solution of the problem F (x) = 0, when the
initial point of the sequence is sufficiently close to the solution. In other
words, if good properties, as the nonsingularity of the jacobian matrix, hold
at the solution, there is a “good” region around this solution in which such
properties hold too. This section deal with the two major ideas to get into

4Let {xk} ⊂ Rn and x∗ ∈ Rn. Then {xk} converges to x∗ R-(quadratically–
superlinearly, linearly) if there exists a sequence {ξk} converging Q–(quadratically–
superlinearly, linearly) to zero such that

‖xk − x∗‖ ≤ ξk.

20 CHAPTER 2. NEWTON’S METHODS

this region, the line–search and the trust–region, which provide the criteria
for evaluating when the Newton step is unsatisfactory and the strategies to
proceed.

Line-search strategy

The general framework of the line search approach applied to the Newton’s
method is the following: at the iterate k, given the Newton step sN

k , check
the acceptance rule, then, if it is not satisfied, reduce the steplength along
the direction sN

k such that reduced step can be accepted by the rule. In this
contest, it is natural to introduce the idea of the merit functions, which are
real valued functions employed to measure the progress toward the solution.
For the problem (2.1), a measure of the distance from the solution is the
function

f(x) =
1
2
‖F (x)‖2, (2.5)

where ‖ · ‖ indicates the euclidean norm in Rn, and a reasonable acceptance
criterion is to require that in two successive Newton iterations the value of
f decreases:

f(xk+1) < f(xk).

It is evident the relation between the root–finding problem (2.1) and the
unconstrained minimum problem

min f(x)
x ∈ Rn (2.6)

since a solution of (2.1) is also a solution of (2.6), but it could exist a local
minimizer of f which is not a root of F . We recall that all the strategies
explained here can be applied to the root finding problem but also to a
general unconstrained minimum problem of the form (2.6), where f is a
generic real valued function. Indeed, for the minimum problem we can
introduce the definition of descent direction as follows.

Definition 2.2 A vector sk is a descent direction for the problem (2.6) in
the point xk if

∇f(xk)tsk < 0.

If sk is a descent direction for the function f in xk, then the decrease of
the function f is guaranteed, for sufficiently small values of αk. Indeed, by
setting fk(α) = f(xk + αsk), we have f ′k(0) = ∇f t(xk)sk < 0. Hence, for
sufficiently small values of αk, Taylor’s theorem ensures that f(xk + αsk) =

2.1. CLASSICAL NEWTON’S METHOD 21

fk(α) < fk(0) = f(xk).
We observe that the vector −∇f(xk), called steepest descent direction is
a descent direction while the Newton step is a descent direction for the
problem (2.6) with f defined as in (2.5) at each Newton iterate xk.
In general, provided a descent direction sk at a given point xk, the best
candidate along this direction for the next iterate is the point xk + αksk,
where αk the solution of the one dimensional problem

min f(xk + αsk), α > 0.

Nevertheless, in practical algorithms it is not necessary to compute the exact
solution of that minimum problem, but it is sufficient to require that in the
new point there is a sufficient decrease of f . A well known accepting rule
for such decrease is the Armijo condition

f(xk + αksk) ≤ f(xk) + βαk∇f(xk)tsk. (2.7)

The Armijo condition implies that the decrease of f is at least a multiple
of the distance between two successive iterates. Indeed, if sk is a descent
direction for f in xk and if we set

ω = −βst
k∇f(xk)
‖sk‖ > 0,

then by means of (2.7) we obtain

f(xk)− f(xk+1)
‖xk − xk+1‖ =

f(xk)− f(xk+1)
αk‖sk‖ ≥ ω,

and from this we have

f(xk)− f(xk+1) ≥ ω‖xk − xk+1‖.
This means that if the distance between two successive iterates is large, then
is also large the amount of the decrease of f .
The Wolfe condition is often associated to (2.7) and it is expressed by re-
quiring that the following inequality holds for a fixed value of γ such that
0 < β < γ < 1.

st
k∇f(xk+1) > γst

k∇f(xk). (2.8)

Such condition prevents αk to become too small, as pointed out for example
in [60, pp. 39–40].
The convergence theory for the line–search methods with (2.7) and (2.8) as
acceptance rules can be resumed by the following theorem.

22 CHAPTER 2. NEWTON’S METHODS

Theorem 2.4 Let {xk} be a sequence of iterate such that xk+1 = xk+αksk,
where, at each iterate k, sk is a descent direction for f and αk satisfies the
Armijo-Wolfe conditions (2.7) and (2.8). Suppose that f is bounded below
in Rn and that f is continuously differentiable in an open set E containing
the level set Ω = {x : f(x) ≤ f(x0)}, where x0 is the starting point of the
iteration and assume that the gradient ∇f is Lipschitz continuous in E.
Then the Zoutendijk condition

∞∑

k=1

cos2 ξk‖∇f(xk)‖ < ∞ (2.9)

holds, where ξk is the angle between sk and the steepest descent direction
−∇f(xk).

If the descent direction sk is chosen such that the angle ξk is bounded away
from 90 degrees, then cos ξk is bounded away from 0 and the Zoutendijk
condition implies that

lim
k→∞

‖∇f(xk)‖ = 0. (2.10)

It is worth to stress that condition (2.10) does not guarantee that the se-
quence {xk} is convergent. If we assume that the sequence {xk} has a limit
point x∗, then under the assumptions of Theorem 2.4 we can conclude that
x∗ is a stationary point for f , that is ∇f(x∗) = 0. On the other hand,
when we consider the root–finding problem and we choose f as in (2.5), if
we assume that there exist a limit point x∗ of the sequence {xk} such that
F ′(x∗) is nonsingular, then (2.10) implies that F (x∗) = 0.

The implementation of the line–search strategy is often obtained by means
of a backtracking procedure, that consists in starting from the full step sk,
then reducing the steplength αk by a value θk < 1 until the acceptance rule
is satisfied, according to the following scheme:

Scheme 2.1 (Backtracking technique)

At the iteration k, given a descent direction sk and a scalar θk < 1

Set αk = 1.

Until the acceptance rule is satisfied do:

Set αk = θkαk

Set xx+1 = xk + αksk.

2.1. CLASSICAL NEWTON’S METHOD 23

The previous scheme allows to retain the full step if it satisfies the ac-
ceptance rule, and this choice can make the backtracking algorithm very
effective when the Newton step is taken. Indeed, when the iterate is close
to the solution, the quadratic convergence rate of the Newton method can
be maintained, because the full Newton step can be accepted.
In general, a good acceptance rule for the backtracking technique should be
not too restrictive in order to allow sufficiently large step length and thus a
significant progress toward the solution at each iteration.

Trust-region strategy

In the trust–region approach, at the iterate k a quadratic function mk(s) =
mk(xk + s) is chosen as model of the function f . Then, a region of the
space around xk is determined such that mk(s) is trusted to be a good
approximation of f in that region. Generally the trust–region is chosen as a
sphere or an ellipse centered in the current point xk, hence determining the
trust–region means to choose the radius of the region. Once determined the
radius δk, the step sk is computed as the minimizer of mk(s) over the trust–
region, namely sk solves the following constrained quadratic programming
problem:

min mk(s)
s.t. ‖s‖ ≤ δk

(2.11)

Referring to the unconstrained minimum problem (2.6), a choice for the
quadratic model is

mk(s) = f(xk) +∇f(xk)ts +
1
2
st∇2f(xk)s (2.12)

and if we refer to the root–finding problem, we could choose f as in (2.5),
obtaining

∇f(xk) = F ′(xk)tF (xk)

and

∇2f(xk) = F ′(x)tF ′(x) +
n∑

i=1

fi(x)∇2fi(x).

A slightly different quadratic model for the problem (2.1) with the same
linear term but different hessian matrix, is the following:

mk(s) =
1
2
‖F ′(x)s + F (x)‖2 (2.13)

=
1
2
F (xk)tF (xk) + (F ′(xk)tF (xk))ts +

1
2
st(F ′(xk)tF ′(xk))s.

24 CHAPTER 2. NEWTON’S METHODS

We observe that if F ′(xk) is nonsingular, then the matrix F ′(xk)tF ′(xk) is
positive definite and the Newton step sN

k is the unique global minimizer of
mk(s) in (2.13).
The step computed by minimizing the quadratic model is accepted if it
satisfies an acceptance rule: as for the line–search approach, it is gener-
ally required that the new iterate xk + sk gives a sufficient reduction of a
merit function, which can be the object function f of the minimum problem
(2.6) itself or the least squares function (2.5). If this does not occur, the
step is rejected, the radius of the trust–region is reduced and the process
is repeated until an acceptable step is computed according to the following
general scheme:

Scheme 2.2 (Trust–region technique)

Until the acceptance rule is satisfied do:

Choose the trust–region radius δk.

Compute a vector sk, solution of the problem (2.11).

Update the iterate xk+1 = xk + sk.

Update the radius δk+1.

The main difference between the line–search and the trust–region approach,
is that in the latter case the radius δk controls not only the step length,
but also the direction. Indeed, by changing the value of δk, the solutions of
(2.11) give different vectors.
A frequent choice for the acceptance rule is the following: let us define the
actual reduction of the function f as

aredk(sk) = f(xk)− f(xk + sk) (2.14)

which corresponds to the amount of the decrease of f , and the predicted
reduction

predk(sk) = mk(0)−mk(sk) (2.15)

namely the decrease of the quadratic model function in two successive it-
erates. The step sk is accepted if the ratio ν = aredk(sk)

predk(sk) is grater than a
positive fixed quantity t

aredk(sk) > t · predk(sk).

2.1. CLASSICAL NEWTON’S METHOD 25

Furthermore, in many practical algorithms, the updating rule for the trust–
region radius for the next iterate depends on the value of ν: if it is grater
than a fixed quantity u > t, it means that the quadratic model gives a good
approximation of the function f and the radius can be increased. The aim
of this procedure is to allow larger step when we are close to the solution:
for example, if the quadratic model is (2.13), the full Newton step could be
taken, improving the convergence rate.
About the solution of the quadratic subproblem (2.11), we report the Levenberg–
Marquardt characterization of the solutions:

Theorem 2.5 The vector s∗ is a global solution of the trust–region sub-
problem

min c + bts + 1
2stAs

s.t. ‖s‖ ≤ δ
(2.16)

if and only if there is a scalar λ ≥ 0 such that the following conditions are
satisfied:

(A + λI)s∗ = −b (2.17)
λ(δ − ‖s∗‖) = 0 (2.18)

(A + λI) is a positive semidefinite matrix (2.19)

For the proof we refer for example to [60, p.84] and we report the formulation
of the conditions (2.17)–(2.19) for the case (2.13):

(F ′(xk)tF ′(xk) + λI)s∗ = −F ′(xk)tF (xk)
λ(δ − ‖s∗‖) = 0.

The previous characterization of the exact solution of the trust–region sub-
problems has also a practical importance. However, it is not necessary to
compute an exact solution of the quadratic subproblem, but it is sufficient
to compute a direction with some suitable properties which allow to prove
the convergence of the algorithm. Referring to the generic problem (2.16),
such properties can be formulated by requiring that the following inequality
holds at each iteration:

mk(0)−mk(sk) ≥ c‖b‖min
(

δk,
‖b‖
‖A‖

)
. (2.20)

Under this condition, it is possible to prove convergence theorems (see [60,
p.89–93]) whose thesis is the same as in the line–search framework: indeed,

26 CHAPTER 2. NEWTON’S METHODS

under some assumptions, condition (2.10) is guaranteed, but the conver-
gence of the sequence {xk} is not ensured.
The first approximation of the solution of (2.11) can be found by calculat-
ing the Cauchy point: it is defined as sC

k = τks
S
k , where sS

k is a solution of
a linear version of (2.11), that is sS

k = argmin (c + bts), and the scalar τk

minimizes mk(τsS
k) subject to the trust–region bound ‖τsS

k ‖ ≤ δk. It is easy
to prove (see [60, p.70]) that the Cauchy point satisfies (2.20).
In order to improve the accuracy of the approximation of the solution of
(2.11) provided by the Cauchy point, many methods for the computation
of a direction which satisfies (2.20) have been proposed, and the two more
popular techniques are the dogleg method and the Steihaug implementation
of the conjugate gradient method.
The former one finds an approximate solution of the problem (2.16) by min-
imizing the quadratic model along a path consisting of two line segments.
The first segment has origin in the current point and terminates in the un-
constrained minimizer along the steepest descent direction for (2.16): in
other words the first line is the vector −(btb/btAb)b. The second segment
runs from the previous point to the unconstrained minimizer of (2.16) de-
fined by −A−1b. This procedure is justified because the dogleg path is an
approximation of the curve s∗(δ), that is the curve of the exact solutions of
(2.16) depending on the values of the radius δ.
The Steihaug approach consists in a modification of the classical conjugate
gradient method, which terminates either when the conjugate gradient iter-
ates violates the trust region bound ‖s‖ ≤ δ or when a direction of negative
curvature in A is encountered. For further details and proofs we refer to
[67].

2.2 Inexact Newton methods

The inexact Newton methods have been firstly proposed in [25]. The idea
of these methods is to give a condition on the direction along which the new
iterate will be computed, guaranteeing the convergence to a solution. Such
condition requires that, at each step k, the direction sk satisfies

‖F ′(xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖ (2.21)

for some forcing term ηk ∈ [0, 1).
If (2.21) holds, then the direction sk, called inexact Newton step at the level
ηk, can be considered an approximation of the Newton direction. Indeed, the
left-hand-side of (2.21) is the norm of the residual of the Newton equation.

2.2. INEXACT NEWTON METHODS 27

From (2.21) we observe that the ratio between the residual of the Newton
equation and the “outer” residual ‖F (xk)‖ is controlled by the forcing term
ηk.
An inexact Newton method is any method which, given an initial guess x0,
generates a sequence {xk} as follows:

For k = 0, 1, 2, . . .
Find some ηk ∈ [0, 1) and a vector sk that satisfy (2.21);
Set xk+1 = xk + sk.

Before to give further theoretical details, it is worth to make some observa-
tions about condition (2.21) and to illustrate the situation with an example.
Consider the system of two nonlinear equation

F (x) =
(

x1 + x2 − 5
x1x2 − 4

)
= 0. (2.22)

The two solution of (2.22) are (1, 4) and (4, 1) and the jacobian matrix F ′(x)
is given by

F ′(x) =
(

1 1
x2 x1

)
.

Supposing that xk = (0, 3), we have that F ′(xk) is nonsingular and the
Newton step sN

k is the vector (1.3̄, 0.6̄), drawn with the black solid arrow in
the figure 2.1, where the contour lines of ‖F (x)‖ are also reported. In the
same figure, the inexact Newton steps sk which satisfy (2.21) (with ηk = 0.3)
are the dotted arrows, and the circles indicates the points xk+1 = xk + sk,
which form a “cloud” of points around xN

k+1 = xk + sN
k . If the forcing term

ηk is increased, then the cloud has a larger diameter. Furthermore, it is
worth to stress that

- the method is independent of the way to compute the direction sk;

- F ′(xk) is not required to be nonsingular.

Note that condition (2.21) guarantees that the inexact Newton step is a
descent direction for the scalar function

Φ(x) =
1
2
‖F (x)‖2

2. (2.23)

28 CHAPTER 2. NEWTON’S METHODS

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

Figure 2.1: Inexact Newton step: nonsingular jacobian matrix

Indeed we have the following inequality (we omit the iteration index):

∇Φ(x)ts = F (x)tF ′(x)s
= F (x)t[−F (x) + F ′(x)s + F (x)]
= −‖F (x)‖2

2 + F (x)t(F ′(x)s + F (x))
≤ −(1− η)‖F (x)‖2

2 ≤ 0.

When F ′(xk) is nonsingular, there exists a unique Newton direction, as in
the previous example, and a practical way to compute an inexact step is to
apply an iterative inner solver to the Newton equation

F ′(xk)s = −F (xk)

until condition (2.21) is satisfied. Thus condition (2.21) represents an adap-
tive stopping criterion for the iterative inner solver where the accuracy of
the solution of the linear system depends on the value ‖F (xk)‖ which is large
for the initial iterations, and it become smaller when xk is approaching to
the solution. It follows that the inexact Newton method particularly suited
for large scale problems, because unnecessary and costly computations can
be avoided.
If the matrix F ′(xk) is singular, then two cases can occur: either the Newton
equation is possible and admits an infinite number of solutions, and then

2.2. INEXACT NEWTON METHODS 29

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

Figure 2.2: Inexact Newton step: singular jacobian matrix case 1

there exists an infinite number of Newton directions, or the Newton equa-
tion has no solutions.
Figure 2.2 refers again to the example (2.22), but now xk is the point (1, 1),
where the jacobian is the singular matrix

(
1 1
1 1

)

and F (xk) = (−3,−3)t. In this case the system F ′(xk)s = −F (xk) admits
an infinite number of solutions, which are all the vectors with origin in xk

and end point in the points lying on the line x1 +x2 = 5. The circles around
the line x1 + x2 = 5 are the points x = xk + s where s is an inexact Newton
step with ηk = 0.1.
Starting from the point xk = (2, 2), the system has no solutions, for the
Rouché–Capélli theorem, but with ηk = 0.9 there exist infinite inexact New-
ton steps s; the points marked with a black circle in the figure 2.3 represent
x = xk + s.

2.2.1 Local convergence

The inexact Newton method has a local linear convergence property, under
the following standard assumptions:

30 CHAPTER 2. NEWTON’S METHODS

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

Figure 2.3: Inexact Newton step: singular jacobian matrix case 2

(A1) There exists a point x∗ ∈ Rn with F (x∗) = 0;

(A2) F is continuously differentiable in a neighborhood of x∗;

(A3) F ′(x∗) is nonsingular.

The local convergence theorem can be formulated as follows.

Theorem 2.6 (Theorem 2.3 in [25]) Assume that ηk < t < 1 and (A1)-
(A3) hold. There exists ε > 0 such that, if ‖x0− x∗‖ < ε, then the sequence
of inexact Newton iterates {xk} converges to x∗.
Moreover, the convergence rate is linear, that is

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗
where ‖y‖∗ ≡ ‖F ′(x∗)y‖.
Remarks. The proof of the theorem is carried out exploiting the assumption
(A2) which guarantees the smoothness of F and employing the two following
lemmas.

Lemma 2.1 [61, §2.3.3] Assume that the matrix F ′(x) is invertible. Then,
for any ε > 0 there exists δ > 0 such that F ′(x) is invertible and

‖F ′(x)−1 − F ′(y)−1‖ < ε,

2.2. INEXACT NEWTON METHODS 31

for all y ∈ Nδ(x).

Lemma 2.2 [61, §3.1.5] For any x and ε > 0, there exists δ > 0 such that

‖F (z)− F (y)− F ′(y)(z − y)‖ ≤ ε‖z − y‖,
for all z, y ∈ Nδ(x).

About the rate of convergence of the method, the sequence of the forcing
terms ηk plays an important role: indeed, from the proof of the previous
theorem, the linear rate is due to the bound ηk < 1. The following theo-
rem shows that, choosing the forcing sequence in an appropriate way, the
convergence rate can be improved.

Theorem 2.7 Let {xk} the sequence generated by the inexact Newton
method. Assume that (A1)–(A3) hold and that the sequence {xk} con-
verges to x∗. Then {xk} converges to x∗ with the same rate of convergence
as the sequence {‖F (xk)‖} converges to 0.
Furthermore the rate of convergence is superlinear if ηk → 0 and it is
quadratic if ηk = O(‖F (xk‖).
Proof. Let β = ‖F ′(x∗)−1‖ and α = max[‖F ′(x∗)‖+ 1

2β , 2β]. From Taylor’s
expansion it follows that

F (xk) = F (x∗) + F ′(x∗)(xk − x∗) +O(‖xk − x∗‖2),

thus
‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖ ≤ O(‖xk − x∗‖2).

Since {xk} converges to x∗, for k sufficiently large the following relation
holds (see Lemma 2.2):

‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖ ≤ 1
2β
‖xk − x∗‖.

Now, the value of F (xk) can be obtained as

F (xk) = F ′(x∗)(xk − x∗) + [F (xk)− F (x∗)− F ′(x∗)(xk − x∗)] (2.24)

and then

‖F (xk)‖ ≤ ‖F ′(x∗)‖‖xk − x∗‖+ ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖
≤

[
‖F ′(x∗)‖+

1
2β

]
‖xk − x∗‖

≤ α‖xk − x∗‖ (2.25)

32 CHAPTER 2. NEWTON’S METHODS

On the other hand, (2.24) can be written also as

F (xk) = F ′(x∗)(xk − x∗)− [F (x∗)− F (xk) + F ′(x∗)(xk − x∗)]. (2.26)

By multiplying (2.26) by F ′(x∗)−1 and taking norms, we can conclude that
the following inequality holds:

‖F (xk)‖ ≥ ‖F ′(x∗)−1‖−1‖xk − x∗‖ − ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖
≥

[
‖F ′(x∗)−1‖−1 − 1

2β

]
‖xk − x∗‖

=
1
2β
‖xk − x∗‖

≥ 1
α
‖xk − x∗‖. (2.27)

Comparing the inequalities (2.25) and (2.27), it has been proved that

1
α
‖xk − x∗‖ ≤ ‖F (xk)‖ ≤ α‖xk − x∗‖ (2.28)

(cfr. Lemma 3.1 in [25]). This is sufficient to conclude that

1
α
≤ lim sup

k→∞
‖F (xk)‖
‖xk − x∗‖ ≤ α

which means that {‖F (xk)‖} and {‖xk − x∗‖} converge to zero with the
same rate of convergence.
Thus, it is possible to prove the last part of the theorem, either on the
sequence ‖F (xk)‖, or on the sequence ‖xk − x∗‖.
Since F ′(x∗) is nonsingular, then there exists a positive number δ such that
F ′(x) is nonsingular for all x ∈ Nδ(x∗).
Let L be the maximum value of ‖F ′(x)−1‖ in the compact set Nδ(x∗). For
k sufficiently large (such that xk ∈ Nδ(x∗)), from (2.21) and from

(xk+1 − xk) = F ′(xk)−1([F ′(xk)(xk+1 − xk) + F (xk)]− F (xk))

it follows that

‖xk+1 − xk‖ ≤ ‖F ′(xk)−1‖[‖F ′(xk)(xk+1 − xk) + F (xk)‖+ ‖F (xk)‖
≤ 2L‖F (xk)‖.

By using the last expression together with the Taylor’s expansion, it results
that

F (xk+1) = F (xk) + F ′(xk)(xk+1 − xk) +O(‖xk+1 − xk‖2)
= F (xk) + F ′(xk)(xk+1 − xk) +O(‖F (xk)‖2).

2.2. INEXACT NEWTON METHODS 33

Hence, from (2.21), the following inequality is proved

‖F (xk+1)‖ ≤ ηk‖F (xk)‖+O(‖F (xk)‖2). (2.29)

Then, dividing (2.29) by ‖F (xk)‖, we obtain

lim sup
k→∞

‖F (xk+1)‖
‖F (xk)‖ = lim sup

k→∞
ηk,

and we have that, if ηk → 0, then it follows the superlinear convergence.
Furthermore, if ηk = O(‖F (xk)‖), proceeding as before, we obtain

lim sup
k→∞

‖F (xk+1)‖
‖F (xk)‖2

= C

for some constant C, which guarantees the quadratic convergence rate of
the sequences {‖F (xk)‖} and {‖xk − x∗‖}. ¤
The next step is to globalize the method by introducing another condition
in order to obtain algorithms with global convergence properties, under ap-
propriate assumptions.

2.2.2 Global Inexact Newton methods

The “globalization” of the inexact Newton methods can be obtained by
adding a step to its scheme: the first step consists in finding a direction
which satisfies (2.21), then, in the second step, such direction is modifies
in order to guarantee a sufficient progress toward the solution. The idea
of “sufficient progress” toward the solution can be expressed by requiring a
suitable decrease of ‖F (x)‖ in the next iterate.
The general scheme for the global method can be written as follows:

Let x0 ∈ Rn and β ∈ (0, 1) be given.
For k = 0, 1, 2, . . .

Find ηk ∈ [0, 1), λk ∈ (0, 1) and a vector sk that satisfy

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖ (2.30)
and

‖F (xk + sk)‖ ≤ λk‖F (xk)‖. (2.31)

Set xk+1 = xk + sk.
The theoretical foundation for the convergence of the sequence {xk} gen-
erated by the previous algorithm has been developed in [33] under the as-
sumptions (A2),(A3) and the following further hypothesis:

34 CHAPTER 2. NEWTON’S METHODS

(A4) x∗ is a limit point of the sequence {xk}.

The first step is to analyze when the algorithm breaks down, that is when, at
the iterate k, it is impossible to compute the next iterate xk+1 which satisfies
(2.30) and (2.31). The next lemma shows that, if at the k-th iterate there
exists an inexact Newton step, then the sequence does not break down.
Thus, the possibility to construct the sequence depends only on the first
requirement, the condition (2.30).

Lemma 2.3 (Lemma 3.1 in [33]) Let x and β ∈ (0, 1) be given and as-
sume that there exists a vector s̄ and a scalar η̄ < 1 that satisfy

‖F ′(x)s̄ + F (x)‖ ≤ η̄‖F (x)‖.

Then, there exist ηmin ∈ [0, 1) such that

‖F ′(x)s + F (x)‖ ≤ η‖F (x)‖ and ‖F (x + s)‖ ≤ λ‖F (x)‖,

where s = 1−η
1−η̄ s̄, λ = 1− β(1− η) for any η ∈ [ηmin, 1).

The previous lemma also shows that there exist some relations between ηk

and λk, which represent the rates of the reduction of the residual ‖F ′(xk)s+
F (xk)‖ and of ‖F (xk)‖ respectively at two successive iterates.
We also report the following theorem, which is crucial for the convergence
proof.

Theorem 2.8 (Theorem 3.3 in [33]) Let {xk} be a sequence such that

lim
k→∞

F (xk) = 0. (2.32)

and for each iteration k the following conditions hold:

‖F (xk) + F ′(xk)sk‖ ≤ η‖F (xk)‖,

‖F (xk+1)‖ ≤ ‖F (xk)‖,
where sk = xk+1 − xk and η < 1.
If x∗ is a limit point of {xk}, then F (x∗) = 0 and if F ′(x∗) is nonsingular,
then the sequence {xk} converges to x∗.

The proof of the previous theorem can be also found in [63]. It can be ob-
served that Theorem 2.8 is proved under the hypothesis (2.32). A sufficient

2.2. INEXACT NEWTON METHODS 35

condition that guarantees (2.32) can be obtained by requiring an appropriate
reduction of the value of ‖F (x)‖ at each iteration. More precisely, if

‖F (xk+1)‖ ≤ λk‖F (xk)‖ (2.33)

where 0 < λk ≤ λ < 1, then (2.32) holds (see Theorem 6.7 in [63]).
Referring to Lemma 2.3, we can found an analogous necessary condition in
terms of the forcing parameters ηk: assuming that λk = 1− β(1− ηk) for a
fixed β ∈ (0, 1), the following inequality can be obtained:

‖F (xk)‖ ≤ ‖F (x0)‖
∏

0≤j<k

[1− β(1− ηj)]

≤ ‖F (x0)‖ exp

−β

∑

0≤j<k

(1− ηj)

 . (2.34)

If the series
∑

k≥0(1−ηk) is divergent, then condition (2.32) holds and, since
(1− ηk) > 0, then a necessary and sufficient condition for the divergence of
the series is

lim
k→∞

(1− ηk) 6= 0. (2.35)

This is the theoretical background for every sequence with the properties
(2.30) and (2.31); in the next sections, different algorithms are presented in
this framework. All of them provide a method to determine the sequences
ηk and λk such that (2.32) or (2.35) holds, so that the convergence proof is
obtained by applying Theorem 2.8.

2.2.3 Line–Search Inexact Newton methods

In this section we consider the class of inexact Newton methods in which
a line–search procedure is employed in order to find the parameter λk sat-
isfying (2.31). We will describe a backtracking algorithm and we will give
the convergence proof by showing that a relation of the type of (2.35) holds.
Following Lemma 2.3, the algorithm is composed of two steps: the first one
is to find an inexact Newton step s̄ at some level η̄k; the second one is to find
a new forcing term ηk by increasing η̄k until (2.30) and (2.31) are satisfied
with

λk = 1− β(1− ηk)

and
sk =

1− ηk

1− η̄k
s̄k. (2.36)

36 CHAPTER 2. NEWTON’S METHODS

The equality (2.36) means that an increase of the forcing parameter corre-
sponds to a reduction of the inexact Newton step: by introducing a damping
parameter α for the step length, that is

αk =
1− ηk

1− η̄k

we obtain
ηk = 1− αk(1− η̄k). (2.37)

Our choice is to express the algorithm in terms of the damping parameter
instead of the forcing term, tacking into account the relation (2.37). Hence
the two–step (predictor–corrector) algorithm with backtracking strategy can
be written as follows:

Algorithm 2.1

Set x0 ∈ Rn, β ∈ (0, 1), 0 < θmin < θmax < 1, ηmax ∈ (0, 1), k = 0.

For k = 0, 1, 2, ...

Determine η̄k ∈ [0, ηmax] and s̄k that satisfy

‖F ′(xk)s̄k + F (xk)‖ ≤ η̄k‖F (xk)‖.

Set αk = 1.

While ‖F (xk + αks̄k)‖ > (1− αkβ(1− η̄k))‖F (xk)‖
Choose θ ∈ [θmin, θmax]
Set αk = θαk.

Set xk+1 = xk + αks̄k

Furthermore, the relation (2.35) can be also translated in terms of the damp-
ing parameter αk, by means of (2.37), in the following way:

limk→∞(1− ηk) = limk→∞ 1− (1− αk(1− η̄k))
= limk→∞ α(1− η̄k).

(2.38)

Since η̄k ≤ ηmax < 1, then (2.35) is equivalent to

lim
k→∞

αk > 0 (2.39)

Condition (2.39) means that there exists a positive number τ such that
αk > τ for infinitely many k. The following theorem shows that (2.39)
holds, and then the convergence of the whole sequence is proved.

2.2. INEXACT NEWTON METHODS 37

Theorem 2.9 Let {xk} the sequence generated by Algorithm 2.1 and as-
sume that (A2)–(A4) hold. Then, there exists a positive number τ such that
αk > τ for infinitely many k.

Proof. Denoting ‖F ′(x∗)−1‖ = K, we can find δ > 0 such that

(i) F ′(x)−1 exists whenever x ∈ Nδ(x∗),

(ii) ‖F ′(x)−1‖ ≤ 2K ∀x ∈ Nδ(x∗)

(iii) ‖F (x) − F (y) − F ′(y)(x − y)‖ ≤ (1−β)(1−ηmax)
2K(1+ηmax) ‖y − x‖ ∀x, y ∈

N2δ(x∗).

Since x∗ is a limit point, there exist infinitely many k such that the following
condition holds for any xk ∈ Nδ(x∗):

‖s̄k‖ ≤ ‖F ′(xk)−1‖(‖F ′(xk)s̄k + F (xk)‖+ ‖F (xk)‖)
≤ 2K(1 + ηmax)‖F (xk)‖. (2.40)

Since sk = αs̄k, formula (2.40) can be written as

‖sk‖ ≤ Γα‖F (xk)‖ (2.41)

where Γ = 2K(1 + ηmax). Now we show that if α ≤ δ
Γ‖F (xk)‖ , then ‖F (xk +

αks̄k)‖ < (1 − αkβ(1 − η̄k))‖F (xk)‖, thus the while loop in the Algorithm
2.1 terminates.
By means of condition (ii) and formulae (2.37) and (2.41) we can write

‖F (xk + sk)‖ ≤ ‖F (xk) + F ′(xk)sk‖+ ‖F (xk + sk)− F (xk)− F ′(xk)sk‖
≤ η‖F (xk)‖+

(1− β)(1− ηmax)
Γ

‖sk‖
≤ ((1− α)(1− η̄) + (1− β)α(1− η̄))‖F (xk)‖,

thus
‖F (xk + αs̄k)‖ ≤ (1− αβ(1− η̄))‖F (xk)‖. (2.42)

This inequality shows that the backtracking condition (2.42) is satisfied for
α ≤ δ

Γ‖F (xk)‖ and since α is reduced at each step by a factor θ ≤ θmax < 1
the while loop terminates.
Suppose now that the while loop has been executed at least once, and denote
αk the final value (i.e. the value of α for which (2.42) is satisfied) and ᾱk the
previous one. At the last but one step the condition (2.42) is not satisfied,
then we have

ᾱk >
δ

Γ‖F (xk)‖

38 CHAPTER 2. NEWTON’S METHODS

thus
αk = θᾱk >

δθmin

Γ‖F (xk)‖ ≥
δθmin

Γ‖F (x0)‖ .

Hence the thesis of the theorem has been proved with τ = min(1, δθmin
Γ‖F (x0)‖).

¤

2.2.4 Trust–Region methods

In this section a particular class of trust–region methods is considered and
it is shown as the convergence theorem for this class of algorithms can be
derived from the results in the previous section, in a slightly different way
than in [33].
Consider a sequence {xk} such that xk+1 = xk + sk: recalling the standard
notation (2.14) and (2.15) we have

ared(sk) ≡ ‖F (xk)‖ − ‖F (xk + sk)‖ (2.43)
pred(sk) ≡ ‖F (xk)‖ − ‖F ′(xk)sk + F (xk)‖. (2.44)

Theorem 2.8 can be adapted for any sequence {xk} such that xk+1 = xk +sk

and such that pred(sk) ≥ 0, observing that we can define an ”a posteriori”
forcing term in the following way:

ηk ≡
{ ‖F (xk) + F ′(xk)sk‖/‖F (xk)‖ ‖F (xk)‖ 6= 0

0 otherwise.
(2.45)

Using this notation, if we require that

ared(sk) ≥ β · pred(sk), (2.46)

then (2.30) is satisfied with the equality and (2.31) is satisfied with λk =
(1− β(1− ηk)). Indeed, if condition (2.46) holds, it follows that

‖F (xk)‖ − ‖F (xk + sk)‖ ≥ β(‖F (xk) + F ′(xk)sk‖),
hence

‖F (xk + sk)‖ ≤ ‖F (xk)‖ − β(‖F (xk)‖+ ‖F ′(xk)sk + F (xk)‖)
= ‖F (xk)‖

(
1− β

‖F ′(xk)sk + F (xk)‖
‖F (xk)‖

)

= (1− β(1− ηk)).

In the following we will consider a particular trust–region scheme (see [33],
section 4), and we will show the convergence employing Theorem 2.8.

2.2. INEXACT NEWTON METHODS 39

Algorithm 2.2

Set x0 ∈ Rn, 0 < β < u < 1, 0 < θmin < θmax < 1, δ̄0 > 0.

For k = 0, 1, 2, ...

Set δk = δ̄k and determine sk such that

sk ∈ arg min
‖s̄‖≤δk

‖F ′(xk)s̄ + F (xk)‖. (2.47)

While ared(sk) < β · pred(sk)

Choose θ ∈ [θmin, θmax]
Set δk = θδk.
Choose sk ∈ arg min‖s̄‖≤δk

‖F ′(xk)s̄ + F (xk)‖.
Set xk+1 = xk + sk

If ared(sk) ≥ u · pred(sk), choose δ̄k+1 ≥ δk, else choose δ̄k+1 ≥
θminδk.

The aim of the following propositions is to prove that limk→∞ ‖F (xk)‖ =
0, hence the convergence of the sequence by means of Theorem 2.8. The
procedure used here is quite similar to the one presented in section 4 of [33]
and it exploits the three following results, whose proofs are not reported
here but they can be found in [33].

Lemma 2.4 Let {xk} be the sequence generated by Algorithm 2.2 and
suppose that x∗ is a limit point of {xk} such that

‖sk‖ ≤ Γ{‖F (xk)‖ − ‖F (xk) + F ′(xk)sk‖} (2.48)

for k sufficiently large. If {xk} converges to x∗, then lim infk→∞ δk > 0.

The previous lemma is a straightforward consequence of Lemma 4.1 in [33].

Lemma 2.5 (Lemma 4.2 in [33]) If x∗ is a limit point of {xk} such that
F ′(x∗) is nonsingular, then there exists a positive scalar Γ and ε > 0 such
that, for any δ > 0,

s ∈ arg min
‖s̄‖≤δ

‖F ′(x)s̄ + F (x)‖ (2.49)

satisfies
‖s‖ ≤ Γ{‖F (x)‖ − ‖F (x) + F ′(x)s‖} (2.50)

for any x ∈ Nε(x∗).

40 CHAPTER 2. NEWTON’S METHODS

It can be noticed that inequality (2.50) is equivalent to

‖s‖ ≤ Γpred(s)

where Γ is independent from x. Lemma 2.5 shows that (2.50) holds for
s = sk when the iterates are sufficiently near to a limit point in which the
jacobian matrix is nonsingular. The next lemma shows that to (2.50), where
s is chosen as in (2.49), also holds in a neighborhood of a non stationary
point of ‖F (x)‖.
We recall that x∗ is a stationary point of ‖F (x)‖ if and only if

‖F (x∗)‖ ≤ ‖F (x∗) + F ′(x∗)s‖
for any s ∈ Rn (see for example [34, Proposition 2.1]).

Lemma 2.6 (Lemma 4.3 in [33]) If x∗ is a nonstationary point of ‖F (x)‖,
then there exist a positive scalar Γ, ε∗ > 0 and δ∗ > 0 such that (2.50) holds
for any s chosen as in (2.49) for x ∈ Nε∗(x∗), δ < δ∗.

Theorem 2.10 Assume that Algorithm 2.2 does not break down. Then
every limit point of {xk} are stationary point of ‖F‖. If x∗ is a limit point
of {xk} such that F ′(x∗) is nonsingular, then F (x∗) = 0 and xk converges
to x∗. Furthermore, for k sufficiently large, the full Newton step is taken.

Proof. Suppose that x∗ is a limit point of {xk} that is nonsingular for
‖F (x)‖. We want to show by contradiction that this implies

lim
k→∞

δk = 0. (2.51)

If (2.51) does not hold, then there exists a positive number δ > 0 and a sub-
sequence {xkj} of {xk} converging to x∗ such that δkj > δ for j sufficiently
large. Then we have

0 = lim
j→∞

{‖F (xkj)‖ − ‖F (xkj+1)‖
}

≥ lim
j→∞

{‖F (xkj)‖ − ‖F (xkj+1)‖
}

= lim
j→∞

ared(skj
)

≥ β lim
j→∞

pred(skj)

≥ β lim
j→∞

{
‖F (xkj)‖ − min

‖s‖≤δkj

‖F (xkj) + F ′(xkj)s‖
}

≥ β
{‖F (x∗)‖ − ‖F (x∗) + F ′(x∗)s∗‖

}

> 0 (2.52)

2.2. INEXACT NEWTON METHODS 41

Thus (2.51) holds. This implies that

lim
k→∞

‖sk‖ = 0,

hence the sequence {xk} satisfies the Cauchy condition, and we can con-
clude that it converges to x∗. Therefore, the hypotheses of Lemma 2.4 are
satisfied, since (2.50) holds with Γ defined in Lemma 2.6, and we found a
contradiction: indeed Lemma 2.4 claims that the sequence δk is uniformly
bounded away from zero, while assuming x∗ nonstationary yields to (2.51).
Thus, x∗ is a stationary point of ‖F (x)‖ and if F ′(x∗) is nonsingular,
than we must have F (x∗) = 0. For the continuity of F , it follows that
limk→∞ F (xk) = 0 and can employ Theorem 2.8 to conclude that {xk} con-
verges to x∗.
Moreover, when we are close to the solution, F ′(xk) is nonsingular, and the
norm of the Newton step is given by ‖sN

k ‖ = ‖F ′(x)−1F (x)‖. Approaching
to the solution, since F (x) tends to zero, we have ‖sN

k ‖ ≤ τ < δk, where τ
is defined as in Lemma 2.4. ¤

2.2.5 Nonmonotone Inexact Newton methods

In this section we present a nonmonotone variant of the inexact Newton
method, in which the tolerance for the residual of the Newton equation and
for the norm of F in the new point does not depend on the value of ‖F‖ in
the previous iterate, but on the maximum of the last N values, where N is
a fixed positive integer. First of all, it is useful to introduce the following
notations. Given N ∈ N and a sequence {xk}, we denote by x`(k) the element
with the following property

‖F (x`(k))‖ = max
0≤j≤min(N,k)

‖F (xk−j)‖. (2.53)

Note that we have k −min(N, k) ≤ `(k) ≤ k.
The modified scheme of the inexact Newton methodcan be written as follows:

Let x0 ∈ Rn and β ∈ (0, 1) be given.
For k = 0, 1, 2, . . .

Find some ηk ∈ [0, 1) and a vector sk that satisfy

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (x`(k))‖ (2.54)
and

‖F (xk + sk)‖ ≤ λk‖F (x`(k))‖. (2.55)

42 CHAPTER 2. NEWTON’S METHODS

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

Figure 2.4: Inexact Newton step: singular jacobian matrix case 1

Set xk+1 = xk + sk.
According to (2.30), we define the vector sk satisfying (2.54) nonmonotone
inexact Newton step at the level ηk. Note that the sequence {‖F (xk)‖}
satisfying (2.54) and (2.55) is nonmonotone, but {‖F (x`(k))‖} is a monotone
nonincreasing subsequence of it. Furthermore, the nonmonotone step is not
a descent direction for the merit function defined in (2.23). Referring to
the example (2.22), the situation is depicted in Figure 2.4: the smaller gray
region contains the points allowed by the monotone rule (2.30), while the
points lying in the larger colored region satisfy the nonmonotone condition
(2.54). Thus, the set of the nonmonotone inexact Newton steps is larger
than in the monotone case. This could be an advantage in the choice of
the direction sk and it means also that the Newton equation can be solved
with a coarser accuracy. Furthermore, the second condition (2.55) is less
restrictive than (2.31), allowing larger step sizes. For the general scheme,
an analogous property as in the monotone case holds: indeed, a sequence
which satisfies the conditions (2.54) and (2.55) breaks down only if at the
step k it does not exist a nonmonotone inexact Newton step, as stated in
the following lemma.

Lemma 2.7 Let {xk} be a sequence such that (2.54) and (2.55) hold for

2.2. INEXACT NEWTON METHODS 43

any k. Suppose that there exist η̄ ∈ [0, 1), s̄ satisfying

‖F (xk) + F ′(xk)s̄‖ ≤ η̄‖F (x`(k))‖.
Then, there exist η, λ and a vector s such that

‖F (xk) + F ′(xk)s‖ ≤ η‖F (x`(k))‖ (2.56)

‖F (xk + s)‖ ≤ λ‖F (x`(k))‖ (2.57)

hold for any where η ∈ [η̄, 1), and λ < 1.

Proof. Let s = αs̄. Then we have

‖F (xk) + F ′(xk)s‖ = ‖F (xk)− αF (xk) + αF (xk) + αF ′(xk)s̄‖
≤ (1− α)‖F (xk)‖+ α‖F (xk) + F ′(xk)s̄‖
≤ (1− α)‖F (x`(k))‖+ αη̄‖F (x`(k))‖
= η‖F (x`(k))‖,

so (2.56) is proved. Now let

ε =
(1− β)(1− η̄)

‖s̄‖ ‖F (x`(k))‖, (2.58)

where β < 1 and let δ > 0 be sufficiently small (see Lemma 2.2) such that

‖F (xk + s)− F (xk)− F ′(xk)s‖ ≤ ε‖s‖ (2.59)

whenever ‖s‖ < δ. Choosing αmax = min(1, δ
‖s̄‖), for any α ∈ (0, αmax] we

have ‖s‖ < δ and then, using (2.58) and (2.59), we obtain the following
inequality

‖F (xk + s)‖ ≤ ‖F (xk + s)− F (xk)− F ′(xk)s‖+ ‖F (xk) + F ′(xk)s‖
≤ εα‖s̄‖+ η‖F (x`(k))‖
= ((1− β)(1− η̄)α + (1− α(1− η̄)))‖F (x`(k)‖
= (1− βα(1− η̄))‖F (x`(k))‖

that completes the proof with λ = 1 − βα(1 − η̄) or, expressing α in terms
of η,

λ = 1− β(1− η). (2.60)

Furthermore, observing that η > η̄ we have

‖F (xk + s)‖ ≤ (1− βα(1− η))‖F (x`(k))‖,
thus we could also choose λ = 1− βα(1− η). ¤
A further result, analogous to the Theorem 2.8, can be proved also in the
nonmonotone case.

44 CHAPTER 2. NEWTON’S METHODS

Theorem 2.11 Let {xk} a sequence such that limk→∞ F (xk) = 0 and for
each k the following conditions hold:

‖F (xk) + F ′(xk)sk‖ ≤ η‖F (x`(k))‖, (2.61)

‖F (xk+1)‖ ≤ ‖F (x`(k))‖, (2.62)

where sk = xk+1 − xk and η < 1. If x∗ is a limit point of {xk}, then
F (x∗) = 0 and if F ′(x∗) is nonsingular, then the sequence {xk} converges
to x∗.

Proof. If x∗ is a limit point of the sequence {xk}, there exists a subsequence
{xkj} of {xk} convergent to x∗. By the continuity of F , we obtain

F (x∗) = F

(
lim

j→∞
xkj

)
= lim

j→∞
F (xkj) = 0.

Furthermore, since {x`(k)} is a subsequence of {xk}, also the sequence {F (x`(k))}
converges to zero when k diverges. Denote K = ‖F ′(x∗)−1‖ and δ > 0 be
sufficiently small such that F ′(y)−1 exists whenever y ∈ Nδ(x∗); thus we can
suppose

‖F ′(y)−1‖ ≤ 2K, (2.63)

‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖ ≤ 1
2K

‖y − x∗‖.

Then for any y ∈ Nδ(x∗) we have

‖F (y)‖ = ‖F ′(x∗)(y − x∗) + F (y)− F (x∗)− F ′(x∗)(y − x∗)‖
≥ ‖F ′(x∗)(y − x∗)‖ − ‖F (y)− F (x∗)− F ′(x∗)(y − x∗)‖
≥ 1

K ‖y − x∗‖ − 1
2K ‖y − x∗‖

= 1
2K ‖y − x∗‖.

Then
‖y − x∗‖ ≤ 2K‖F (y)‖ (2.64)

holds for any y ∈ Nδ(x∗).
Now, let ε ∈ (0, δ

4) and since x∗ is a limit point of {xk}, there exists a k
sufficiently large that

xk ∈ N δ
2
(x∗)

and

x`(k) ∈ Sε ≡
{

y : ‖F (y)‖ <
ε

K(1 + η)

}
.

2.2. INEXACT NEWTON METHODS 45

Note that since x`(k) ∈ Sε then also xk+1 ∈ Sε because ‖F (xk+1)‖ ≤
‖F (x`(k))‖.
For the direction sk, by (2.61), (2.62) and (2.63), the following inequality
holds:

‖sk‖ ≤ ‖F ′(xk)−1‖(‖F (xk)‖+ ‖F (xk) + F ′(xk)sk‖)
≤ 2K(‖F (x`(k))‖+ η‖F (x`(k))‖)
= 2K(1 + η)‖F (x`(k))‖ < 2ε < δ

2 .

Since sk = xk+1 − xk, the previous inequality implies ‖xk+1 − x∗‖ < δ and
from (2.64) we obtain

‖xk+1 − x∗‖ ≤ 2K‖F (xk+1)‖ < 2K
ε

K(1 + η)
<

δ

2

that implies xk+1 ∈ N δ
2
(x∗). Therefore x`(k+1) ∈ Sε, since ‖F (x`(k+1))‖ ≤

‖F (x`(k))‖. It follows that, for any j sufficiently large, xj ∈ Nδ(x∗), and
from (2.64)

‖xj − x∗‖ ≤ 2K‖F (xj)‖.
Since F (xj) converges to 0 we can conclude that xj converges to x∗. ¤

The previous one is a convergence theorem under the hypothesis A4 and
the assumption limk→∞ F (xk) = 0. It can be observed, taking into account
(2.60) and making the same remarks as before, that the following inequality
holds:

‖F (xk)‖ ≤ ‖F (x0)‖
∏

0≤j<k

[1− β(1− η¯̀(kj)
)]

≤ ‖F (x0)‖ exp

−β

∑

0≤j<k

(1− η¯̀(kj)
)

 .

Here η¯̀(kj)
indicates the subsequence of η`(k) such that

¯̀(kj) = ` (` (` (...`︸ ︷︷ ︸ (k))))

j
.

A sufficient condition for the divergence of the series is

lim
k→∞

(
1− η`(k)

) 6= 0

46 CHAPTER 2. NEWTON’S METHODS

which, in terms of α becomes

lim
k→∞

α`(k) 6= 0. (2.65)

In the following, we will restrict our attention to a particular nonmonotone
inexact Newton algorithm, with a line–search procedure. For such algo-
rithm, the convergence proof is given by showing that (2.65) holds, from
which it follows

lim
k→∞

‖F (xk)‖ = 0 (2.66)

and the convergence of {xk} to x∗ by theorem 2.11.

Algorithm 2.3

1. Set x0 ∈ Rn, β ∈ (0, 1), 0 < θmin < θmax < 1, ηmax ∈ (0, 1), k = 0.

2. Determine η̄k ∈ [0, ηmax], s̄k that satisfy

‖F (xk) + F ′(xk)s̄k‖ ≤ η̄k‖F (x`(k))‖.

Set αk = 1.

3. While ‖F (xk + αks̄k)‖ > (1− αkβ(1− η̄k))‖F (x`(k))‖

3a. Choose θ ∈ [θmin, θmax];

3b. Set αk = θαk.

4. Set xk+1 = xk + αks̄k.
k = k + 1
Go to Step 2.

From the proof of Lemma 2.7 it follows that the nonmonotone backtracking
condition

‖F (xk + αs̄k)‖ < (1− αβ(1− η̄k))‖F (x`(k))‖ (2.67)

is satisfied for α < αmax, where αmax depends on k.
Indeed, since the value of αk is reduced by a factor θ < θmax < 1 at the step
3a, then there exists a positive integer p such that (θmax)p < αmax, thus the
while loop terminates at most after p steps. For the nonmonotone algorithm
it is also possible to prove the same result stated in Theorem 2.9 under the
same assumptions.

2.2. INEXACT NEWTON METHODS 47

Theorem 2.12 Let {xk} be a sequence generated by the algorithm (??)
and assume that (A2)–(A4) hold. Then there exists a positive number τ
such that αk > τ for infinitely many k.

Proof. The proof of Theorem 2.12 can be easily derived from the proof of
Theorem 2.9 given in the previous section for the algorithm 2.1, since for
the nonmonotone adaptive tolerance we have ‖F (xk)‖ ≤ ‖F (x`(k))‖.
For sake of completeness we report the whole proof, which can be found also
in [12].
Denoting ‖F ′(x∗)−1‖ = K, we can find δ > 0 such that

(i) F ′(x)−1 exists whenever x ∈ Nδ(x∗),

(ii) ‖F ′(x)−1‖ ≤ 2K ∀x ∈ Nδ(x∗)

(iii) ‖F (x) − F (y) − F ′(y)(x − y)‖ ≤ (1−β)(1−ηmax)
2K(1+ηmax) ‖y − x‖ ∀x, y ∈

N2δ(x∗).

Since x∗ is a limit point, there exist infinitely many k such that xk ∈ Nδ(x∗)
for which the following condition holds:

‖s̄k‖ ≤ ‖F ′(xk)−1‖(‖F ′(xk)s̄k + F (xk)‖+ ‖F (xk)‖)
≤ 2K(1 + ηmax)‖F (x`(k))‖. (2.68)

Since sk = αs̄k, formula (2.68) can be written as

‖sk‖ ≤ Γα‖F (x`(k))‖ (2.69)

where Γ = 2K(1 + ηmax).
Now we show that if α ≤ δ

Γ‖F (x`(k))‖ , then the while loop terminates. We can
write by means of condition (ii), Lemma 2.7and formula (2.69)

‖F (xk + sk)‖ ≤ ‖F (xk) + F ′(xk)sk‖+ ‖F (xk + sk)− F (xk)− F ′(xk)sk‖
≤ η‖F (x`(k))‖+ (1−β)(1−ηmax)

Γ ‖sk‖
≤ ((1− α)(1− η̄) + (1− β)α(1− η̄))‖F (x`(k))‖.

Thus
‖F (xk + αs̄k)‖ ≤ (1− αβ(1− η̄))‖F (x`(k))‖

This inequality shows that the backtracking condition (2.67) is satisfied for
α ≤ δ

Γ‖F (x`(k))‖ and since α is reduced at every step by a factor θ ≤ θmax <

1 the while loop terminates. Suppose now that the while loop has been
executed at least once, let denote αk the final value (i.e. the value of α for

48 CHAPTER 2. NEWTON’S METHODS

which (2.67) is satisfied) and ᾱk the previous one. At the penultimate step
the condition (2.67) is not satisfied, so necessarily we have

ᾱk >
δ

Γ‖F (x`(k))‖

and so
αk = θᾱk >

δθmin

Γ‖F (x`(k))‖
≥ δθmin

Γ‖F (x0)‖ .

Hence the thesis has been proved with τ = min(1, δθmin
Γ‖F (x0)‖). ¤

From the proof of the previous theorem, it is useful to put in evidence that
the property αkj

> τ holds in particular if {xkj
} is a subsequence of {xk}

converging to x∗, and the following corollary can be derived.

Corollary 2.1 Suppose that Algorithm 2.3 does not break down. If x∗ is a
limit point of the sequence {xk} such that F ′(x∗) is nonsingular and {xkj}
is a subsequence converging to x∗, then the sequence {αkj} is bounded away
from zero.

Exploiting Corollary 2.1, it can be proved that (2.66) holds, from which it
follows the convergence of the sequence to x∗. This result is proved em-
ploying a technique similar to the one used for the convergence theorem in
section 3 of [44].

Theorem 2.13 Suppose that Algorithm 2.3 does not break down and that
the norm of inexact Newton step is bounded for every k by a positive con-
stant M

‖s̄k‖ ≤ M. (2.70)

Assume also that one of the two following properties holds:

F is Lipschitz continuous; (2.71)
the set Ω(0) = {x ∈ Rn : ‖F (x)‖ ≤ ‖F (x0)‖} is compact. (2.72)

If x∗ is a limit point of the sequence {xk} such that F ′(x∗) is invertible then
F (x∗) = 0 and {xk} converges to x∗ when k diverges.

Proof. Since ‖F (x`(k))‖ is a monotone nonincreasing, bounded sequence,
then there exists L ≥ 0 such that

L = lim
k→∞

‖F (x`(k))‖.

2.2. INEXACT NEWTON METHODS 49

Thus, writing the backtracking condition (2.42) for the iterate `(k), we ob-
tain

‖F (x`(k))‖ ≤ (1− α`(k)−1β(1− η̄`(k)−1))‖F (x`(`(k)−1))‖. (2.73)

When k diverges, we can write

L ≤ L− L · lim
k→∞

α`(k)−1β(1− η̄`(k)−1). (2.74)

Since β is a constant and 1− η̄j ≥ 1− ηmax > 0 for any j, (2.74) yields

L · lim
k→∞

α`(k)−1 ≤ 0

that implies
L = 0

or
lim

k→∞
α`(k)−1 = 0. (2.75)

Suppose that L 6= 0, so that (2.75) holds. Let ˆ̀(k) = `(k + N + 1) so that
ˆ̀(k) > k and we show by induction that for any j ≥ 0 we have

lim
k→∞

αˆ̀(k)−j = 0 (2.76)

and
lim

k→∞
‖F (xˆ̀(k)−j)‖ = L. (2.77)

For j = 1, since {αˆ̀(k)−1} is a subsequence of {α`(k)−1}, (2.75) implies (2.76).
From (2.70) we also obtain

lim
k→∞

‖xˆ̀(k) − xˆ̀(k)−1‖ = 0. (2.78)

If (2.71) holds, from |‖F (x)‖ − ‖F (y)‖| ≤ ‖F (x) − F (y)‖ and (2.78) we
obtain

lim
k→∞

‖F (xˆ̀(k)−1)‖ = L. (2.79)

If, instead of (2.71), condition (2.72) holds, then, exploiting the uniform
continuity of F in Ω(0), we can again derive (2.79).
Assume now that (2.76) and (2.77) hold for a given j, we have

‖F (x`(k)−j)‖ ≤ (1− α`(k)−(j+1)β(1− η`(k)−(j+1)))‖F (x`(`(k)−(j+1)))‖.

50 CHAPTER 2. NEWTON’S METHODS

Using the same arguments employed above, since L > 0, we obtain

lim
k→∞

αˆ̀(k)−(j+1) = 0

and then
lim

k→∞
‖xˆ̀(k)−j − xˆ̀(k)−(j+1)‖ = 0,

lim
k→∞

‖F (xˆ̀(k)−(j+1))‖ = L.

Thus, we conclude that (2.76) and (2.77) hold for any j ≥ 1. Now, for any
k, we can write

‖xk+1 − xˆ̀(k)‖ ≤
ˆ̀(k)−k−1∑

j=1

αˆ̀(k)−j‖s̄ˆ̀(k)−j‖

so that, since we have ˆ̀(k)− k − 1 ≤ N , we have

lim
k→∞

‖xk+1 − xˆ̀(k)‖ = 0. (2.80)

Furthermore, we have

‖xˆ̀(k) − x∗‖ ≤ ‖xˆ̀(k) − xk+1‖+ ‖xk+1 − x∗‖ (2.81)

Since x∗ is a limit point of {xk+1} and (2.80) holds, (2.81) implies that x∗
is a limit point for the sequence {xˆ̀(k)}. From (2.78) we conclude that x∗ is
also a limit point for the sequence {xˆ̀(k)−1}, which contradicts the Corollary
2.1. Indeed, there exists a τ > 0 such that αˆ̀(k)−1 > τ for infinitely many
k. Hence, we necessarily have L = 0, that implies

lim
k→∞

‖F (xk)‖ = 0.

Now, Theorem 2.11 completes the proof. ¤
We report also the following result.

Theorem 2.14 Under the hypothesis of Theorem 2.13 we have that the
sequence {‖F (xk)‖} converges and

lim
k→∞

‖F (xk)‖ = lim
k→∞

‖F (x`(k))‖.

2.3. NEWTON METHODS AND DYNAMIC SYSTEMS 51

Proof. If limk→∞ ‖F (x`(k))‖ = 0, then limk→∞ ‖F (xk)‖ = 0.
If limk→∞ ‖F (x`(k))‖ = L > 0, using the same arguments in the first part of
the proof of Theorem 2.13, we can conclude that (2.80) holds. If (2.71) or
(2.72) holds, then limk→∞ ‖F (xk)‖ = L = limk→∞ ‖F (x`(k))‖. ¤
About the local convergence rate, it is possible to prove the same result
given in the previous section.

Theorem 2.15 Let {xk} be the sequence generated by Algorithm 2.3 and
assume that the hypothesis of Theorem 2.13 hold. Then, the sequence {xk}
locally converges to x∗ with the same rate of convergence as the sequence
‖F (xk)‖ converges to 0.
Furthermore the rate of the local convergence is superlinear if ηk → 0 and
quadratic if ηk = O(‖F (xk‖).
Proof. Under the assumptions of the theorem, the sequence {xk} converges
to x∗ and limk→∞ ‖F (xk)‖ = 0. Thus, for the continuity of F , it follows that
F (x∗) = 0. This is sufficient to conclude that (2.28) holds (see Theorem 2.7)
for k sufficiently large, which implies that ‖xk − x∗‖ and ‖F (xk)‖ converge
to zero with the same rate.
Furthermore, since x`(k) is a subsequence of xk we have that

O(‖F (xk)‖) ≥ O(‖F (x`(k))‖),

but we also have ‖F (xk)‖ ≤ ‖F (x`(k))‖, thus

O(‖F (xk)‖) = O(‖F (x`(k))‖). (2.82)

Proceeding as in the proof of Theorem 2.7, it can be proved that the following
inequality holds for each k sufficiently large:

‖F (xk+1)‖ ≤ ηk‖F (x`(k))‖+O(‖F (xk)‖).

Tacking into account of (2.82), the statement of the theorem is proved. ¤

2.3 Newton methods and dynamic systems

This section is slightly apart from the rest of the chapter, but it is still related
to the Newton method for the solution of a nonlinear system of equations.
Our aim is to introduce a dynamic system associated to the problem (2.1)
and to interpret the root–finding problem from this point of view.
First of all, we introduce some definitions and results in the dynamic systems

52 CHAPTER 2. NEWTON’S METHODS

framework.
Let

dx(t)
dt

= F (x(t)) t ≥ t0 (2.83)

be an autonomous 5 differential equation where F is a continuous Lipschitz
function, x ∈ Rn and t ∈ R.

Definition 2.3 Let x∗ be an equilibrium point of F (x), namely F (x∗) = 0.

- It is said that the point x∗ is stable for the system (2.83) if, for any
given ε > 0, there exists a δ > 0 such that ‖x(t0) − x∗‖ ≤ δ implies
‖x(t; x(t0))− x∗‖ ≤ ε for all t ≥ t0.
Here, x(t, x(t0)) denotes the solution of the differential equation (2.83)
with the initial condition x(t0).

- It is said that the point x∗ is asymptotically stable for the system
(2.83) if it is stable and, moreover, there exists γ > 0 such that for
‖x(t0)− x∗‖ < γ one has

lim
t→∞ ‖x(t; x(t0))− x∗‖ = 0.

- Let V (x) be a continuous and differentiable function such that V (x) is
always positive except in the equilibrium point x∗, in which it is equal
to zero.
We shall indicate with V̇ (x) the derivative of V (x) respect to the
independent variable t on the solutions of the equation (2.83).

V̇ (x) =
(

∂V (x)
∂x

)t

· dx(t)
dt

= ∇xV (x) · F (x).

The function V is called a Lyapunov function for the problem (2.83).

Taking into account the previous definitions, we can state the following
theorem. For the proof we refer to [15]

Theorem 2.16 (Lyapunov’s Theorem)

5A system of differential equations dx(t)
dt

= F (x(t), t) is said to be autonomous when
∂F
∂t

= 0, that is when F does not depend directly from the independent variable t.

2.3. NEWTON METHODS AND DYNAMIC SYSTEMS 53

If V̇ (x) is negative in a neighbourhood of x∗, then x∗ is asymptotically stable
for the equation (2.83).
If V̇ (x) is positive in a neighbourhood of x∗, then x∗ is unstable for the
equation (2.83).

Now let us consider the initial value problem

dx

dt
= −F ′(x(t))−1F (x(t)) x(t0) = x0. (2.84)

The iteration of the Euler’s method with a time discretisation step equal to
one applied to (2.84) is equivalent to the Newton iteration applied to the
problem (2.1) when the full Newton step is taken. Thus, the time discreti-
sation step corresponds to the steplength controlled by the damping param-
eter in the line–search type Newton methods and the initial condition of the
dynamic system represents the starting point of the Newton sequence. Fur-
thermore, the Lyapunov function V defined above plays the role of a merit
function for the equilibrium points of the dynamic system. Thus, the dy-
namic system (2.84) is in some sense associated to the original problem (2.1).

Example 2.1

Consider the simple one–dimensional equation

sinx = 0

and its associated differential problem

dx

dt
= − tanx x(t0) = x0. (2.85)

The analytic solution of (2.85) is a periodic function which can be written
as

x(t) =
{

kπ + arcsin(e−t · et0 · sinx0) if x ∈ [kπ, kπ + π
2]

(k + 1)π − arcsin(e−t · et0 · sinx0) if x ∈ (kπ + π
2 , (k + 1)π]

for k = 0,±1,±2 . . . and it is plotted in figure 2.5 for different initial points
x0. It is interesting to observe the behaviour of the Newton’s method com-
pared to the exact solution curve, in particular the influence of the starting
point and of the step length can be shown on this simple example.
In figures 2.6 and 2.7, the exact solution (dotted line) is plotted together
with the paths obtained by the classical Newton’s method (dotted line with

54 CHAPTER 2. NEWTON’S METHODS

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

π/2

π

3/2π

2π

Figure 2.5: Analytic solution curve of dx
dt = − tan(x)

circles), the Euler’s method with step equal to 0.01 (solid line), and the New-
ton’s method with Armijo (dotted line with squares) and Eisenstat–Walker
(dotted with diamonds) steplenght selection rules, for ten different starting
points from 1.1 to 2.

It can be observed that the Euler’s method with uniform step size 0.01
provides a very good approximation to the exact solution curve, such that
in the figures the two lines are superimposed. Furthermore, the Newton’s
method always get a solution of the equation sinx = 0, but in several cases
it is attracted by a solution which is not the one closest to the starting point.
It has also to be noticed that in such cases the Newton trajectory crosses
the regions in which the first derivative of the sine function is zero. When
a line–search strategy is applied, as we could expect, the Newton’s method
path is much more stick to the solution curve, since the step length, which
corresponds to the time discretization step, is smaller. From the numerical
example, we can observe that the path generated by the Newton’s method
with the Armijo backtracking rule approximates quite well the analytic so-
lution of (2.85), while the Eisenstat-Walker rule, allowing larger step length,
is not always close to that curve. This capability to stick to the curve x(t)
which solves (2.84), due to a small step length, is not always a desirable

2.3. NEWTON METHODS AND DYNAMIC SYSTEMS 55

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

analytic solution
Euler step 0.01
Newton
Newton Armijo
Newton Eisenstat

Figure 2.6: Comparisons

56 CHAPTER 2. NEWTON’S METHODS

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

analytic solution
Euler step 0.01
Newton
Newton Armijo
Newton Eisenstat

Figure 2.7: Comparisons

2.3. NEWTON METHODS AND DYNAMIC SYSTEMS 57

feature of the Newton’s method, as shown in the following example.

Example 2.2 (Powell)

Consider the following nonlinear system

F (x) ≡
(

x1

10x1/(x + 0.1) + 2x2
2

)
=

(
0
0

)
. (2.86)

This example has been firstly proposed in [62], where the author proved
that the Newton’s method, starting from the point x0 = (3, 1)t, does not
converge to the unique solution x = (0, 0)t, when the step length is chosen
as the first local minimizer of the least squares function (2.5). Indeed, the
iterative process leads to the point x∞ = (1.8016, 0.0000)t, which is neither
a solution of the system (2.86) nor a stationary point of the least squares
merit function, as showed in [19]. Indeed, the vector F (x∞) does not belong
to the null space of the jacobian matrix of F ,

F ′(x) =
(

1 0
1/(x1 + 0.1)2 4x2

)
,

computed in the points of the x1 axis, where it is singular.
Here we give another explanation of such behaviour of the Newton’s method,
according with the observations above.
Taking into account that the inverse of F ′ is the following matrix

F ′(x)−1 =
(

1 0
−1/4x2(x1 + 0.1)2 1/(4x2)

)
,

the dynamic system associated to the nonlinear system (2.86) is given by

dx1

dt
= −x (2.87)

dx2

dt
=

x1

4x2(x1 + 0.1)2
− 1

4x2

(
10x1

x1 + 0.1
+ 2x2

2

)
(2.88)

which yields

dx2

dx1
=

1
4x2

(
− 1

(x1 + 0.1)2
+

10
x1 + 0.1

+
2x2

2

x1

)
. (2.89)

By applying standard techniques, it is possible to obtain the analytic so-
lution of (2.89), depending on the initial value x0 = (x1(t0), x2(t0))t =
((x0)1, (x0)2)t

x2 = ±
√

x1

(
− 5

x1 + 0.1
+

5
(x0)1 + 0.1

+
(x0)22
(x0)1

)
. (2.90)

58 CHAPTER 2. NEWTON’S METHODS

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 2.8: Powell example: phase plane curves

which is plotted in figure 2.8 in the phase plane (x1, x2). It is easy to see
that the Newton direction sN

k = −F ′(xk)−1F (xk) is tangent to the curve
(2.90) which the point xk belongs to. In figure 2.9 the situation is depicted:
the curves are the exact solutions of the differential equation (2.89), and the
line is the Newton path (taking the full step). The same path is obtained
when we use a backtracking (Eisenstat–Walker or Armijo) strategy, thus
the lines related to the backtracking cases are superimposed. In all these
cases, the iterative process gets the solution. The black circles are the first
three iterates of the Newton’s methods when the step length αk is the first
local minimizer of the scalar function φ(α) = 1/2‖F (xk + αsN

k)‖2, as in
[62]. At the first iterate, the step is shortened with α ≈ 0.395 and this
leads the next iterate very close to the x1 axis, where the jacobian matrix is
singular. This yields a Newton step almost orthogonal to the axis and the
first local minimizer of the merit function along this direction is very close
to the previous iterate, such that the step length is of order 10−3. At the
next iterate the situation is the same, and the sequence sticks to one of the
solution curves and stagnates in a neighborhood of the point x∞.
In the previous example, the jacobian matrix is singular on the line x2 = 0

2.3. NEWTON METHODS AND DYNAMIC SYSTEMS 59

0 0.5 1 1.5 2 2.5 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Figure 2.9: Numerical results

and the orbits in the phase plane end in that line.
This behaviour can be generalized, following [40], by defining a Lyapunov
function for the points belonging to the set Ω, defined as

Ω =
{
x ∈ Rn : F ′(x) is singular

}
,

as a continuous and differentiable function V always positive except in Ω
where it is equal to zero. For example we could take

V (x) =
1
2

(
detF ′(x)

)2
. (2.91)

Here detF ′(x) denotes the determinant of the jacobian matrix F ′(x).
If we have V̇ (x) < 0 in some domain containing Ω, the function V is decreas-
ing with respect to the variable t, on the solution curves of the differential
equation. Thus, the function V (x), with increasing values of t, will be able
to become arbitrarily small on x(t), which means that the distance between
x(t) and Ω will become arbitrarily small. Thus the solutions of the differ-
ential equation are directed towards the points of Ω. These points of Ω are
called end points.

60 CHAPTER 2. NEWTON’S METHODS

This is the case of the Powell example. Indeed, choosing the Lyapunov func-
tion as in (2.91) and taking into account (2.88), on the solution curves of
(2.87)–(2.88) we have

V̇ (x) = ∇xV (x)t · dx

dt
= −detF ′(x) · ∇x(detF ′(x))t · F ′(x)−1F (x)

= 4x2 (0 4)

(−x1

x1
4x2(x1+0.1)2

− 1
4x2

(
10x1

x1+0.1 + 2x2
2

)
)

= 4
x1 − 10x1(x1 + 0.1)− 2x2

2(x1 + 0.1)2

(x1 + 0.1)2

= −4
10x2

1 + 2x2
2(x1 + 0.1)2

(x1 + 0.1)2

≤ 0 (2.92)

If V̇ (x) > 0 in some domain containing Ω, the function V with increasing
value of t, will be arbitrarily large on x(t), then the distance between x(t)
and Ω will become arbitrarily large. Then, the solutions are diverging from
the points of Ω, which are called initial points.
This last case is verified for the system (2.22), whose jacobian matrix is
singular on the line x1 = x2. Outside this line, the inverse of the jacobian
matrix is given by

F ′(x)−1 =
1

x1 − x2

(
x1 −1
−x2 1

)

and the dynamic system associated to (2.22) is

dx1

dt
= − 1

x1 − x2
(x2

1 − 5x1 + 4)

dx2

dt
= − 1

x1 − x2
(−x2

2 + 5x2 − 4)

which yields the following differential equation

dx2

dx1
= −(x2 − 4)(x2 − 1)

(x1 − 4)(x1 − 1)
(2.93)

By using standard techniques, it is possible to calculate the analytic expres-
sion of the solutions of (2.93), which can be written as

x1 − 1
x1 − 4

= K
x2 − 4
x2 − 1

, K =
(x0)1 − 1
(x0)1 − 4

(x0)2 − 4
(x0)2 − 1

2.3. NEWTON METHODS AND DYNAMIC SYSTEMS 61

−4 −3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Figure 2.10: Solution curves of (2.93)

where x0 = ((x0)1, (x0)2)t is the initial point. The solution curves in the
phase plane are plotted in figure 2.10. In order to classify the points where
the jacobian matrix is singular, we define the Lyapunov function as in (2.91)
and proceeding as before we obtain V̇ (x) = −(x2

1+x2
2−5(x1+x2)+8), whose

value on the points of the line x1 = x2 is −2(x2
1−5x1 +4). This implies that

V̇ is positive in the points (y, y) where y belongs to the interval (1, 4) (initial
points), is zero for y = 4 and y = 1, and negative otherwise (end points).
Finally, we can observe that, following the solution trajectories with initial
point in the region S defined as

S = {(x1, x2) : x1 ≥ 4 and x2 ≥ 4} ∪ {(x1, x2) : x1 ≤ 1 and x2 ≤ 1}

it is impossible to reach the solutions (4, 1) and (1, 4).

62 CHAPTER 2. NEWTON’S METHODS

Chapter 3

Interior–Point Methods

The aim of this chapter is to present the class of interior–point (IP) methods
for the solution of the NLP problem (1.1) in a quite general and unitary way.
In the first two sections the barrier methods and the perturbation of the
KKT conditions are explained, tacking into account the connections between
these methods and the framework of the path–following methods. afterwards
a simple scheme, which includes only the basic features and principles of the
interior–point methods, can be written. Then, we restrict our attention
to a particular class of IP methods, the Newton interior–point methods,
which are strictly related to the solution of a nonlinear system with bound
constraints. The last section deals with the relations between the Newton
IP methods and the class of inexact Newton methods, and it is crucial for
the next chapter.

3.1 Barrier methods

The idea of the barrier methods for the solution of the general nonlinear
programming problem (1.1) is to replace the inequality constraints by adding
a logarithmic term to the object function, obtaining the following barrier
problem

min f(x)− ρ
∑m

i=1 log(g2)i(x)
s.t. g1(x) = 0.

(3.1)

where ρ is a positive scalar parameter. Since the barrier term becomes large
when x is close to the boundary of the feasible region, the set F ≡ {x ∈ Rn :
g2(x) ≥ 0}, the solution of (3.1) must be in the interior of F .
The size of the barrier parameter ρ indicates the degree of influence of the
logarithmic barrier term, thus it is reasonable to expect thatwhen ρ is close

63

64 CHAPTER 3. INTERIOR–POINT METHODS

to zero, the solution of (3.1) is close to the solution of the original problem
(1.1). In particular, the barrier method consists in solving (approximately)
a sequence of subproblems like (3.1) where ρ = ρk is the barrier parameter
of the k–th subproblem, providing that limk→∞ ρk = 0. Furthermore, the
solution of the previous subproblem is used as starting point for the com-
putation of the next solution.
Theorem 7 in [74] states the local convergence of the barrier methods applied
to a nonlinear inequality constrained programming problem (see also [37]).
Since any constrained minimum problem can be written in an equivalent
way as an inequality constrained problem, it applies also to (3.1).
The solution of the barrier subproblem at the iterate k can be obtained by
solving the KKT conditions, represented by the following nonlinear system:

∇f(x)− ρk
∑m

i=1∇(g2)i(x) 1
(g2)i(x) −∇g1(x)λ1 = 0

g1(x) = 0.
(3.2)

The unknowns of the system (3.2) are x and λ, and the system (3.2) is called
the primal system. Furthermore, comparing the first equation of (3.2), and
(1.3) it can be observed a correspondence between the components of the
multiplier w and the terms ρk

g2(x) . Indeed, denoting by x∗ the solution of (1.1)
and λ∗, w∗ the multipliers associated to x∗, if standard sufficient optimality
conditions hold at the solution then the sequence of the minimizers of (3.1)
xρk

converges to the solution x∗, the multipliers sequence {λρk
} associated

to xρk
converges to λ∗, and the quantity ρk

g2(x) tends to w∗ (see Theorem 8
in [74]).
The solutions xρ describe a parametrized curve in Rn whose parameter is ρ.
Such curve is usually called homotopy path, or, in the framework of linear
programming, central path. Under smoothness assumptions (Theorem 8 (iv)
in [74]), is smooth. This suggest that a barrier method can be considered
as a path following method.
In the path–following context, in [52] the authors investigate the conditions
for the existence of the central path by considering the homotopy

P (x, ρ) = f(x) +
1
2ρ

neq∑

i=1

(g1)i(x)2 − ρ
m∑

i=1

ln(g2)i(x)

which transform the constrained minimum problem (1.1) into a parametrized
set of unconstraint problems of the form

minP (x, ρ). (3.3)

3.2. PERTURBED KARUSH–KUHN–TUCKER SYSTEMS 65

In particular, Theorem 3.1 claims that, if the hessian of the lagrangian of
the problem (3.1) is nonsingular at the solution, then for every ρ sufficiently
small there exists a unique solution of (3.1) which determines the homotopy
path.

The primal approach (3.2) has been shown to present some drawbacks: the
radius of convergence of the Newton method applied to (3.2) converges to 0
as the barrier parameter is close to zero [75]. Moreover, the first Newton step
after a change of ρk is not very good and it tends to violate the constraint
g2(x) ≥ 0. In order to avoid these drawbacks it is generally preferred another
formulation of (3.2), which can be also derived from a different point of view,
as described in the following section.

3.2 Perturbed Karush–Kuhn–Tucker systems

An equivalent way to state the problem (1.1) can be obtained by introducing
the slack variables, i.e. a vector s ∈ Rm, on the inequality constraints: this
leads to the following reformulation of (1.1):

min f(x)
s.t. g1(x) = 0

g2(x)− s = 0
s ≥ 0.

(3.4)

The lagrangian function for the problem (3.4) is given by

L(x, λ, w, s, z) = f(x)− λtg1(x)− wt(g2(x)− s)− zts (3.5)

where z ∈ Rm is the multiplier of the constraint s ≥ 0. The KKT optimality
conditions can be derived by differentiating L with respect to all its vari-
ables and the system of nonlinear equations obtained in such way has to be
completed by the complementarity conditions as follows:

Lx = ∇f(x)− λt∇g1(x)− wt∇g2(x) = 0
Lλ = −g1(x) = 0
Lw = −g2(x) + s = 0

SWem = 0
s, w ≥ 0.

(3.6)

Here and in the following we denote S = diag(s), W = diag(w), em =
(1, ..., 1)t ∈ Rm. In (3.6) we have taken into account of the equality

Ls = w − z = 0

66 CHAPTER 3. INTERIOR–POINT METHODS

which implies w = z. The system (3.6) is also called a primal–dual system,
because the multiplier w represents the dual variable for the problem (3.4).
The constraints s, w ≥ 0 define a feasible region F which is the nonnegative
orthant of the plane (s, w). Defining a new variable v ∈ Rn+neq+2m as
v = (xt, λt, st, wt)t and H1(v) as the vector (Lt

x,Lt
λ,Lt

w)t, then (3.6) can be
written as

H(v) =
(

H1(v)
SWem

)
= 0

s, w ≥ 0.
(3.7)

Hence, the nonlinear programming problem (1.1) leads to a nonlinear sys-
tem, denoted here as H(v) = 0, with bounds on some variables, expressed
by the constraints s, w ≥ 0. It is worth to stress that a solution of (3.7) is
a KKT point for the nonlinear problem (1.1), not necessarily a minimum
point, for which the second order conditions should be verified.
If we solve the system H(v) = 0 with the Newton’s method, at each itera-
tion k we have to compute the vector ∆vk which is a solution of the Newton
equation

H ′(vk)∆vk = −H(vk). (3.8)

Writing the last m equations of the linear system (3.8), the ones related to
the complementarity conditions, we obtain the following equalities

Sk∆wk + Wk∆sk = −SkWkem, (3.9)

which imply that, if the i–th component of sk is zero, then (3.9) becomes

(Wk)i(∆sk)i = 0.

This yields (∆sk)i = 0, thus (sk+j)i = (sk)i for all j = 1, 2, ..., and the
iterate sticks on the boundary of the feasible region. The same stagnation
of the iterates occurs if we have (wk)i = 0, which implies (wk+j)i = (wk)i

for j = 1, 2,
The above observations suggest the idea to perturb the system (3.7) only
on the complementarity equations so that the cases (sk)i = 0 and (wk)i = 0
for any component i are excluded. The perturbed system can be written as

H(v) =
(

H1(v)
SWem

)
=

(
0

ρem

)
= ρẽ

s, w > 0
(3.10)

where ρ is a positive scalar called perturbation parameter and ẽ denotes the
vector (0n+neq+m, et

m)t.

3.2. PERTURBED KARUSH–KUHN–TUCKER SYSTEMS 67

Since ρ has to be positive, the variable s and w, whose components solve
the complementarity conditions (sk)i(wk)i = ρ, for i = 1, ..., m, must stay
in the interior of the feasible region.
The nonlinear system H(v) = ρẽ represents the perturbed KKT conditions
for the problem (3.4).
In the framework of the interior–point methods we have to generate a se-
quence of perturbed problems like (3.10), where the perturbation parameter
ρk decreases and such that limk→∞ ρk = 0. Thus, the k-th problem of the
sequence is

H(v) = ρkẽ
s, w > 0,

(3.11)

which is equivalent to

∇f(x)− λt∇g1(x)− wt∇g2(x) = 0
−g1(x) = 0
−g2(x) + s = 0
SWem = ρkem

s, w > 0.

(3.12)

By introducing a “measure” M of the perturbed KKT conditions expressed
by the vector Hρ(v) = H(v) − ρẽ (for example M(Hρ(v)) = ‖Hρ(v)‖2)
and tacking into account the observations above, it is possible to write a
general scheme for the whole class of the interior–point methods: we will
call Interior–Point method every method which can be written as follows.

Scheme 3.1

1. Choose the initial guess v0 s.t. (s0, w0) > 0, the stopping tolerance τ ,
the measure M;

2. For k = 0, 1, 2, ..., until M(H(vk)) > τ

2a. Choose the perturbation parameter ρk and the inner tolerance
tolρk

;

2b. Compute a new point vk+1 such that:

M(Hρk
(vk+1)) < tolρk

(sk+1, wk+1) > 0

2c. Set k = k + 1

68 CHAPTER 3. INTERIOR–POINT METHODS

The step 2 of the scheme implies that, for any k, vk+1 is an approximate
solution of (3.11) and the accuracy of this solution is determined by the
tolerance tolρk

.
The scheme 3.1 can also describe a barrier method: indeed, if we consider
the k-th barrier problem for the solution of (3.4)

min f(x)− ρk
∑m

i=1 log si

s.t. g1(x) = 0
g2(x)− s = 0,

(3.13)

then the optimality conditions for (3.13) are represented by the following
primal system

∇f(x)− λt∇g1(x)− wt∇g2(x) = 0
−g1(x) = 0
−g2(x) + s = 0
ρk

1
si
− wi = 0 i = 1, ...m.

(3.14)

By multiplying the last m equations by the component si we obtain the
primal–dual system (3.11).
Thus, there is an equivalence between this barrier method and the IP meth-
ods, hence the scheme 3.1 can describe both a barrier method and an
interior–point method for the solution of the perturbed KKT conditions
(3.12). Moreover, it can be observed that any solution of (3.14) or (3.12),
due to the last m equations, lies on the curve siwi = ρk in the plane (si, wi).

3.3 Newton Interior–Point Methods

The one described by the scheme 3.1 is a wide class of methods, allowing
many choices for M, for the perturbation parameter ρk and for the method
employed at the step 2b; in this section we consider the case when the
step 2a is performed by applying a Newton–type method to the perturbed
KKT conditions (3.10). In order to obtain global convergence properties, we
include in the Newton’s method one of the two globalization techniques, the
trust region or the line–search, which require the choice of a suitable merit
function and a criterion for the acceptance of the trial step. The scheme 3.1
for this choice of the inner solver can be written as follows:

Scheme 3.2

1. Choose the initial guess v0 s.t. (s0, w0) > 0, the stopping tolerance τ ,
the measure M;

3.3. NEWTON INTERIOR–POINT METHODS 69

2. For k = 0, 1, 2, ..., until M(H(vk)) > τ

2a. Choose the perturbation parameter ρk and the inner tolerance
tolρk

;

2b. By applying the global Newton method (line–search or trust re-
gion) to the problem (3.12), compute a new point vk+1 such that

M(Hρk
(vk+1)) < tolρk

(sk+1, wk+1) > 0

2c. Set k = k + 1.

It has to be noticed that, even though from a theoretical point of view
there is no difference in solving (3.14) or (3.12) at the step 2b., these two
problems do not lead to a Newton algorithmic equivalence, as pointed out
in [35]. Indeed, applying the Newton method to (3.14) or (3.12) generates
different iterates.
The inherent ill conditioning of the primal system when ρk is close to zero
is well known in literature since the late 1960s [58], and for this reason the
interior methods were not very popular in the 1970s. In more recent works,
several authors have pointed out that the computation of the search direction
by means of linear equations solvers applied directly to the ill conditioned
systems produces more accurate solutions than one could expect [77, 76]).
Indeed, observing the behaviour of the interior methods, it seems that they
get the solution before that the conditioning is too poor. Nevertheless,
it is always convenient to carefully choose the formulation of the barrier
subproblem, in order to avoid the worse effects of the ill conditioning. For
example, it is easy to see that the derivatives of the left hand side of the
last m equations of (3.14), ρk

1
si
− wi = 0 i = 1, ...m, are not bounded

when the slack variables approach to zero, which is not the case with the
perturbed complementarity conditions siwi = ρk of the primal–dual system
(3.12).Thus, in the last 10 years all the main proposed algorithms, as the
ones presented in [35, 2, 70, 66, 18, 71, 69], follows a primal–dual approach.

3.3.1 Newton Line–Search IP Methods

The Newton line–search IP methods are based on the solution of the per-
turbed Newton equation

H ′(vk)∆vk = −H(vk) + ρkẽ (3.15)

70 CHAPTER 3. INTERIOR–POINT METHODS

∆ s
i

w
i

s
i

∆ w
i

Figure 3.1: Restoring feasibility

which has to be solved at each IP iteration k and it is obtained by applying
the Newton method to (3.12). The Newton step does not guarantee the
feasibility of the new iterate, then, if some components of sk + ∆sk or wk +
∆wk are negative, the step is reduced until sk + ∆sk > 0 or wk + ∆wk > 0.
Defining αk as the step length, we have that

αk = γ min
{
− (sk)i

(∆sk)i
,− (wk)i

(∆wk)i
, where (sk)i + (∆sk)i < 0, (wk)i + (∆wk)i < 0

}

(3.16)
where γ is a parameter less than one.
The resulting vector is depicted in figure 3.1. The damping parameter αk

has also to guarantee that the new iterate is sufficiently close to the central
path, i.e. the new iterate is a sufficiently good approximation of the solu-
tion of the k–th barrier subproblem (3.11). Thus, the damping parameter is
reduced until some centrality conditions, which express the idea of sufficient
proximity to the central path, are satisfied. Then, the step size is reduced
again until a sufficient reduction of a given merit function is reached. To
be sure that by reducing the step length a sufficient reduction of the merit
function can be reached, we should have that the Newton step is a descent
direction for the merit function: this propriety can be guaranteed by a suit-
able choice of the perturbation parameter, as we will see below. Then a new
iterate is computed and the loop is repeated until some measure of the KKT

3.3. NEWTON INTERIOR–POINT METHODS 71

conditions satisfies a fixed tolerance. Hence, at every IP iteration, instead
of having an inner tolerance tolρk

which evaluates when the subproblem
(3.11) is solved with a sufficient accuracy, the number of Newton iterations
is a priori fixed to one and the closeness to the central path is obtained by
means of the reduction of the step length until the centrality conditions are
satisfied. We can resume the remarks above in the following scheme:

Scheme 3.3

- Choose an initial guess v0 s.t. (s0, w0) > 0;

- Choose the perturbation parameter

ρk = σkµk s.t. σk ∈ [0, 1)

µk = st
kwk

m

- Solve the perturbed Newton equation

H ′(vk)∆vk = −H(vk) + ρkẽ

- Move along the direction computed at the previous step: choose the
damping parameter αk such that the new iterate satisfies

feasibility;

centrality conditions;

sufficient decrease of the merit function;

- Update the iterate vk+1 = vk + αk∆vk.

In determining the direction, we implicitly assume that a solution of the
perturbed Newton equation exists at each iteration k: this is a crucial point
for this kind of methods, and it is usually assumed that a sufficient con-
dition for the nonsingularity of H ′(vk) holds at each iteration. In order to
make some general observations, for the moment we simply assume that the
matrix H ′(vk) is nonsingular.

1. The perturbation parameter. The choice of the perturbation parameter
as product of the two scalar factors σk and µk, where

µk =
st
kwk

m
(3.17)

72 CHAPTER 3. INTERIOR–POINT METHODS

is typical for many interior–point algorithms, for example in [35] and
[70], and it measures the average value of the product pairs (sk)i(wk)i.
It can also be justified with the following remark.
Consider the function

φ(v) =
1
2
‖H(v)‖2

2. (3.18)

The gradient of φ(v) is given by

∇φ(v) = H ′(v)tH(v).

If ∆vk is the solution of the perturbed Newton equation (3.15), then
∆vk = H ′(vk)−1(−H(vk) + ρkẽ), hence

∇φ(vk)t∆vk = (H ′(vk)tH(vk))t[H ′(vk)−1(−H(vk) + ρkẽ)]
= H ′(vk)t(−H(vk) + ρkẽ)
= (−‖H(vk)‖2 + ρkH(vk)tẽ).

This implies that ∇φ(vk)t∆vk < 0 if and only if ρk < ‖H(vk)‖
stw . Thus,

in order to obtain a descent direction for the nonlinear least–squares
merit function φ, a possible choice is (3.17). In [35], the authors show
that their algorithm converges to a zero of the merit function (3.18)
with the perturbation parameter chosen as in (3.17). For different
merit functions, we have to ensure the descent property of the Newton
step.

2. Centrality conditions. The centrality conditions can be derived as
follows [35, 78]: at the current point v, define, for a given direction
∆v and for the step length α, the point v(α) = v + α∆v and the two
functions

f I(α) = min(W (α)s(α))− γτ1w(α)ts(α)/m (3.19)
f II(α) = w(α)ts(α)− γτ2‖H1(v(α))‖, (3.20)

where γ ∈ (0, 1) is a fixed parameter and τ1 and τ2 are two constants
depending on the initial value v0. The function f I can be considered
a measure of the distance of v(α) from the central path in the plane
(s, w): indeed (3.21) defines the one sided ∞–norm of neighborhood
of the central path. The function f II is a weighted difference between

3.3. NEWTON INTERIOR–POINT METHODS 73

the complementarity term and the other components of the vector
H(v(α)). By requiring that

f I(α) ≥ 0 (3.21)
f II(α) ≥ 0 (3.22)

it follows that (s(α), w(α)) > 0 and, roughly speaking, that the point
v(α) lies in a neighborhood of the central path, and the complementar-
ity part of H(v(α)) is not too small compared to the vector H1(v(α)).
Other path following strategies are shown in [3] and can be obtained
by combining different centrality conditions and merit functions.

3. Merit functions. The damping parameter αk has also to guarantee the
sufficient decrease of the chosen merit function. A classical choice for
the merit function is the nonlinear least squares function φ(v) defined
in (3.18). This merit function has the advantage that it is differen-
tiable and it gives good convergence properties to the algorithm, even
if a solution of φ(v) = 0 is not necessarily a minimum point for the
nonlinear problem. Many authors [2, 70, 71] have proposed different
merit functions which in general follows the idea of a penalty–barrier
function.
The damping parameter is reduced until a backtracking rule is satis-
fied. In the most part of the algorithms, the backtracking rule is the
classical Armijo–Wolfe condition

φ(v(α)) < φ(v(0)) + β∇φ(v(0))∆vk (3.23)

where β is a scalar parameter less than one and φ(v) is the chosen
merit function.

4. The solution of the perturbed Newton equation. The computation of
the search direction is the main computational task of the method.
The jacobian matrix of H(v) is a nonsymmetric matrix whose block
structure is

H ′(v) =

Q B C 0
Bt 0 0 0
Ct 0 0 Im

0 0 S W

 (3.24)

where
Q = ∇2

xxL(x, λ, s, w)
Bt = −∇gt

1(x)
Ct = −∇gt

2(x),
(3.25)

74 CHAPTER 3. INTERIOR–POINT METHODS

thus the perturbed Newton equation can be written as

Q∆x + B∆λ + C∆w = −Lx (3.26)
Bt∆x = −Lλ (3.27)

Ct∆x + ∆s = −Lw (3.28)
S∆w + W∆s = −SWem + ρkem (3.29)

Since the matrix (3.24) is nonsymmetric, practical algorithms do not
solve the system (3.26)–(3.29), but they apply some elimination tech-
niques in order to obtain an equivalent formulation of the system.
From the last block of equations (3.29), we get the relation

∆s = −W−1S∆w − (Sem −W−1ρkem), (3.30)

thus, by substituting in (3.26), we obtain a 3× 3 block system in the
reduced form

Q B C
Bt 0 0
Ct 0 E

∆x
∆λ
∆s

 =

−Lx

−Lλ

−Lw + Sem − ρkW
−1em

 . (3.31)

where E = −W−1S . By a further substitution from the third block
of equations

∆s = S−1WCt∆x + S−1WLw − w + ρks, (3.32)

we obtain the following condensed form of the system (3.26)–(3.29)
(

A B
Bt 0

)(
∆x
∆λ1

)
=

(
c
q

)
, (3.33)

with
A = Q + CS−1WCt

c = −Lx − C[S−1WLw − w + ρks]
q = −Lλ.

For the nonsingularity of the matrices in (3.31) and (3.33) we can
exploit the following result:

Theorem 3.1 [36, pp.161–163] Let M1 a p × p nonsingular matrix
and let M2, M3 and M4 be q× q, p× q, q× p matrices respectively. If
M2 −M4M

−1
1 M3 is a nonsingular matrix, then the matrix

M =
(

M1 M3

M2 M4

)

3.3. NEWTON INTERIOR–POINT METHODS 75

is nonsingular and its inverse is given by

M−1 =
(

M1 M3

M2 M4

)−1

=
(

M−1
1 + M−1

1 M3M0M4M
−1
1 −M−1

1 M3M0

−M0M4M
−1
1 M0

)−1

where M0 = (M1 −M4M
−1
1 M3)−1.

Theorem 3.2 (Theorem 6 in [11]) The coefficient matrix in (3.33)
is nonsingular if one of the following conditions hold:

C3’ the matrices A and BT A−1B are nonsingular;

C3” BT is a full row–rank matrix and A is positive definite on the
null space of BT : N (BT) = {x ∈ Rn : BT x = 0}.

Proof. If C3’ holds, it is immediate to prove that the following matrix
is the inverse of the coefficient matrix in (3.33), by applying Theorem
3.1:

(
A−1 −A−1B(BtA−1B)−1BtA−1 A−1B(BtA−1B)−1

(BtA−1B)−1BtA−1 −(BtA−1B)−1

)

For the condition C3”, see [54, p. 424]. ¤

It has to be noticed that the diagonal matrices W−1S, S−1W , S and
W lead to an ill conditioning of the systems obtained by means of
the elimination techniques: in [78] the author shows that “the error in
the computed step due to the finite precision may become large as µk

decreases, but it does not interfere with the convergence of the iterate
to the solution since it belongs almost entirely to the null space of the
gradients of the constraints active in the solution”. He also points out
that the centrality conditions (3.21) and (3.22) give an important con-
tribution in the error analysis, since they provide an estimate bound
for the variables s and w in a neighborhood of the solution.
For the solution of the perturbed Newton equation we could distin-
guish two different approaches, the direct and the iterative one.
The matrices in (3.31) and (3.33) in general are not positive definite,
thus the factorization subroutines can only exploit the symmetry of
the matrices. For this reason, regularization techniques have been
proposed for both direct [70] and iterative [1] approach. The aim of
such regularization is to make the matrix (3.33) positive definite by

76 CHAPTER 3. INTERIOR–POINT METHODS

adding positive quantities to the diagonal of the left up block A. Then,
the system (3.33) can be be solved by factorizing the matrix with a
Cholesky–like in the direct case, or by means of a preconditioned con-
jugate gradient if an iterative approach is followed.
The matrices in (3.31) and (3.33) play a fundamental role in all the
interior–point algorithms and they are a central interest of this disser-
tation, thus we refer to the next chapter for a deeper investigation of
the techniques employed for the computation of the direction.

3.4 Newton Interior-Point Methods as Inexact New-
ton Methods

In this section we will show the conditions under which any algorithm fol-
lowing the scheme 3.4 can be considered as a special case of inexact Newton
methods.
Suppose that the vector ∆vk is a solution of the perturbed Newton equation
(3.15) and define the vector rk as the residual of the Newton equation for
the problem H(v) = 0 as follows:

rk = H ′(vk)∆vk + H(vk). (3.34)

We have that
rk = ρkẽ. (3.35)

This means that solving the perturbed Newton equation is equivalent to “ap-
proximately” solve the Newton equation, with residual equal to the vector
ρkẽ. From the definition of ẽ we have that

rk =
(

0
σkµkem

)
,

thus
‖rk‖ = σkµk

√
m. (3.36)

Since the residual condition (2.21) of the inexact Newton method and tack-
ing into account (3.34), such condition for the problem H(v) = 0 can be
written as

‖rk‖ ≤ σk‖H(vk)‖. (3.37)

using σk as forcing term.
It has to be noticed that σk belongs to the interval (0, 1), so that it can
be chosen as forcing parameter. From (3.36), we can derive a condition on

3.4. NEWTON INTERIOR-POINT METHODS AS INEXACT NEWTON METHODS77

the parameter µk such that ∆vk (i.e. a solution of the perturbed Newton
equation) is an inexact Newton step for the problem H(v) = 0 at the level
σk. Indeed, it is easy to see that, if

µk ≤ ‖H(vk)‖√
m

, (3.38)

then (3.37) is satisfied.
It is straightforward to prove that the classical choice for µk as in (3.17)
satisfies the condition (3.38), since we have

µ
(1)
k =

st
kwk

m
≤ µ

(2)
k =

‖H(vk)‖√
m

(3.39)

(see [28]).
Now consider the case when the vector ∆vk is an approximate solution of the
perturbed Newton equation, but such that the perturbed complementarity
conditions are solved exactly. This gives the following residual vector (for
the problem H(v) = 0)

rk =
(

r̄k

σkµkem

)
(3.40)

where r̄k is the residual vector of the first n+neq+m equations of the linear
system

H ′(vk)∆vk + H(vk) = 0.

It follows that
‖rk‖2 = ‖r̄k‖2 + σ2

kµ
2
km (3.41)

from which we can derive conditions on ‖r̄k‖ and on µk such that the approx-
imate solution of the perturbed Newton equation is also an inexact Newton
step for the problem H(v) = 0.
By requiring that

‖r̄k‖ ≤ δk‖H(vk)‖ (3.42)

and that (3.38) holds, we obtain the following inequality:

‖rk‖ ≤ (δk + σk)‖H(vk)‖. (3.43)

Hence, choosing δk and σk such that 0 < δk + σk < 1, we can conclude that
∆vk is an inexact Newton step at the level (δk+σk). It can be observed that,
if the forcing term δk is chosen equal to zero, then we are in the previous
case.
Suppose now that the direction ∆vk satisfies the condition (3.43), so that it

78 CHAPTER 3. INTERIOR–POINT METHODS

is an inexact Newton step at the level (δk + σk).
In order to obtain an inexact Newton sequence, we should require that the
new iterate, computed along the vector ∆vk, guarantees a sufficient decrease
of the function ‖H(v)‖. In other words, the norm condition (2.29) of the
inexact Newton method should hold, and this can be guarantee by means
of a backtracking technique, as the one in the scheme 2.1.
By introducing the damping parameter αk for the step length, the norm
condition becomes

‖H(vk + αk∆vk)‖ ≤ (1− βαk(1− σk − δk))‖H(vk)‖. (3.44)

We can summarize all the considerations above by introducing a new scheme
for the class of Newton interior–point methods with line–search.

Scheme 3.4

- Choose an initial guess v0 s.t. (s0, w0) > 0;

- Choose the parameters

ρk = σkµk s.t. σk, δk ∈ [0, 1)
σk + δk < 1
µk ∈ [µ(1)

k , µ
(2)
k]

- Compute a direction ∆vk such that

‖r̄k‖ ≤ δk‖H(vk)‖

- Move along the direction computed at the previous step: choose the
damping parameter αk such that the new iterate satisfies

feasibility;

centrality conditions;

sufficient decrease of the merit function (condition (3.44));

- Update the iterate vk+1 = vk + αk∆vk.

This scheme is different from scheme 3.2 in two crucial points: the choice
of the perturbation parameter in a larger interval and the way to deter-
mine the search direction. In particular, under some assumption, condition
(3.43) can be employed as stopping criterion for an iterative solver applied
to the perturbed Newton equation at each IP iteration. The application

3.5. PREVIOUSLY PROPOSED IP ALGORITHMS 79

of an iterative inner solver is an useful tool in the implementation of the
Newton interior–point methods and it can improve the effectiveness of the
algorithm. On the other hand, viewing the interior–point methods as special
case of inexact Newton methods gives a strong theoretical foundation for the
convergence of the algorithm, and convergence theorems can be proved by
means of the ones stated in Chapter 2 (see [28, 4]).

3.5 Previously proposed IP algorithms

In this section we present three optimization algorithm belonging to the
interior–point class which have shown to be very efficient on nonlinear large
scale test problems.
The first one, LOQO, is similar to the one proposed in the next chapters,
while the second one, Knitro, follows a quite different approach, employing
sequential quadratic programming ant trust region techniques.
The third algorithm, called IPOPT, is a barrier method implementing a
filter line–search technique, a new approach followed also in [69].
At the end of this section, the table 3.1 summarizes the numerical results of
these three softwares on some of the test problems described in the Chapter
6.

3.5.1 LOQO

The LOQO algorithm [70, 65] belongs to the class described by the scheme
3.4 and it addresses to a basic problem formulation with inequality con-
straints only

min f(x)
s.t. g2(x) ≥ 0.

(3.45)

which after introducing the slack variables becomes

min f(x)
s.t. g2(x)− s = 0

s ≥ 0.
(3.46)

The search direction is computed by solving the reduced form of the system,
which in this case has the following form:
(−Q ∇g2(x)
∇g2(x)t SW−1

)(
∆x
∆w

)
=

(∇f(x)−∇g2(x)tw
−g2(x) + s + SW−1(w − ρS−1em)

)

(3.47)

80 CHAPTER 3. INTERIOR–POINT METHODS

Along this direction the steplenght is reduced such that the new iterate is
feasible and in order to guarantee a sufficient reduction of the merit function

Φβ,ρ = f(x)− ρ
m∑

i=1

ln(si) +
β

2
‖g2(x)− s‖.

Indeed, if the matrix Q is positive definite, then the direction computed by
solving the system (3.47) is a descent direction for that merit function, as
shown in [70].
Thus, having a positive definite hessian matrix is crucial and the LOQO
algorithm provides to this issue in two ways. First of all, the inequality
constraints which are simple bounds can be treated separately, and by op-
erating the substitution (3.32) they produce a positive diagonal matrix to
be added to the hessian matrix. This can improve the stability of the algo-
rithm, and for this reason, in the LOQO code, also the variables xi which
are not bounded, are written as the difference of two nonnegative variables
t−i and t+i .

xi − t−i + t+i = 0
t−i , t+i ≥ 0

Furthermore, the hessian matrix Q is modified by a diagonal perturbation,
whenever during the factorization a pivotal element of the wrong sign occurs.
In summary, the search direction is the solution of a system with the same
right hand side of (3.47), whose matrix has the following form:

(−(Q + En) ∇g2(x)
∇g2(x)t Em

)
. (3.48)

In the more recent versions, LOQO also adopted the filter technique of
Fletcher and Leyffer for the line search, as discussed in [6].
In [45], the authors analyze the global convergence to a first order optimality
point for a general algorithm combining features of the previously mentioned
versions of LOQO but the global convergence proof for the LOQO algorithm
as not been published. Good practical performances have been observed for
the solution of nonlinear programming problems.

3.5.2 KNITRO

The Knitro algorithm [18, 17] follows the scheme 3.1. It applies to the
problem

min f(x)
s.t. g1(x) = 0

g2(x) ≤ 0

3.5. PREVIOUSLY PROPOSED IP ALGORITHMS 81

and, after introducing the slack variables, at each step it solves a barrier
subproblem of the type

min f(x)− ρk
∑m

i=1 ln si

s.t. g1(x) = 0
g2(x) + s = 0
s ≥ 0.

The lagrangian function can be written as

L(x, s, λ, w) = f(x)− ρ
m∑

i=1

ln si + λtg1(x) + wt(g2(x) + s)

and the measure M of the optimality conditions of the barrier subproblem
is defined as follows:

max{‖Lx‖∞, ‖Sw − ρem‖∞, ‖g1(x)‖∞, ‖g2(x) + s‖∞}.

The solution of each barrier subproblem is computed by sequential quadratic
programming and trust–region techniques. Indeed, at each step the direction
(∆xk, ∆sk)t is computed as solution of the following quadratic subproblem:

min∆x,∆s ∇f(xk)t∆xk + 1
2∆x∇2

xxL(xk.sk, λ, w)∆x− ρetS−1
k ∆s + 1

2∆stρS−2
k ∆s

s.t. ∇g1(xk)t∆x + g1(xk) = rE
∇g2(xk)t∆x + ∆s + g2(xk) + sk = rI
(∆x,∆s) ∈ Tk

(3.49)
where λ and w are Lagrangian multipliers estimates, Tk indicates the trust–
region at the iterate k and rE rI are the smallest residual vectors such that
the constraints of (3.49) are consistent.
The solution of the quadratic subproblem (3.49) is computed in two steps:
the normal step, which tries to satisfy the constraints of (3.49), and the
tangential step which attempts to achieve the optimality. By omitting the
iteration index, the normal step consists in solving the problem

minv ‖∇g1(xk)tvx + g1(xk)‖2
2 + ‖∇g2(xk)tvx + g2(xk) + sk‖2

2

s.t. ‖(vx, S−1
k vs)t‖2 ≤ 0.8∆k

vs ≥ −τs/2
(3.50)

where τ is a constant in (0, 1) and the inequality constraints of define the
trust region Tk. The solution of (3.50) is obtained approximately with the

82 CHAPTER 3. INTERIOR–POINT METHODS

dogleg method. After the computation of the normal vector v = (vx, vs)t,
the residuals in (3.49) are defined as

rE = ∇g1(xk)tvx + g1(xk), rI = ∇g2(xk)tvx + vs + g2(xk) + sk

and the tangential step is computed as the solution of the problem

min ∇f(xk)t∆xk − ρetS−1
k ∆s + 1

2{∆x∇2
xxL(xk.sk, λ, w)∆x + ∆stρS−2

k ∆s}
s.t. ∇g1(xk)t∆x = ∇g1(xk)tvx

∇g2(xk)t∆x + ∆s = ∇g2(xk)tvx + vs

‖(∆x, S−1
k ∆s)t‖2 ≤ ∆k

∆s ≥ −τs.
(3.51)

The tangential subproblem is solved with a preconditioned conjugate gra-
dient method, following the Steihaug approach. More details about the
solution of the quadratic subproblems can be found in [43].
The merit function whose decrease determines if the computed step is ac-
cepted or rejected and the change of the trust region radius in the next
iteration is

φ(x, s; ν) = f(x)− ρ
m∑

i=1

ln si + ν‖(g1(x), g2(x) + s‖2.

At each iteration of the Knitro algorithm, three systems of linear equations
hav to be solved, requiring the factorization of only one matrix, whose form
is

(
I Â

Ât 0

)

where the Â indicates the jacobian matrix of the constraints (∇g1,∇g2).
The first version of the Knitro code performed the direct factorization of this
matrix, by employing the routine MA27 of the Harwell Subroutine Library,
while more recent version allow the choice of the conjugate gradient method
as inner iterative solver. The two versions of the code are referred as Knitro-
Direct and Knitro-Iterative respectively.
The global convergence of Knitro has been proved in [17].

3.5. PREVIOUSLY PROPOSED IP ALGORITHMS 83

3.5.3 IPOPT

The last interior–point algorithm that we consider is IPOPT [71, 73], which
is a barrier algorithm applied to the following nonlinear problem

min f(x)
s.t. g1(x) = 0

x ≥ 0
(3.52)

which can also describe a nonlinear programming problem formulated as in
(3.4).
The measure of the optimality condition violation for the barrier subprob-
lems is the function

M(x, λ, w; ρ) = max
{‖∇f(x) +∇g1(x)tλ− w‖∞

sd
, ‖g1(x)‖∞,

‖Wx− ρen‖∞
sc

}

where λ and w are the multipliers of the equality and inequality constraints
and sd, sc are two scaling factors used in order to adapt the termination
rule to the critical cases, when the gradients of the constraints are nearly
linearly dependent. Scaling techniques are also applied in the computation
of the direction for the solution of the barrier problem, which is performed
by solving the following system in condensed form whose matrix is

(
Qk + X−1

k Wk ∇g1(xk)
∇g1(xk)t 0

)
. (3.53)

The IPOPT code provides also a regularization of the matrix by modifying
the diagonal entries. The factorization, after the scaling and the regulariza-
tion, is performed with the MA27 subroutine.
After the computation of the direction, the step size is shortened so that the
new iterate is feasible, by allowing a different step size for the variable w:
this feature can lead to a modification of the direction.
Then, in the framework of filter methods, the new point is accepted if it
produces a sufficient decrease of the barrier merit function

ϕρ(x) = f(x)− ρ

n∑

i=1

lnxi

or a sufficient progress towards the minimization of the constraints violation
θ(x) = ‖g1(x)‖.
The acceptable points are of two types: a ϕ-type point is computed when
the constraint violation in the current point is less then a fixed constant and

84 CHAPTER 3. INTERIOR–POINT METHODS

Prob. LOQO 6.2 Knitro direct Knitro iterative IPOPT
it sec it sec it sec it sec

6.1.3-199 39 108 19 72 12 94 25 276
6.1.3-299 * * 20 278 12 322 20 1143
6.1.3-399 * * 21 786 15 1020 28 3618
6.1.3-499 * * 22 1585 14 1754 22 7374
6.1.3-599 * * 16 2876 m m
6.2.6-99 131 51 34 17 45 33 91 29

6.2.6-199 143 427 44 180 41 263 74 302
6.2.6-299 * * 41 674 101 1637 113 1670
6.2.6-399 * * 40 1829 109 4693 90 3518
6.2.6-499 * * 42 3498 * * 88 7034

Table 3.1: Comparison on the test problems 6.1.3 and 6.2.6 of Chapter 6:
the symbol ‘*’ indicates a failure of the algorithm, while ‘m’ means that the
code ran out the available memory.

it must satisfy the Armijo rule for the merit function ϕρ and a ”switching
condition” which guarantees that the direction is a descent direction for ϕρ

but prevents the orthogonality to the vector ∇ϕρ.
The other type of acceptable point is such that one of the following inequality
holds

θ(xk+1) ≤ (1− γθ)θ(xk)
ϕρ(xk+1) ≤ ϕ(xk)− γϕθ(xk)

where γθ and γϕ are two positive constants chosen in (0, 1).
In order to obtain acceptable points, the algorithm performs ”second–order
corrections”, whose aim is to reduce the violation of the constraints by ap-
plying a Newton–type method on them
The corrected step is computed as the solution of a system whose matrix is
the matrix (3.53), thus only one factorization is needed for each iteration.
Finally, the perturbation parameter is updated and a new iterate is per-
formed.
A more detailed description of the IPOPT algorithm is given in [71], while
the convergence theorems and an extensive numerical experimentation can
be found in [73].

Chapter 4

Description of the algorithm

The algorithm proposed in this dissertation is a line–search inexact New-
ton interior–point method (see Section 3.4), solving a sequence of perturbed
Newton equations.
The search direction can be computed by applying direct or iterative meth-
ods to the perturbed Newton equation, which is not considered in its full
version (3.26)–(3.29) but in the reduced or condensed form as explained in
Section 3.3.1.
The iterative solvers chosen for the computation of the search direction are
the Hestenes method, a new contribution in this thesis, and the precondi-
tioned conjugate gradient method, and they are discussed in sections 4.2.2
and 4.2.3.
The preconditioned conjugate gradient method for the solution of linear
systems of the form (3.33) has been proposed from several authors (for ex-
ample [1, 50, 51]) and it is employed in many optimization codes, for example
[18, 71]. The novelty of the approach presented in this thesis consists in its
association with the inexact Newton framework and in the implementation,
as explained in Section 4.2.3.
Furthermore, an efficient solver for systems with a quasidefinite matrix in-
cluding the possibility of performing a dynamical regularization is proposed
here.
The global convergence of the algorithm is ensured by a line–search strategy
which can be extended to the new nonmonotone case.
In particular, by means of the theorems in Section 2.2.5, the whole algorithm
can be generalized in a nonmonotone way allowing different choices not only
for the backtracking rule, but also for the perturbation parameter and for
the inner stopping criterion, as explained in Section 4.3.

85

86 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

4.1 The interior–point iteration

The algorithm follows a primal–dual approach, thus at each outer iteration
the linear system (3.15) has to be solved. The general framework is summa-
rized in the Scheme 3.4, and in this section we deal with the interior–point
iteration, while the solution of the perturbed Newton equation is the subject
of the next sections.

The stopping criterion
The merit function chosen is the nonlinear least squares function (3.18)
and the iterations stop when ‖H(vk)‖ reach a fixed tolerance tol. For the
stopping criterion we have also considered the quantity

|gap|
1 + |gap| (4.1)

where gap is the difference between the objective function of the primal
problem (1.1) and the objective function of the following dual problem 1,
whose variables are x, λ and w:

min f(x)− λtg1(x)− wtg2(x)−∇f(x)tx + (λt wt)
(∇g1(x)
∇g2(x)

)
x

s.t. ∇f(x)− (∇g1(x) ∇g2(x))
(

λ
w

)
= 0.

Thus the stopping criterion can be written as follows:

‖H(vk)‖ ≤ tol
or
|gap|

1+|gap| ≤ tol
(4.2)

The parameters At the beginning of the algorithm, the constants τ1 and τ2

used for the centrality condition (3.21) and (3.22) are initialized as

τ1 = min(0.99, 10−7 min(S0W0em)/0.5[st
0w0/m]

τ2 = 10−7st
0w0/‖H1(v0)‖ (4.3)

(see also [35]), then two safeguard values δmax and σmax for the forcing terms
δk and σk respectively are chosen. The aim of this settings is to give an upper

1We recall that the dual formulation of the problem (1.1) must lead to the same KKT
conditions, see also [70]

4.1. THE INTERIOR–POINT ITERATION 87

bound for the choice of the forcing terms such that δk+σk ≤ δmax+σmax < 1.
Our choices are

δmax =
0.8

1 + 0.5 τ2
√

2
min(1,τ2)

(4.4)

σmax =
δmax0.5τ2

√
2

min(1, τ2)
· 1.1 (4.5)

and they contribute to the convergence of the algorithm, as showed in
Theotem 5.3 of the next chapter.

The forcing terms and the perturbation parameter
In the interior–point iteration, we must choose the forcing term δk ∈ [0, δmax]
and σk ∈ [0, σmax].
In order to improve the rate of convergence of the sequence, we should choose
δk, σk ≈ ‖H(vk)‖, as suggested by the convergence results for the inexact
Newton method in Chapter 2.
We follow this approach, and we introduce some control on the size of the
forcing term in order to avoid that it becomes too small, but accelerating
the convergence when the iterates are close to the solution.
The initial value δ0 is set equal to min(δmax, 0.8‖H(vk)‖), while, tacking into
account considerations above, the settings for all the successive iterations
are

min(δmax,max(5.0 · 10−5, ‖H(vk)‖, 0.5‖H1(vk)‖/‖H1(vk−1)‖)) (4.6)

if ‖H(vk)‖ < 10−3, and

min(δmax,max(5.0·10−5, min(0.999δk−1, ‖H(vk)‖, 0.5‖H1(vk)‖/‖H1(vk−1)‖)))
(4.7)

otherwise.
The forcing term σk is chosen in [0, σmax] of the same order than δk, as

σk = min(σmax, max(1.1 · 0.5τ2δk

√
2

min(1, τ2)
, 0.01‖H(vk)‖))

and this choice contributes to the convergence of the algorithm, as we will
show in the next chapter, and it also influences the convergence rate.
After the forcing terms, the user is allowed to choose the perturbation pa-
rameter as ρk = σkµk, where

µk = µ
(1)
k =

st
kw

m
(4.8)

88 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

or

µk = µ
(2)
k =

‖H(vk)‖√
m

. (4.9)

Then, the search direction ∆vk is computed such that the property (3.42)
holds and the damping parameter is initially set equal to 1.

Feasibility
We recall that the feasibility conditions can be expressed as follows: find αk

such that sk + αk∆sk > 0 and wk + αk∆wk > 0.
Thus, we compute αk as in (3.16), where γ represents the percentage of
movement to the boundary and it can be chosen adaptively by means of the
following rule [3]:

γ = max(0.8, min(0.9995, 1− 100st
kw)) (4.10)

if the step length has been reduced by the formula (3.16),

γ = max(0.8, 1− 100st
kw) (4.11)

if the full direction ∆vk does not bring out of the feasible region.
The meaning of (4.10) and (4.11) is to allow the sequence to be close to the
boundary of the feasible region only when we are sufficiently close to the
solution. This adaptive choice has been shown to have good performances
when we use the iterative inner solvers for the Newton equation presented
in the next sections, while for the direct approach it is sufficient to fix the
value of γ to 0.995.

The centrality conditions
After the feasibility conditions, also the centrality conditions have to be
checked and the damping parameter αk is reduced by a factor of 0.5 until
(3.21) and (3.22) are satisfied.

The line–search
Finally, we must guarantee a sufficient decrease of the merit function φ(v),
by using a backtracking strategy along ∆vk until the condition (3.44), with
β = 10−4, is satisfied.

For sake of completeness we report the scheme of the algorithm which re-
sumes all the topics above.

Algorithm 4.1

- Choose an initial guess v0 s.t. (s0, w0) > 0;

4.2. THE SEARCH DIRECTION 89

- Choose the parameters

τ1, τ2 as in (4.3)
σmax, δmax as in (2.53) and (4.5)

- For k = 0, 1, 2, ... until (4.2) is satisfied

- Choose the forcing terms δk and σk as in (4.6) and (4.7)

- Choose µk ∈
{

µ
(1)
k , µ

(2)
k

}

- Set ρk = σkµk

- Compute a direction ∆vk such that

‖r̄k‖ ≤ δk‖H(vk)‖

- Set αk = 1

- Feasibility: compute αk as in (3.16) where γ is defined in (4.10)
–(4.11)

- Centrality:
While f I(αk) < 0

- Set αk ← 0.5αk

While f II(αk) < 0

- Set αk ← 0.5αk

- Backtracking:
While ‖H(vk + αk∆vk)‖ > (1− β(1− δk − σk)αk)‖H(vk)‖

- Set αk ← 0.5αk

- Update the iterate vk+1 = vk + αk∆vk.

4.2 The search direction

The scheme of the Algorithm 4.1 shows that the main computational effort
is spent in the approximate solution of the perturbed Newton equation, since
the other issues do not give a significant contribution to the complexity of the
algorithm. Thus, the choice of the more suitable method for the computation
of the search direction ∆vk at each iteration has a crucial importance for the
effectiveness of the whole algorithm. In the following sections we consider
three different inner solvers, one direct method and two iterative methods,
which lead to four versions of the Algorithm 4.1, depending on the choice of
the inner solver and on its implementation.

90 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

4.2.1 The direct approach

As observed in Section 3.3.1, the perturbed Newton equation in its full form
(3.26)-(3.29) is not symmetric and it has no suitable properties. Thus, we
consider the reduced form (3.31). Actually, in this direct approach, we prefer
a slightly different reduction of the system, which is an intermediate step
between the reduced form (3.31) and the condensed form (3.33). Namely, we
perform the substitution (3.32) only for the components of the vector ∆w
corresponding to a box constraint. Thus we obtain a system of the same
form of (3.31), but the matrices involved are different. In particular, the
left–up block of the matrix of the system is given by the sum of the hessian
matrix of the lagrangian Q plus a positive semidefinite diagonal matrix F
whose nonzero entries correspond to the components of the variable x which
are bounded. Thus, the computation of the matrix F does not require
any computational. After the partial substitution, the size of the system is
n + neq + 2(m− b), where b indicates the number of the box constraints.
The matrix of this partially reduced system is a symmetric but not definite
matrix, thus the factorization has to be performed by means of a symmetry
preserving algorithm as the Bunch–Parlett [16] triangular factorization.

4.2.2 The iterative approach: Hestenes method

Consider now the perturbed Newton equation in the condensed form (3.33).
We recall that, if Bt is a full row–rank matrix, the coefficient matrix of
(3.33)

M =
(

A B
Bt 0

)

is nonsingular if and only if the matrix A is nonsingular on the null space of
Bt ([42]), i.e. ZtAZ is a nonsingular matrix, where Z is the n × (n − neq)
matrix such that BtZ = 0 and ZtZ = I. In particular, a sufficient condition
for the nonsingularity of M is that the matrix ZtAZ is positive definite
(see also [54, p. 424]). This condition holds if the hessian matrix of the
lagrangian function Q is positive definite on the null space of Bt. Note that
this assumption is also the one required for the local SQP method ([60, p.
531]).
Setting y1 = ∆x and y2 = ∆λ, the system (3.33), can be viewed as the La-
grange necessary conditions for the minimum point of the following quadratic
problem

min 1
2yt

1Ay1 − cty1

s.t. Bty1 − q = 0.

4.2. THE SEARCH DIRECTION 91

This quadratic problem can be solved efficiently by Hestenes’ multipliers
scheme ([46, p. 308]), that consists in updating the dual variable by the rule

y
(j+1)
2 = y

(j)
2 + χ(Bty

(j)
1 − q),

where χ is a positive parameter (penalty parameter) and y
(j)
1 minimizes the

augmented lagrangian function of the quadratic problem

Lχ(y1, y2) =
1
2
yt
1Ay1 − yt

1c + yt
2(B

ty1 − q) +
χ

2
(Bty1 − q)t(Bty1 − q).

This means that y
(j)
1 is the solution of the linear system of order n

(A + χBBt)y1 = −By
(j)
2 + c + χBq (4.12)

Note that, since Bt has full row–rank, the null space of BBt is equal to the
null space of Bt, then the matrix A is positive definite on the null space of
BBt. Then, it is immediate the following theorem.

Theorem 4.1 ([54, p. 408]) There exists a positive parameter χ∗ such that
for all χ > χ∗, the matrix A + χBBt is positive definite.

This result enables us to solve the system (4.12) by applying a Cholesky
factorization.
In order to choose the parameter χ, we observe that, for any x 6= 0, we must
have xt(A + χBBt)x > 0. When Btx = 0, we have xtAx > 0. If Btx 6= 0,
xtBBtx > 0. Then, it follows that

χ > max(0, max
x 6∈N (Bt)

−xtAx

xtBBtx
)

Since ‖A‖ ≥ (−xtAx)/(xtx) for any natural norm and also for the Frobenius
norm ‖ · ‖F , and xtBBtx/(xtx) ≥ τmin, where τmin is the minimum nonzero
eigenvalue of BBT or of BT B, we can choose as χ the following value:

χ >
‖A‖F

τmin

In general it is difficult to determine an estimate of τmin. Numerical evi-
dence shows that a good approximation of τmin is min(1, tmin), where tmin

is the minimum diagonal entry of the matrix BT B, although tmin ≥ τmin.
Furthermore, in order to avoid that the value of χ is too small (the matrix

92 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

nz = 42 nz = 42 nz = 136

Figure 4.1: Preprocess phase: save the indices of the nonzero contribution
of the scalar product

is not positive definite) or too large (too ill–conditioned system), it is con-
venient to use safeguards. In the numerical experiments of the last chapter,
the following value of χ produced good results:

χ = min(max(107,
max{‖A‖F , 1}
min{tmin, 1}), 108). (4.13)

Now, we discuss the implementation of the method. We assume that the
hessian matrix Q of the lagrangian function and the jacobian matrix BT

of the equality constraints are stored in a column compressed format ([64]).
Then, at any step of the IP method, the implementation of Hestenes’ mul-
tipliers scheme requires the computation of the matrix T = A + χBBt and
its Cholesky factorization T = LnLt

n. The other operations related to each
iteration (i. e. sparse matrix–vector products B(−y

(j)
2 + χq) and Bty

(j)
1

and solution of the triangular systems equivalent to (4.12)) have a negligible
computational complexity. In order to execute only necessary operations
to form T , it is convenient to execute a preprocess procedure that builds a
data structure which stores the indices of the nonzero entries of T . For any
nonzero entry tij of T , in the same data structure we also store the pairs of
indices of the elements of C, Ct, B and Bt that give a nonzero contribution
in the scalar product forming the entry, as depicted in Figure 4.1.

The preprocess routine also computes the symbolic Cholesky factoriza-

4.2. THE SEARCH DIRECTION 93

tion of the sparse, symmetric and positive definite matrix T . To exploit the
sparsity of T , its factorization can be obtained by a very efficient Fortran
package (version 0.3) of Ng and Peyton (included in the package LIPSOL,
downloadable from www.caam.rice.edu/˜zhang/lipsol). This package a pri-
ori computes the symbolic factor of T (i.e. the indices of the nonzero entries
of Ln and the information to form these entries), using the multiple mini-
mum degree ordering of Liu to minimize the fill–ins in Ln and the supernodal
block factorization to take advantage of the presence of the cache memory
in modern computer architectures ([59]). The a priori procedure of Liu for
reordering of T and the computation of its symbolic factorization can be
executed only one time in the preprocess routine.
In conclusion, the time for solving an NLP problem by the IP method com-
bined with Hestenes’ multipliers method is subdivided in two part, the pre-
process time and the time for computing the solution (solution time). We
observe that the preprocess time is dependent on the strategy used to per-
form the matrix–matrix products needed in the method for computing T .

4.2.3 The iterative approach: PCG

A different approach for solving the inner system arising at each step of
an IP scheme uses a Preconditioned Conjugate Gradient (PCG) method, as
suggested in [50] (see also [32], [29], [51], [7]). As in the previous section,
we propose to solve the condensed form of the system (3.33) instead of the
reduced form (3.31), but, unlike as it arises for the Hestenes’ multipliers
scheme, in this case we can avoid to explicitly compute the matrix A =
Q + CS−1WCT . Indeed, at any step of the PCG scheme, the matrix A is
required only in the matrix–vector product t = Mp, where

M =
(

A B
BT 0

)
, p =

(
p1

p2

)
, p1 ∈ Rn, p2 ∈ Rneq.

The product Mp can be executed by sparse matrix–vector products only,
using a temporary array t̂ to store the partial results:

t1 ← Ctp1

t̂ ← S−1Wt1

t1 ← Ct̂

t1 ← t1 + Qp1 + Bp2

t2 ← Btp1

94 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

As preconditioner in the PCG scheme, we can consider the indefinite pre-
conditioner in [50]:

M̄ =
(

Ā B
Bt 0

)
=

(
I 0

BtĀ−1 I

)(
Ā 0
0 −BtĀ−1B

)(
I Ā−1B
0 I

)

(4.14)
where we assume that Ā is a positive diagonal approximation of A.
For sake of completeness, we report the main theoretical results about the
preconditioner (4.14)(for further details and proofs of the following theo-
rems, see [50]).

Theorem 4.2 If Ā is a positive definite matrix , then the matrix MM̄−1

has at least 2 · neq unit eigenvalues.
If AĀ−1 − I is a nonsingular matrix, then only neq linearly independent
eigenvectors corresponding to these eigenvalues exist; the other eigenvalues
of the matrix MM̄−1 are exactly the eigenvalues of the matrix ZtAZ(ZtĀZ)−1.
If ZT AZ is a positive definite matrix, all the eigenvalues of the matrix
MM̄−1 are positive.
Moreover, if vZtĀZv = vtZtAZv for some v ∈ Rn, then all the eigenvalues
of the matrix MM̄−1 are included in the interval determined by the extremal
eigenvalues of the matrix ZtAZ(ZtĀZ)−1.

Theorem 4.3 Consider the PCG method with preconditioner (4.14), where
the matrix Ā is positive definite, applied to the system

M

(
v1

v2

)
=

(
y1

y2

)
.

If a breakdown does not occur, then we obtain the solution
(

v∗1
v∗2

)
after at

most n− neq + 2 iterations.

Theorem 4.4 Let the matrix ZtAZ be positive definite. Consider the
PCG method with the preconditioner (4.14), where Ā is a positive defi-
nite matrix, applied to the system (3.33), starting with the initial point
v0
1 = Ā−1B(BtĀ−1B)−1y2, v0

2 = 0. The PCG method finds the solution of
the system after at most n−neq iterations and the following condition holds

‖vi
1 − v∗1‖ ≤ 2

√
k

(
1−

√
k

1 +
√

k

)i

‖v0
1 − v∗1‖ (4.15)

where k is the spectral condition number of ZtAZ(ZtĀZ)−1.

4.2. THE SEARCH DIRECTION 95

In the implementation of the PCG scheme, we can choose the diagonal
matrix Ā = diag(āii) as follows

āii =
{

aii = qii +
∑m

j=1 c2
ijwj/sk if aii > 10−8

1.5 · 10−8 otherwise.
i = 1, ..., n (4.16)

At any step of the PCG scheme, we have to compute the solution of the
system

M̄

(
z1

z2

)
=

(
r1

r2

)
. (4.17)

We can determine the solution of this system in two different ways that
produce a very different performance, especially for large scale problems.
In the first case (IP-PCG1), at the beginning of the PCG method we com-
pute the symmetric positive definite matrix T = BtĀ−1B and its Cholesky
factorization T = LneqL

t
neq; then, taking into account of M̄−1 from (4.14),

the solution of (4.17) can be determined by the following procedure

z1 ← Ā−1r1

z2 ← r2 −Btz1

t2 ← −L−1
neqz2

z2 ← L−T
neqt2

z1 ← z1 − Ā−1Bz2

where t2 is an neq–vector used to store the partial products.
As in the implementation of Hestenes’ method, a preprocess routine can
build a data structure that stores the information needed to compute the
nonzero contribution to each nonzero scalar product. The preprocess routine
can also determine the minimum degree reordering of the matrix T and
its symbolic Cholesky factor. For these last tasks and for computing the
elements of Lneq, we can use the package of Ng and Peyton. With this
approach, the preprocess phase is less expensive than that of the IP method
combined with the Hestenes multipliers’ scheme, even for NLP problems
with equality and box constraints. Indeed, we have to compute the entries
of the matrix T and to solve systems with T as coefficient matrix, whose
size is neq instead of the size n of the matrix A + χBBt, where neq < n.
Now, we discuss the other way to implement the PCG algorithm that avoids
the computation of the matrix–matrix product BtĀ−1B.
We call this second version of the PCG algorithm IP-PCG2.
We observe that the matrix M̄ can be factorized in a Cholesky–like form

Ln+neqDLt
n+neq, (4.18)

96 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

where Ln+neq is a lower triangular matrix with diagonal entries equal to one
and D is a nonsingular diagonal matrix. In order to reduce the fill–in in the
lower triangular factor, we can perform a minimum degree reordering of the
matrix M̄ . But, it is not assured that the symmetrically permuted matrix
PM̄P t can be factorized in the Cholesky–like form.
Nevertheless, we can obtain a factorization in the form (4.18) if we use for
the matrix M̄ the regularization technique described in [1]; in other words,
instead of using the preconditioner M̄ , we compute the factorization of

¯̄M = M̄ +
(

R1 0
0 −R2

)

where R1 and R2 are non negative diagonal matrices such that P ¯̄MP t ad-
mits a factorization of the form (4.18). The computation of R1 and R2 can
be obtained during the factorization procedure. If a pivot di is too small
(|di| < 10−15 maxj<i |dj |), we put di =

√
ε if 1 ≤ i ≤ n, or di = −√ε if

n + 1 ≤ i ≤ n + neq, where ε is the machine precision.
The dynamic computation of the elements of R1 and R2 reduces the pertur-
bation to a minimum. This approach is used in [7] for linear and quadratic
programming problems with equality and box constraints.
The Cholesky–like factorization of ¯̄M can be obtained by a modification
of the Ng and Peyton package. In particular, we modify the subroutine
PCHOL such that we compute Ln+neqDLT

n+neq with diagonal elements of
Ln+neq equal to 1.
Consequently, it is necessary to construct suitable subroutines (MMPYM
and SMXPYM) to update the blocks of the factor Ln+neq, and to modify
the subroutine BLKSVT for the computation of the solution of the system

Ln+neqDLt
n+neqz = r.

The routines for performing the minimum degree reordering, for determin-
ing the supernodes and for the computation of the symbolic factor are un-
changed. Consequently, the effectiveness of the package of Ng and Peyton
due to a suitable use of the cache memory is maintained. This new package,
called BLKFCLT, is downloadable from http://dm.unife.it/blkfclt.

At the iterate k, the termination rule for both the iterative solvers is the
adaptive stopping rule (3.43) which makes the approximate solution of the
system (3.33) an inexact Newton step at the level δk + σk.

4.3. THE NONMONOTONE VERSION 97

4.3 The nonmonotone version

Following the same procedure described in Section 3.4, we can extend the
interior–point method to nonmonotone choices, in the context of the non-
monotone inexact Newton method presented in Section 2.2.5. Indeed, by
allowing the choice of the parameter µk in the interval

µk ∈
[
sk

twk

m
,
‖H(v`(k))‖√

m

]
, (4.19)

if the direction ∆vk computed by approximately solving the system (3.33)
satisfies the condition

‖r̄k‖ ≤ δk‖H(v`(k))‖, (4.20)

then, such direction is a nonmonotone inexact Newton step at the level
δk + σk. Moreover we can also include a nonmonotone backtracking rule

‖H(vk + αk∆vk)‖ ≤ (1− αβ(1− (δk + σk))‖H(v`(k))‖. (4.21)

In summary, we can allow nonmonotone choices on three crucial issues: on
the perturbation parameter, on the inner adaptive stopping criterion and
on the backtracking rule. We observe that the first two choices influence
the direction itself, while a less restrictive backtracking rule allows to retain
larger stepsizes than in the monotone case. The resulting algorithm is a
nonmonotone Newton interior–point algorithm, whose convergence proper-
ties are investigated in the next chapter.

98 CHAPTER 4. DESCRIPTION OF THE ALGORITHM

Chapter 5

Convergence analysis

In this chapter we state the convergence theorems for the Algorithm 4.1.
The hypotheses under which the convergence is proved, are quite similar to
the one in [35], but here the convergence properties of the inexact Newton
methods can be exploited in the proof. The line of the proof is the following:
supposing that the sequence {H(vk)}, where the iterates vk are generated
by the Algorithm 4.1, is bounded away from zero yields a contradiction.
Before the convergence result, under the hypotheses made, we prove the
boundedness of the sequence {vk}. Furthermore, we show that, supposing
that {H(vk)} is bounded away from zero, then {∆vk} is bounded, and the
damping parameter, after the reductions due to the feasibility requirement,
to the centrality conditions and to the backtracking technique, is uniformly
bounded away from zero. This is crucial in order to apply the inexact
Newton theory in this context.
Finally, a slightly modification of the hypotheses and of the proof allows us
to prove the convergence also in the nonmonotone case.

5.1 Convergence theorems

First of all we define a subset of Rn+neq+2m which contains all the iterates
of the sequence generated by the Algorithm 4.1.
Given ε ≥ 0, we define the set Ω(ε) as follows:

Ω(ε) = {v : 0 ≤ ε ≤ ‖H(v)‖2 ≤ ‖H(v0)‖2, s. t. (3.21) and (3.22) hold}.
(5.1)

The set Ω(ε) is a closed set.
Indeed, let v∗ be an accumulation point of the sequence {vk}, where vk ∈

99

100 CHAPTER 5. CONVERGENCE ANALYSIS

Ω(ε). The definition of continuity of Φ(v) = ‖H(v)‖2 implies that

lim
k→∞

Φ(vk) = Φ(lim
k→∞

vk) = Φ(v∗)

and since Φ(vk) ≤ Φ(vk) for all k, we have that

lim
k→∞

Φ(vk) ≤ lim
k→∞

Φ(v0)

i.e. Φ(v∗) ≤ Φ(v0).
Analogously, we have

lim
k→∞

mini=1,...,m(SkWkem)
(st

kwk)/m
=

mini=1,...,m(S∗W∗em)
(st∗w∗)/m

≥ τ1

2

and

lim
k→∞

st
kwk

‖H1(vk)‖ =
st∗w∗

‖H1(v∗)‖ ≥
τ2

2

thus, v∗ is a point of Ω(ε).

Moreover it is straightforward to observe that vk ∈ Ω(0), since the back-
tracking condition (3.44) yields

‖H(vk)‖ ≤ ‖H(v0)‖.

Let assume that the following conditions hold ([31], see also [35]):

C1 in Ω(0), f(x), g1(x), g2(x) are twice continuously differentiable; the
gradients of the equality constraints are linearly independent and H ′

1(v)
is Lipschitz continuous;

C2 the sequences {xk} and {wk} are bounded;

C3 in any compact subset of Ω(0) where s is bounded away from zero, the
matrix H ′(v) is nonsingular.

In general, in literature, the condition C3 is replaced by a sufficient con-
dition to assure that, at each iterate k, there exists a unique solution of
the perturbed Newton equation, for example the conditions C3’ or C3” in
Section 3.3.1.
The boundedness of the sequence {xk} can be assured by enforcing box
constraints −li ≤ (xk)i ≤ li for sufficiently large li > 0, i = 1, ..., n.

5.1. CONVERGENCE THEOREMS 101

Theorem 5.1 Let {vk} be a sequence generated by the Algorithm 4.1 and
assume that the hypotheses C1, C2 and C3 hold. Then, the sequences {λk}
and {sk} are bounded.

Proof.
From the assumptions C1 and C2 and from the definition of the vector
H(vk), at each iteration k we have

‖Lx(xk, λk, wk, sk)‖ = ‖∇f(xk) + Bkλk + Ckwk‖ ≤ ‖H(vk)‖ ≤ ‖H(v0)‖,

where Bk and Ck indicate the matrix C and B defined in (3.25) evaluated
in xk. Then, since Bk is a full column–rank matrix, we can write

λk = (Bt
kBk)−1Bt

k(−∇f(xk)− Ckwk + L§k)

and for C1 and C2 the sequence {λk} is bounded.
Furthermore,

‖sk‖ ≤ ‖sk − g2(xk)‖+ ‖g2(xk)‖
≤ ‖H(vk)‖+ ‖g2(xk)‖.

Then the sequence {sk} is bounded. ¤

The previous theorem shows that, if the hypotheses C1 and C3 hold, then the
hypothesis C2 is sufficient to ensure the boundedness of the whole sequence
{vk}.
The next theorem claims that, if the sequence ‖H(vk)‖ is bounded away
from zero, then the sequences {sk} and {wk} are componentwise bounded
away form zero, the norm of the inverse of the jacobian matrix and also the
sequence {‖∆vk‖} are bounded.

Theorem 5.2 If the sequence {vk} ∈ Ω(ε), with ε > 0, then

(a) st
kwk, (sk)i(wk)i, i = 1, . . . m, are bounded above and below away from

zero for any k ≥ 0; ‖H1(vk)‖ is bounded above for any k ≥ 0;

(b) if C1 and C2 hold, sk and wk are componentwise bounded away from
zero;

(c) if C1, C2 and C3 hold, then the sequence of matrices {H ′(vk)−1} is
bounded;

(d) if C1, C2 and C3 hold, then the sequence {∆vk} is bounded.

102 CHAPTER 5. CONVERGENCE ANALYSIS

Proof.
(a) The above boundedness of (sk)i(wk)i, i = 1, . . . , m, and st

kwk follows
from the inequality

(sk)i(wk)i ≤ st
kwk = ‖SkWkem‖1 ≤

√
m‖SkWkem‖

=
√

m‖H(vk)‖ ≤
√

m‖H(v0)‖. (5.2)

Furthermore in Ω(ε), ε > 0, from (3.21) and (3.22), we have (sk)i(wk)i > 0
for any k ≥ 0 and i = 1, . . . , m. From the inequality

ε ≤ ‖H(vk)‖ ≤ ‖H1(vk)‖+ ‖SkWkem‖
≤ (st

kwk)/(γkτ2) + ‖SkWkem‖1

= (1 + 1/(γkτ2))st
kwk, (5.3)

it follows that, for k ≥ 0 and i = 1, . . . ,m,

st
kwk ≥ ετ2/(τ2 + 2), (5.4)

and, from (3.21),

(sk)i(wk)i ≥ ετ1τ2/(2m(τ2 + 2)). (5.5)

Finally,
‖H1(vk)‖ ≤ ‖H(vk)‖ ≤ ‖H(v0)‖.

(b)Since (sk)i(wk)i are bounded below away from zero and sk is bounded
above for the previous theorem, for any k, it follows that wk is bounded
below away from zero. Analogously, for the same argument, sk is bounded
away from zero.
(c) Rearranging the rows and the columns of the matrix H ′(vk), we obtain
the following matrix

Wk Sk 0 0
I 0 Ck

T 0
0 Ck Qk Bk

0 0 Bt
k 0

 . (5.6)

Since sk and wk are bounded above and componentwise below away from 0,
the matrix (5.6) can be factorized in the form LkUk, where Lk is the matrix

I 0 0 0
W−1

k I 0 0
0 −CkE−1

k I 0
0 0 0 I

 , (5.7)

5.1. CONVERGENCE THEOREMS 103

and Uk is the matrix

Wk Sk 0 0
0 −Ek Ct

k 0
0 0 Fk Bk

0 0 Bt
k 0

 , (5.8)

with Ek = W−1
k Sk and Fk = Qk + CkE

−1
k Ct

k. Since Lk and H ′(vk) are non-
singular bounded matrices, the block triangular matrix Uk is a nonsingular
matrix with nonsingular and bounded diagonal blocks. The inverse of the
matrix H ′(vk) is given by U−1

k L−1
k . Since all the blocks of the matrices U−1

k

and L−1
k are bounded, then H ′(vk)−1 is also bounded in Ω(ε), ε > 0, i.e.

‖H ′(vk)−1‖ ≤ M̄, (5.9)

for vk ∈ Ω(ε), ε > 0 and for k ≥ 0, with M̄ a positive scalar.
(d) Since (3.40), ∆vk has the following form

∆vk = H ′(vk)−1(−H(vk) + rk + σkµkẽ). (5.10)

From (5.9), (5.1), (3.38) and (3.43), we have that

‖∆vk‖ ≤ M̄(1 + δk + σk)‖H(v0)‖ < 2M̄‖H(v0)‖,

because δk + σk ≤ δmax + σmax < 1. Then the proof is completed. ¤
In the following, we analyze the three steps for the computation of the
damping parameter αk in the algorithm 4.1, the reduction for the feasibility,
for the centrality conditions and for the sufficient decrease of the merit
function and we show that it is uniformly bounded away from zero in Ω(ε).
If we call α

(1)
k the value of the damping parameter after the reduction needed

for the feasibility of the iterate, it is easy to see that α
(1)
k is bounded away

from zero in Ω(ε), with ε > 0, i.e. α
(1)
k ≥ α(1) > 0, since we set

α
(1)
k = min

{
min

(∆sk)i<0

−(sk)i

(∆sk)i
, min
(∆wk)i<0

−(wk)i

(∆wk)i
, 1

}
,

where, for any iteration k, (sk)i and (wk)i are bounded away from zero and
(∆sk)i and (∆wk)i are bounded in Ω(ε). with ε > 0.
Now, we analyze the damping parameter after the reduction for the central-
ity conditions; the following theorem (see [39]) shows that, if the current

104 CHAPTER 5. CONVERGENCE ANALYSIS

iterate satisfies the centrality conditions and the direction satisfies the in-
exact residual condition (3.43), then there exist two positive numbers α̂

(2)
k

and α̌
(2)
k such that the centrality functions f I

k (α) and f II
k (α), defined as

f I(vk +α∆vk) and f II(vk +α∆vk) defined as in (3.19) and (3.20) for v = vk

and ∆v = ∆vk, are nonnegative for α ∈ (0, α̂
(2)
k] and for α ∈ (0, α̌

(2)
k] respec-

tively.

Theorem 5.3 Let {vk} be a sequence generated by the Algorithm 4.1; let
us also assume σk ∈ [σmin, σmax] ⊂ (0, 1) and δk ∈ [0, δmax] ⊂ [0, 1), and

σk > δk(1 + γkτ2) (5.11)

Then, if f I
k (0) ≥ 0, there exists a positive number α̂

(2)
k > 0, such that

f I
k (α) ≥ 0 for all α ∈ (0, α̂(2)

k].
Then, if f II(0) ≥ 0, there exists a positive number α̌

(2)
k > 0, such that

f II
k (α) ≥ 0 for all α ∈ (0, α̌

(2)
k].

Proof. Set

(Nk)i = |(∆sk)i(∆wk)i − γkτ1

m
∆st

k∆wk| i = 1, ...,m.

The fourth block equations of the perturbed Newton equation in componen-
twise is

(sk)i(∆wk)i + (wk)i(∆sk)i = −(sk)i(wk)i + σkµk. (5.12)

Summing for any i = 1, ...,m, we have

st
k∆wk + wt

k∆sk = −st
kwk + mσkµk. (5.13)

Thus, for α ∈ (0, 1], we can define the following quantities by

(f I
k (α))i = ((sk)i + α(∆sk)i) ((wk)i + α(∆wk)i)−

−τ1γk

m
(sk + α∆sk)t(wk + α∆wk).

By easy computation and by using (5.12) and (5.13), we can deduce

(f I
k (α))i = (1− α)

[
(sk)i(wk)i − τ1γk

m
st

kwk

]
+ ασkµk(1− τ1γk) +

+α2
(
(∆sk)i(∆wk)i − τ1γk

m
∆st

k∆wk

)
.

Hence,

(f I
k (α))i = (1− α)(f I

k (0))i + ασkµk(1− τ1γk) +

+α2
(
(∆sk)i(∆wk)i − τ1γk

m
∆sk

t∆wk

)
. (5.14)

5.1. CONVERGENCE THEOREMS 105

Since f I
k (0) ≥ 0, we have (f I

k (0))i ≥ 0. Then

(1− α)(f I
k (0))i = (f I

k (α))i − ασkµk(1− τ1γk)−
−α2

(
(∆sk)i(∆wk)i − τ1γk

m
∆sk

t∆wk

)
.

Thus

(f I
k (α))i ≥ ασkµk(1− τ1γk) + α2

(
(∆sk)i(∆wk)i − τ1γk

m
∆sk

t∆wk

)

≥ ασkµk(1− τ1γk)− α2(Nk)i.

Set Nk = maxi=1,...,m(Nk)i; for any α such that

α ≥ ((1− τ1γk)σkµk) /Nk > 0, (5.15)

we have f I
k (α) ≥ 0. Thus we define

α̂
(2)
k = max

α∈(0,1]
{α : f I

k (t) ≥ 0, ∀t ≤ α}.

We prove now the second part of the theorem.
By assumptions C1, we have that H ′

1(v) is Lipschitz continuous with Lips-
chitz constant Γ.
Set

Mk =
∣∣∣∣∆st

k∆wk − γkτ2
Γ
2
‖∆vk‖2

∣∣∣∣
and let r̄k be the vector composed by the first three block components of
the vector rk defined in (3.40) and (3.43). By the mean value theorem for
vector valued functions (e.g. see [26, p.74]), we can write for α ∈ (0, 1]

H1(vk + α∆vk) = H1(vk) + αH ′
1(vk)∆vk +

+α

(∫ 1

0

(H ′
1(vk + ξα∆vk)−H ′

1(vk)) dξ

)
∆vk

= (1− α)H1(vk) + αr̄k + (5.16)

+α

(∫ 1

0

(H ′
1(vk + ξα∆vk)−H ′

1(vk)) dξ

)
∆vk.

From the Lipschitz continuity for the derivative of H1(v), we obtain

‖H1(vk + α∆vk)‖ ≤ (1− α)‖H1(vk)‖+ α‖r̄k‖+

+α

(∫ 1

0

Γ‖ξα∆vk‖dξ

)
‖∆vk‖,

or, by (3.43)

‖H1(vk + α∆vk)‖ ≤ (1− α)‖H1(vk)‖+ αδk‖H(vk)‖+
Γ
2

α2‖∆vk‖2. (5.17)

106 CHAPTER 5. CONVERGENCE ANALYSIS

From the definition of f II
k (α) and by using (5.13), we have that

f II
k (α) = st

kwk + α(−st
kwk + σkµkm) +

+α2∆sk
t∆wk − γkτ2‖H1(vk + α∆vk)‖.

If we multiply (5.17) by −γkτ1, changing the sign, then we have a lower
bound of −γkτ2‖H1(vk + α∆vk)‖ that gives

f II
k (α) ≥ (1− α)f II

k (0) + α(σkµkm− γkτ2δk‖H(vk)‖) +

+α2(∆st
k∆wk − γkτ2

Γ
2
‖∆vk‖2).

Then, by the hypothesis f II
k (0) ≥ 0, µk ≥ st

kwk

m and (5.3), we obtain

f II
k (α) ≥ α((

σk

1 + γkτ2
− δk)γkτ2‖H(vk)‖ − αMk).

If condition (5.11) holds, then for any α such that

α ≥ ((
σk

1 + γkτ2
− δk)γkτ2‖H(vk)‖/Mk > 0, (5.18)

we have f II
k (α) ≥ 0. Thus we define

α̌
(2)
k = max

α∈(0,1]
{α : f II

k (t) ≥ 0, ∀t ≤ α}.

This completes the proof. ¤

Let us define
α̃k = min{α̂(2)

k , α̌
(2)
k , 1} ∈ (0, 1];

then, under the hypotheses of Theorem 5.2, Nk and Mk are uniformly
bounded in Ω(ε) and

α̃k ≥ α̃ > 0.

Consequently, we have

α
(2)
k ≡ min{α̃k, α

(1)
k } ≥ α(2) ≡ min{α̃, α(1)} > 0.

To select the final value of the damping parameter at the iteration k, we
perform the backtracking technique described in [33] until an acceptable

αk = θt̄α
(2)
k

5.1. CONVERGENCE THEOREMS 107

is found, where t̄ is the smallest nonnegative integer such that αk satisfies
the backtracking condition

‖H(vk + αk∆vk)‖ ≤ (1− βαk(1− (σk + δk))) ‖H(vk)‖ (5.19)

with θ, β ∈ (0, 1).
We have to prove now that t̄ is a finite number independent on k.

Theorem 5.4 Under the hypotheses of Theorems 5.2 and 5.3, the back-
tracking procedure terminates in a finite number of steps.

Proof. From (5.12), (5.16), (3.34) and (3.35), we have, for α ∈ (0, 1] and
for i = 1, ..., m:

((sk)i + α(∆sk)i)((wk)i + α(∆wk)i) = (sk)i(wk)i + α(−(sk)i(wk)i + σkµk) +
+α2(∆sk)i(∆wk)i

and

H1(vk + α∆vk) = (1− α)H1(vk) + αr̄k +

+α

(∫ 1

0

(H ′
1(vk + ξα∆vk)−H ′

1(vk)) dξ

)
∆vk.

We can write

H(vk + α∆vk) =
(

H1(vk + α∆vk)
(Sk + α∆Sk)(Wk + α∆Wk)

)

= (1− α)
(

H1(vk)
SkWkem

)
+ α

(
r̄k

0

)
+ α

(
0

σkµkem

)
+

+α

((∫ 1

0
(H ′

1(vk + ξα∆vk)−H ′
1(vk)dξ

)
∆vk

0

)
+

+α2

(
0

∆Sk∆Wkem

)
.

Thus

‖H(vk + α∆vk)‖ ≤ (1− α)‖H(vk)‖+ α‖rk‖+ ασkµk‖em‖+

+α‖∆vk‖
∫ 1

0

‖H ′
1(vk + ξα∆vk)−H ′

1(vk)‖dξ +

+α2‖∆Sk∆Wkem‖.
From the Lipschitz continuity for the derivative of H1(v), from (3.43), we
have

‖H(vk + α∆vk)‖ ≤ (1− α)‖H(vk)‖+ α(σk + δk)‖H(vk)‖+

+α2(‖∆Sk∆Wkem‖+
Γ
2
‖∆vk‖2).

108 CHAPTER 5. CONVERGENCE ANALYSIS

Therefore, we can affirm that

(1− βα(1− (σk + δk)))‖H(vk)‖ − ‖H(vk + α∆vk)‖ ≥

≥ (1− β)α(1− (σk + δk))‖H(vk)‖ − α2(1 + Γ
2)‖∆vk‖2)

is nonnegative for α ∈ (0, α̂] with

α̂ =
(1− β)(1− (σk + δk))‖H(vk)‖

(1 + Γ
2)‖∆vk‖2

> 0

Since α̂ is bounded away from zero in Ω(ε), ε > 0, it is possible to find
a nonnegative integer t̄ such that 0 < θt̄α

(2)
k ≤ min{α̂, 1}; then the value

αk = θt̄α
(2)
k is bounded below by a strictly positive number, say ᾰ.

This completes the proof. ¤
Set ᾱ = min{α(2), ᾰ}, we observe that, since

(1− βαk(1− (σk + δk))) ≤ (1− βᾱ(1− (σmax + δmax))) < 1,

inequality (5.19) asserts that

‖H(vk+1)‖ < ‖H(vk)‖. (5.20)

We prove now the following result (see [39]) which shows that the strict
feasibility of the initial vectors s0 > 0 and w0 > 0 is sufficient to guarantee
the positivity of the centrality functions f I(α) and f II(α) at each iterate k.

Proposition 5.1 Let f I(α) and f II(α) be the centrality functions defined
in (3.19) and (3.20); set

τ1 =
mini=1,m (S0W0em)

(st
0w0

m)
; τ2 =

st
0w0

‖H1(v0)‖

and let be given a sequence of parameters {γk} with

1 > γ0 ≥ γ1 ≥ ... ≥ γk ≥ γk+1 ≥ ... ≥ 1
2
.

If s0 > 0, w0 > 0, then

f I
k (α) ≥ 0 for all α ∈ (0, α̂

(2)
k]

f II
k (α) ≥ 0 for all α ∈ (0, α̌

(2)
k]

for any k = 0, 1, ...

5.1. CONVERGENCE THEOREMS 109

Proof. For k = 0, the definitions of τ1 and τ2 give

f I
0 (0) = (1− γ0)min

i
(S0W0em) > 0

f II
0 (0) = (1− γ0)st

0w0 > 0.

Theorem (5.4) assures that there exist α̂
(2)
0 > 0 and α̌

(2)
0 > 0 such that

f I
0 (α) ≥ 0 for all α ∈ (0, α̂

(2)
0]

f II
0 (α) ≥ 0 for all α ∈ (0, α̌

(2)
0].

Thus, we have f I
0 (α0) ≥ 0 and f II

0 (α0) ≥ 0, where α0 is the final value of
the damping parameter obtained after the backtracking procedure.
For k = 1, the centrality functions are

f I
1 (α) = min

i=1,...,m
(S1(α)W1(α)em)− γ1τ1

(
s1(α)tw1(α)

m

)

f II
1 (α) = s1(α)tw1(α)− γ1τ2‖H1(v1(α))‖,

where s1(α) = s1 + α∆s1, w1(α) = w1 + α∆w1 and v1(α) = v1 + α∆v1.
We have

f I
1 (0) = min

i=1,...,m
(S1W1em)− γ1τ1

(
st
1w1

m

)

f II
1 (0) = st

1w1 − γ1τ2‖H1(v1)‖.
Since

f I
0 (α0) = min

i=1,...,m
(S1W1em)− γ0τ1

(
st
1w1

m

)
≥ 0

f II
0 (α0) = st

1w1 − γ0τ2‖H1(v1)‖ ≥ 0

and γ1 ≤ γ0, we have

f I
1 (0) ≥ f I

0 (α0) ≥ 0 and f II
1 (0) ≥ f II

0 (α0) ≥ 0.

Thus, Theorem 5.4 assures that there exist α̂
(2)
1 > 0 and α̌

(2)
1 > 0 such that

f I
1 (α) ≥ 0 for all α ∈ (0, α̂

(2)
1]

f II
1 (α) ≥ 0 for all α ∈ (0, α̌

(2)
1].

Hence, we have f I
1 (α1) ≥ 0 and f II

1 (α1) ≥ 0, where α1 is the step–length
obtained after the execution of the backtracking procedure.

110 CHAPTER 5. CONVERGENCE ANALYSIS

Thus, in the next steps (k = 2, 3, ...) of the process we have

f I
k (0) ≥ f I

k−1(αk−1) ≥ 0 and f II
k (0) ≥ f II

k−1(αk−1) ≥ 0.

This completes the proof. ¤

Theorem 5.5 Under the hypotheses C1, C2 and C3, the Newton IP Algo-
rithm 4.1, with tol = 0, generates a sequence {vk} such that:

(a) the sequence {‖H(vk)‖} converges to zero and each limit point of the
sequence {vk} satisfies the KKT conditions for (??); furthermore, if v∗
is a limit point of the sequence {vk} such that H ′(v∗) is nonsingular,
then vk converges to v∗ when k diverges;

(b) if the sequence {vk} converges to v∗ with H ′(v∗) nonsingular matrix,
σk = O(‖H(vk)‖ξ), 0 < ξ < 1, and δk = O(‖H(vk)‖), then there
exists an index k̄ such that αk = 1 for k ≥ k̄. Thus, the Newton IP
algorithm has a superlinear local convergence rate.

Proof.
Part (a) (see [32, Theor. 3.1]). The algorithm 4.1 generates a sequence
{‖H(vk)‖} which is monotone nonincreasing, and bounded. Consequently,
this sequence has limit, say, H∗ ≥ 0. If H∗ = 0, we have the result. Suppose
that H∗ > 0, then the sequence {vk} and its limit points belong to Ω(ε),
with ε = (H∗)2. If v∗ is one this limit points, we have that H ′(v∗) is a
nonsingular matrix, then from theorem 2.8 ([33, Theor. 6.1]), we deduce
that H(v∗) = 0. This contradicts the assumption that H∗ > 0. Hence, the
sequence {‖H(vk)‖} must converge to zero.
Furthermore, if v∗ is a limit point of the sequence {vk} such that H ′(v∗) is
nonsingular, the same theorem also guarantees that vk converges to v∗ when
k diverges.
Part (b) (see [30]). From (3.34), (3.35 and (3.43), (3.38), we have

‖∆vk‖ ≤ ‖H ′(vk)
−1‖(1 + σk + δk)‖H(vk)‖

where H ′(vk)
−1 is a bounded matrix, then, for k ≥ k̄, we have, ‖∆sk‖ =

O(‖H(vk)‖) and ‖∆wk‖ = O(‖H(vk)‖). Then, for k sufficiently large, the
conditions (3.21) and (3.22) are satisfied for α

(2)
k = 1. Indeed, for k suffi-

ciently large, (∆sk)i < 0 and (∆wk)i < 0 are negligible with respect (sk)i

and (wk)i and then α
(1)
k = 1.

5.1. CONVERGENCE THEOREMS 111

Furthermore, from the definition of (f I
k (α))i and (5.14), we observe that

(f I
k (1))i = (sk)i(1)(wk)i(1)− (γkτ1/m)sk(1)twk(1)

≥ σkµk(1− τ1γk)− (1 + τ1γk/m)‖∆sk‖‖∆wk‖.

Since, from (3.38) and (5.3), we have

‖H(vk)‖/((1 + 1/(γkτ2))m) ≤ µk ≤ ‖H(vk)‖/√m,

then µk = O(‖H(vk)‖) and σkµk = O(‖H(vk)‖ξ+1), while ‖∆sk‖‖∆λk‖ =
O(‖H(vk)‖2). Hence the criterion (3.21) is satisfied for α̂

(2)
k = 1, with k

sufficiently large.
As far as the criterion (3.22) is concerned,

f II
k (1) = sk(1)twk(1)− τ2‖H1(vk(1))‖

≥ mσkµk − (γkτ2δk‖H(vk)‖+ (1 + γkτ2)‖∆vk‖2),

so, for sufficiently large k, α̌
(2)
k = 1 satisfies (3.22).

Then α
(2)
k = min

(
α

(1)
k , α̂

(2)
k , α̌

(2)
k , 1

)
= 1.

Now we prove that the backtracking procedure determines αk = 1 for suffi-
ciently large k.

‖H(vk(1))‖ = ‖H(vk + ∆vk)‖,
≤ ‖H(vk + ∆vk)− (H(vk) + H ′(vk)∆vk)‖

+ ‖H(vk) + H ′(vk)∆vk‖.

For the Lemma 2.2 in [25] (see also the footnote in p. 403) and from the
residual condition (2.30) with forcing term ηk = σk + δk, it follows that

‖H(vk(1))‖ ≤ o(‖∆vk‖) + (δk + σk)‖H(vk)‖
= o(‖H(vk)‖) + (δk + σk)‖H(vk)‖.

Hence, we have

(1− β(1−(δk + σk)))‖H(vk)‖ − ‖H(vk(1))‖
≥ (1− β)(1− (δk + σk))‖H(vk)‖ − o(‖H(vk)‖)
= (1− β)‖H(vk)‖ − (1− β)(δk + σk)‖H(vk)‖ − o(‖H(vk)‖)
= (1− β)‖H(vk)‖ − (O(‖H(vk)‖1+ξ) +O(‖H(vk)‖2))− o(‖H(vk)‖)
≥ 0.

112 CHAPTER 5. CONVERGENCE ANALYSIS

Then, there exists an index k̄ ≥ 0 such that αk = 1 for all k ≥ k̄. It follows
that

ηk = 1− αk(1− (δk + σk)) = δk + σk, for k ≥ k̄,

and then, from Corollary 3.5(a) in [25], the sequence {vk} converges to v∗
superlinearly. ¤

5.2 Convergence in the nonmonotone case

The convergence in the nonmonotone case, presented in Section 4.3, can be
proved in a very similar way as in the previous section. However, we need a
stronger hypothesis on the jacobian matrix H ′(vk). More precisely, instead
of C3, we will assume

C3”’ in any compact subset of Ω(0) the matrix H ′(v) is nonsingular.

Furthermore, we observe that Theorem 5.1 holds also in this case: in-
deed, the inequalities employed in the proof depend only on the property
‖H(vk)‖ ≤ ‖H(v0)‖, which holds also in the nonmonotone case. From this
remark, it follows that the iterates generated by the Algorithm 4.1 with
nonmonotone choices belong to the set Ω(0) defined in the previous section.
Furthermore, we can prove the boundedness of the sequence ‖∆vk‖ in Ω(0),
as claimed in the following theorem.

Theorem 5.6 Assume that the hypotheses C1, C2 and C3”’ hold. Then
the sequence ‖∆vk‖, where the sequence {vk} is generated by the Algorithm
4.1 with the nonmonotone choices described in Section 4.3, is bounded in
Ω(0).

Proof.
Since the sequence {vk} is bounded, then the matrix H ′(vk) is nonsingular
which means that its inverse H ′(vk)−1 exists for any k. From the hypothesis
C1, H ′(v) is a continuous function from Rn into Rn×n. Hence, also H ′(v)−1

and ‖H ′(v)−1‖ are continuous functions, and there exists a positive number
M̄ such that ‖H ′(vk)−1‖ ≤ M for each k.
Then the result follows by employing the same arguments as in the part (d)
of theorem 5.2. ¤.

We observe that Theorem 5.3 holds also in the nonmonotone case, and in
Ω(ε) with ε > 0 the damping parameter after the reduction due to the
feasibility requirement and the centrality conditions is uniformly bounded
away from zero. This property allows us to use the theorems in section 4.3
in the following convergence theorem ([12]).

5.2. CONVERGENCE IN THE NONMONOTONE CASE 113

Theorem 5.7 Let {vk} be the sequence generated by the algorithm 4.1
with the nonmonotone choices described in section 4.3. Then

(a) if v∗ is a limit point of the sequence {vk} such that H ′(v∗) is nonsin-
gular, then H(v∗) = 0;

(b) if v∗ is a limit point of the sequence {vk} such that H ′(v∗) is nonsin-
gular, then limk→∞ ‖H(vk)‖ = 0 and {vk} converges to v∗.

(c) if the sequence {vk} converges to v∗ with H ′(v∗) nonsingular matrix,
σk = O(‖H(vk)‖ξ), 0 < ξ < 1, and δk = O(‖H(vk)‖), than there exists
an index k̄ such that αk = 1 for k ≥ k̄. Thus, the nonmonotone IP
method has a superlinear local convergence rate.

Proof.
(a) Suppose that H(v∗) = H∗ > 0. Then we have that

lim
k→∞

‖H(v`(k))‖ = L ≥ H∗ > 0.

By employing the same arguments as in the proof of Theorem 2.13, we obtain
that v∗ is a limit point also of the sequence v`(k)−1 and that the damping
parameter α`(k)−1 converges to zero as k diverges.
Since L > 0, then v`(k)−1 ∈ Ω(ε), for some ε > 0, hence Theorem 5.3
imply that the damping parameter after the reduction due to the feasibility
requirement and to the centrality conditions is uniformly bounded away
from zero. This result together with Corollary 2.1 gives the contradiction.
Thus we necessarily have H(v∗) = 0.
(b) Suppose that

lim
k→∞

‖H(v`(k))‖ = L > 0. (5.21)

The boundedness of the sequence {vk} guarantees that there exists a limit
point v∗ of the sequence v`(k). Thus (5.21) implies that the iterates vk and
the limit point v∗ belong to Ω(ε) with ε > 0.
From the hypotheses made, if v∗ ∈ Ω(ε) then H ′(v∗) is nonsingular and the
part (a) of the theorem claims that H(v∗) = 0, which is a contradiction.
Thus we must have L = 0, which guarantees lim ‖H(vk)‖ = 0.
Now, the result follows from Theorem 2.11.
(c) If we suppose that {vk} converges to v∗, then we have that limk→∞ ‖H`(k)‖ =
lim ‖H(vk)‖ = 0. Thus the result follows by the part (c) of Theorem 5.5. ¤

114 CHAPTER 5. CONVERGENCE ANALYSIS

5.3 A global convergence failure

It is well known in literature that in the following simple example in R,
many algorithm with global convergence properties fails to converge:

min x1

s.t. x1 − 1 ≥ 0
x1 − 0.5. ≥ 0

By introducing the slack variables on the inequality constraints, we obtain
the following equivalent formulation in R3

min x1

s.t. x1 − x2 − 1 ≥ 0
x1 − x3 − 0.5 ≥ 0
x2, x3 ≥ 0.

(5.22)

The unique solution of (5.22) is the point (x1, x2, x3)t = (1, 0, 0.5)t, but
starting from the feasible point ((x0)1.(x0)2, (x0)3) = (−2, 3, 1) the algo-
rithm 4.1 does not converge. It has been proved in [72] that any method
which uses a search direction satisfying the linearization of the constraints
fails on this test problem, for all the feasible initial points with (x0)1 < 0.
The resulting sequence is plotted in figure 5.3. In this case, the vector H(v)
has the following form:

H(v) =

1− 2w1x1 − w2

x2
1 − x2 − 1

x1 − x3 − 0.5
x2w1

x3w2

(5.23)

where w1 and w2 are the multipliers of the inequality constraints. It can
be observed that there exist two solutions of the system H(v) = 0: v∗ =
(1, 0, 0.5, 0.5, 0)t, which is the minimum point with its corresponding multi-
pliers, and v∗∗ = (−1, 0,−1.5,−0.5, 0)t, which is not a KKT point. The
Newton’s method applied to the system H(v) = 0 with starting point
v0 = (−2, 3, 1, 1, 1)t is attracted by the solution v∗∗. This remark suggests
that the Newton direction, starting from a point sufficiently close to v∗∗,
leads to the point v∗∗ and a line–search procedure with every merit func-
tion, will not modify such behaviour, as also confirmed by the failure of
LOQO.

5.3. A GLOBAL CONVERGENCE FAILURE 115

1 2 3 4 5 6 7 8 9 10 11 12
−2

−1.5

−1

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12
0

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
2

10
4

x
1

x
2

x
3

k

w
2

105

w
1

Figure 5.1: The sequence {vk} generated by the Algorithm 4.1 in the
Wächter-Biegler counterexample

A positive result on this example is given by some algorithms implement-
ing a trust–region strategy, for example the one presented in [5], or a filter
strategy (see [38] and [73]).
Another possibility is to compute a suitable starting point by means of a
procedure to be executed before the Newton interior–point iterations and
we choose to perform such preprocess procedure by executing some steps of
the projected gradient method, implemented as follows.

• For k = 0, 1, 2, ...

– Compute ∆vk = −H ′(vk)tH(vk)

– Set

xk+1 = xk + ∆xk

λk+1 = λk + ∆λk

(sk+1)i = max{(sk)i + (∆sk)i, ε} i = 1, · · · ,m
(wk+1)i = max{(wk)i + (∆wk)i, ε} i = 1, · · · ,m

(5.24)

– Set gk = vk+1 − vk and αk = 1

– While ‖H(vk+1)‖2 > ‖H(vk)‖2 − βα∆vt
kgk

116 CHAPTER 5. CONVERGENCE ANALYSIS

0 2 4 6 8 10 12 14 16
−2

0

2

0 2 4 6 8 10 12 14 16
0

2

4

0 2 4 6 8 10 12 14 16
0

0.5

1

0 2 4 6 8 10 12 14 16
0

0.5

1

0 2 4 6 8 10 12 14 16
0

1

2

x
1

x
2

x
3

w
1

w
2

k

Figure 5.2: Preprocess with the projected gradient: the dotted line refers to
the projected gradient iterations, the solid line to the IP iterations (4.1)

∗ Set αk = αkθ

∗ Set

xk+1 = xk + αk∆xk

λk+1 = λk + αk∆λk

(sk+1)i = max{(sk)i + αk(∆sk)i, ε} i = 1, · · · ,m
(wk+1)i = max{(wk)i + αk(∆wk)i, ε} i = 1, · · · ,m

(5.25)
∗ Set gk = vk+1 − vk

The result obtained by performing 5 steps of the projected gradient method
on the problem H(v) = 0, where H is defined in (5.23), before the IP
iterations, is depicted in figure 5.3. The projected gradient iterations bring
the points vk in the good region and then the IP iterations leads to the
solution v∗.

Chapter 6

Description of the test
problems

In this chapter we analyze the test problems we have considered for the
numerical experience. We dealt with optimal control problems in two di-
mensions with an elliptic state equation and control and state constraints.
The boundary conditions are the Dirichlet or the Neumann conditions and
the control variable is defined either in the boundary (boundary control
problems) or on the whole domain (distributed control).
In the following we analyze the continuous formulation of the problem, re-
porting the necessary optimality conditions. We also derived such optimal-
ity conditions in the unconstrained case of boundary control with Neumann
conditions. Then, we describe the discretization technique and the nonlinear
programming problems arising from such discretization.
We also report the values obtained for the cost functional and the graphs of
the state and control function for a fixed value of the meshsize.

6.1 Elliptic boundary control problems

6.1.1 Optimality condition in a special case: boundary el-
liptic control problem with Neumann boundary condi-
tions

In this section necessary optimality conditions are derived for a special
class of elliptic control problems, where the state variable y is defined on
a bounded set Ω ∈ R2 and the control variable u is only defined on the
boundary Γ = ∂Ω, supposed to be piecewise smooth. The objective func-

117

118 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

tional F : Ω× ∂Ω → R is defined as the following

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γ
g(x, y(x), u(x))dx (6.1)

and the state equation is the following elliptic partial differential equation
with Neumann boundary condition

−∆y(x) + d(x, y(x)) = 0 x ∈ Ω, (6.2)
∂νy(x) = b(x, y(x), u(x)) x ∈ Γ. (6.3)

The functions f : Ω × R → R, g : Γ × R2 → R, d : Ω × R → R, and
b : Γ×R2 → R are assumed to be C2 functions on their respective domains.
Under appropriate assumption on d, it can be proved that the state equation
admits for each u ∈ L∞(Γ) a weak solution y ∈ C(Ω̄) ∩H1(Ω) 1.
Suppose now that ū is a solution of the optimal control problem (6.1)-(6.3)
and ȳ the corresponding state variable, then

∫

Ω

[
−

2∑

i=1

∂ȳ

∂xi

∂q

∂xi
+ d(x, ȳ(x))q(x)

]
dx =

∫

Γ
b(x, ȳ(x), ū(x))q(x)dx (6.4)

holds for each test function q ∈ H1(Ω). Indeed, by multiplying (6.2) by a
test function q(x) ∈ H1(Ω), and by integrating on the domain Ω we obtain

∫

Ω

[
−

2∑

i=1

∂2ȳ

∂x2
i

+ d(x, y(x))

]
q(x)dx = 0

which can be written also as

−
∫

Ω

2∑

i=1

∂(∂ȳ/∂xi)
∂xi

q(x)dx +
∫

Ω
d(x, ȳ(x))q(x)dx = 0

and this implies that

∫

Ω

[
2∑

i=1

∂ȳ

∂xi

∂q

∂xi

]
dx−

∫

Ω

[
2∑

i=1

∂

∂xi

(
q

∂ȳ

∂xi

)]
dx +

∫

Ω
d(x, ȳ(x))q(x)dx = 0.

1We recall that, given a subset X of Rn, L2(X) is the space of square integrable
functions, L∞(X) is the space of the functions which are bounded almost everywhere in
X and H1(X) is the space of the functions of L2(X) with the derivative belonging to
L2(X).

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 119

For the Green theorem we have

∫

Ω

(
∂

∂x1

(
q

∂ȳ

∂x1

)
− ∂

∂x2

(
−q

∂ȳ

∂x2

))
dx =

∫

Γ

(
−q

∂ȳ

∂x2
dx1 + q

∂ȳ

∂x1
dx2

)

=
∫

Γ
q

(
− ∂ȳ

∂x2
dx1 +

∂ȳ

∂x1
dx2

)

=
∫

Γ
q

(
∂ȳ

∂x1
,

∂ȳ

∂x2

)t (
cos γ2

cos γ1

)
ds

where ds is an element of Γ, γ2 and γ1 are the angles between the outward
normal dv to the element of the surface ds and the directions x1 and x2

respectively. This means that

dx1 = −ds cos γ1

dx2 = ds cos γ2.

Then we have from (6.3)

∫

Ω

[
2∑

i=1

∂ȳ

∂xi

∂q

∂xi
+ d(x, ȳ(x))q(x)

]
dx =

∫

Γ
q(x)

∂ȳ

∂ν
dx

=
∫

Γ
q(x) · b(x, ȳ(x), u(x))dx

which implies (6.4).
Therefore, in the solution the objective functional can be written as

F (ȳ, ū) =
∫

Ω
f(x, ȳ(x))dx +

∫

Γ
g(x, ȳ(x), ū(x))dx +

+
∫

Ω

[
2∑

i=1

∂ȳ

∂xi

∂q

∂xi
+ d(x, ȳ(x))q(x)

]
dx−

∫

Γ
b(x, ȳ(x), ū(x))q(x)dx.

Now consider a one–parameter family of controls ū(x) + ah(x) where h ∈
L∞(Γ) and indicate with z(a, x) the corresponding state variable such that
the pair (z(a, x), ū(x) + ah(x)) satisfies the state equation, and assume that
z(·, x) ∈ C1(R).
The evaluation of the objective functional in that pair, for a fixed h, depends

120 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

only on the parameter a:

F (a) =
∫

Ω
f(x, z(a, x))dx +

∫

Γ
g(x, z(a, x), ū(x) + ah(x))dx +

+
∫

Ω

[
2∑

i=1

∂z(a, x)
∂xi

∂q

∂xi
+ d(x, z(a, x))q(x)

]
dx +

−
∫

Γ
b(x, z(a, x), ū(x) + ah(x))q(x)dx.

Since ū is a minimizer control, F (a) assumes its minimum value for a = 0,
hence F ′(0) = 0. Differentiating the previous expression with respect to a
and evaluating in a = 0, the following relation holds:

F ′(0) =
∫

Ω
fy(x, ȳ)zadx +

∫

Γ
[gy(x, ȳ, ū)za + gu(x, ȳ, ū)h]dx +

+
∫

Ω

[
2∑

i=1

∂za

∂xi

∂q

∂xi
+ dy(x, ȳ)zaq(x)

]
dx +

−
∫

Γ
[by(x, ȳ, ū)za + bu(x, ȳ, ū)h]q(x)dx.

If q̄ satisfies the adjoint equation

−∆q̄(x) + dy(x, ȳ(x))q̄ + fy(x, ȳ) = 0 x ∈ Ω, (6.5)
∂ν q̄(x) = by(x, ȳ, ū)q̄ − gy(x, ȳ, ū) x ∈ Γ (6.6)

then
∫

Ω

[
2∑

i=1

∂za

∂xi

∂q

∂xi
+ (dy(x, ȳ)q(x) + fy(x, ȳ)) za

]
dx−

∫

Γ

[by(x, ȳ, ū)−gy(x, ȳ, ū)]zadx = 0.

Consequently

F ′(0) =
∫

Γ
[gu(x, ȳ, ū)− bu(x, ȳ, ū)q̄]hdx

and F ′(0) = 0 for any h if the minimum condition

gu(x, ȳ, ū)− bu(x, ȳ, ū)q̄ = 0 (6.7)

holds. Conditions (6.5)–(6.6) and (6.7) represent the necessary conditions
for the optimal control problem (6.1)-(6.3), in which the function q̄, usually
called adjoint variable, plays for the optimal control problem, the role the
multiplier have in the optimization problem.

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 121

6.1.2 Statement of the problem

Here we consider the class of the constrained optimal control problems,
where the state and the control variable have to satisfy an elliptic state
equation and also some inequality constraint. We consider the following el-
liptic boundary control problem with Neumann boundary conditions: given
a bounded domain Ω ⊂ R2 with piecewise smooth boundary Γ, determine a
boundary control function u ∈ L∞(Γ) which minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γ
g(x, y(x), u(x))dx, (6.8)

subject to the elliptic state equation

−∆y(x) + d(x, y(x)) = 0 for x ∈ Ω, (6.9)

and to the Neumann boundary conditions

∂νy(x) = b(x, y(x), u(x)) for x ∈ Γ. (6.10)

Here ∂ν denotes the derivative in the direction of the outward unit normal ν
of Γ. We also introduce the following control and state inequality constraints

C(x, y(x), u(x)) ≤ 0 x ∈ Γ,
S(x, y(x)) ≤ 0 x ∈ Ω̄.

(6.11)

Here Ω̄ = Ω∪Γ. The functions f : Ω×R→ R, g : Γ×R2 → R, d : Ω×R→ R,
b : Γ × R2 → R, C : Γ × R2 → R, S : Ω̄ × R → R are assumed to be C2

functions.
When the elliptic boundary problem has Dirichlet conditions, the problem
(6.8)–(6.11) becomes: determine a boundary control function u ∈ L∞(Γ)
which minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γ
g(x, u(x))dx, (6.12)

subject to the state equation (6.9), the Dirichlet conditions

y(x) = b(x, u(x)) for x ∈ Γ, (6.13)

and the inequality constraints on control and state

C(x, u(x)) ≤ 0 x ∈ Γ,
S(x, y(x)) ≤ 0 x ∈ Ω.

(6.14)

122 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

Here f : Ω × R → R, g : Γ × R → R, d : Ω × R → R, b : Γ × R → R,
C : Γ× R→ R, S : Ω× R→ R, and f, g, d, b, C, S are C2 functions.
A third version of an elliptic control problem is the following: determine a
boundary control function u ∈ L∞(Γ) which minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γα

g(x, y(x), u(x))dx +
∫

Γβ

K(x, u(x))dx,

(6.15)
where Γ = Γα∪Γβ with disjoint sets Γα, Γβ ⊂ Γ that consist of finitely many
connected components, subject to the state equation (6.9), to the boundary
conditions of Neumann and Dirichlet type:

∂νy(x) = b1(x, y(x), u(x)) for x ∈ Γα, (6.16)
y(x) = b2(x, u(x)) for x ∈ Γβ, (6.17)

and the inequality constraints on control and state

C(x, u(x)) ≤ 0 x ∈ Γ,
S(x, y(x)) ≤ 0 x ∈ Ω.

(6.18)

Here f : Ω × R → R, g : Γα × R2 → R, d : Ω × R → R, K : Γβ × R → R,
b1 : Γα × R2 → R, b2 : Γβ × R → R, C : Γ × R → R, S : Ω × R → R, and
f, g, K, d, b1, b2, C, S are C2 functions.
For the general class of elliptic control problems, the theory of necessary
conditions has not been yet fully developed. First order necessary optimality
conditions for linear elliptic equations−∆y(x)+y(x) = 0 and pure Neumann
conditions may be found in [22], [23], [24]. Problem (6.8)–(6.11) is considered
as a mathematical programming problem in Banach spaces to which the first
order Karush Kuhn Tucker conditions are applicable. For this approach, see
[55].
For Dirichlet boundary conditions, a weak formulation of first order neces-
sary conditions for linear elliptic equations may be found in [9]. Furthermore,
first order conditions are derived in [55] in a purely formal way. This form of
conditions is justified by its analogy in the first order necessary conditions
for the discretized version of elliptic problem.
Also in the case of the problem (6.15)–(6.18), first order conditions are
derived in a purely formal way in [57].

6.1.3 Discretization and optimization formulation

In the application of nonlinear programming techniques to optimal control,
we use a full discretization approach [21], [10], [48], where both the control

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 123

and the state variables are discretized and the integration method is included
as an explicit equality constraint at each gridpoint. This technique leads to
a large scale nonlinear programming problem (NLP) with a sparse structure
of the jacobian of the constraints. We consider the standard situation where
the elliptic operator is the laplacian and Ω = (0, 1)× (0, 1). Given a positive
integer N , we define the stepsize h as

h =
1

N + 1

and we consider the mesh points

xij = (ih, jh), 0 ≤ i, j ≤ N + 1.

In particular, denoting the following subsets of indices as follows

I(Ω) .= {(i, j) : 1 ≤ i, j,≤ N},
I1(Γ) .= {(i, 0) : 1 ≤ i ≤ N},
I2(Γ) .= {(0, j) : 1 ≤ j ≤ N},
I3(Γ) .= {(N + 1, j) : 1 ≤ j ≤ N},
I4(Γ) .= {(i,N + 1) : 1 ≤ i ≤ N},
I(Γ) .= ∪4

k=1Ik(Γ),
I(Ω̄) .= I(Ω) ∪ I(Γ),
I(Γα) .= {(i, j) : xij ∈ Γα},
I(Γβ) = I(Γ)− I(Γα),

we have xij ∈ Ω for (i, j) ∈ I(Ω), xij ∈ Γ for (i, j) ∈ I(Γ), xij ∈ Γα for (i, j) ∈
I(Γα) and xij ∈ Γβ for (i, j) ∈ I(Γβ). As usual, we denote the approxima-
tions of the state and control variables in the mesh points as

y(xij) ≈ yij (i, j) ∈ I(Ω̄),
u(xij) ≈ uij (i, j) ∈ I(Γ).

Now, we define the vector z as the vector whose entries are the approxima-
tions of the control and state variables.
When the Neumann boundary conditions hold, z is given by

z
.=

(
(yij)(i,j)∈I(Ω̄), (uij)(i,j)∈I(Γ)

)
∈ RN2+8N . (6.19)

The laplacian operator ∆y(x) is approximated by using the standard five
points formula for each xij , (i, j) ∈ I(Ω); thus, according to the previous
notation, we have

−∆y(xij) ≈ 1
h2
{4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1}. (6.20)

124 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

The values of the normal derivative, needed for the Neumann boundary
conditions, are approximated in the mesh points by yν

ij/h, where

yν
ij

.=

yi0 − yi1, for j = 0 i = 1, . . . , N
y0j − y1j , for i = 0 j = 1, . . . , N
yN+1,j − yN,j , for i = N + 1 j = 1, . . . , N
yi,N+1 − yi,N , for j = N + 1 i = 1, . . . , N

(6.21)

Then, the discrete form of the elliptic equation and the discrete Neumann
boundary conditions lead to the equality constraints

Gh
ij(z) .= 4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1 + h2d(xij , yij) = 0, (6.22)

for (i, j) ∈ I(Ω) and

Bh
ij(z) .= yν

ij − hb(xij , yij , uij) = 0 for (i, j) ∈ I(Γ). (6.23)

The control and state inequality constraints (6.11) lead to the inequality
constraints on the variable z

Cij(xij , yij , uij) ≤ 0 (i, j) ∈ I(Γ), (6.24)
Sij(xij , yij) ≤ 0 (i, j) ∈ I(Ω̄). (6.25)

When Dirichlet boundary conditions are given, they are included in the
discrete relations

yij = b(xij , uij) for (i, j) ∈ I(Γ). (6.26)

Then, the number of the optimization variables is reduced, so that we define

z
.=

(
(yij)(i,j)∈I(Ω), (uij)(i,j)∈I(Γ)

) ∈ RN2+4N . (6.27)

The equality constraints agree with those in (6.22) where yi0, yiN+1, y0j ,
yN+1j are replaced by b(xi0, ui0), b(xiN+1, uiN+1), b(x0j , u0j), b(xN+1j , uN+1j)
respectively. The control and state inequality constraints (6.14) give rise to
the inequality constraints

Cij(xij , uij) ≤ 0 (i, j) ∈ I(Γ),
Sij(xij , yij) ≤ 0 (i, j) ∈ I(Ω).

(6.28)

When Dirichlet and Neumann boundary conditions are given, these condi-
tions are included in the discrete relations

Bh
ij(z) = yν

ij − hb1(xij , yij , uij) (i, j) ∈ I(Γα), (6.29)
yij = b2(xij , uij) (i, j) ∈ I(Γβ). (6.30)

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 125

Then the number of variables is reduced, so that we define

z
.=

(
(yij)(i,j)∈I(Ω)∪∈I(Γα), (uij)(i,j)∈I(Γ)

) ∈ RN2+τ(N). (6.31)

Here τ(N) is the number of variables related to the meshpoints on the edges
of Γ, where we have to compute yij (meshpoints on Γα) and uij (meshpoints
on Γ). Then, the equality constraints are given by

Gh
ij(z) = 0 (i, j) ∈ I(Ω), (6.32)

Bh
ij(z) = 0 (i, j) ∈ I(Γα). (6.33)

The control and state inequality constraints agree with those in (6.28).
The approximations of the functionals (6.8), (6.12) and (6.15) are obtained
by the rectangular rule and they are given by

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij) + h
∑

(i,j)∈I(Γ)

g(xij , yij , uij) (6.34)

for Neumann boundary conditions, by

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij) + h
∑

(i,j)∈I(Γ)

g(xij , uij) (6.35)

for Dirichlet boundary conditions, or by

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij) + h
∑

(i,j)∈I(Γα)

g(xij , yij , uij) +

+ h
∑

(i,j)∈I(Γβ)

K(xij , uij) (6.36)

for mixed Neumann and Dirichlet boundary conditions.
Thus, for every N , we obtain a NLP problem; if we state Neumann con-
ditions, the optimization variable z belongs to RN2+8N and the discrete
boundary conditions (6.23) are included in the equality constraints:

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Bh

ij(z) = 0 (i, j) ∈ I(Γ),
Cij(z) ≤ 0 (i, j) ∈ I(Γ),
Sij(z) ≤ 0 (i, j) ∈ I(Ω̄).

(6.37)

126 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

With Dirichlet conditions, the problem becomes

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Cij(z) ≤ 0 (i, j) ∈ I(Γ),
Sij(z) ≤ 0 (i, j) ∈ I(Ω).

(6.38)

with z ∈ RN2+4N . With mixed boundary conditions, the NLP problem is
as follows:

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Bh

ij(z) = 0 (i, j) ∈ I(Γα),
Cij(z) ≤ 0 (i, j) ∈ I(Γ),
Sij(z) ≤ 0 (i, j) ∈ I(Ω).

(6.39)

with z ∈ RN2+τ(N).
The lagrangian functions of (6.37), (6.38) and (6.39) are respectively given
by

L(z, q, µ, λ) = h2
∑

(i,j)∈I(Ω) f(xij , yij) + h
∑

(i,j)∈I(Γ) g(xij , yij , uij)+
+

∑
(i,j)∈I(Ω) qijG

h
ij(z) +

∑
(i,j)∈I(Ω̄) µijS(xij , yij)+

+
∑

(i,j)∈I(Γ)[qijB
h
ij(z) + λijC(xij , yij , uij)],

(6.40)

L(z, q, µ, λ) = h2
∑

(i,j)∈I(Ω) f(xij , yij) + h
∑

(i,j)∈I(Γ) g(xij , uij)+
+

∑
(i,j)∈I(Ω)[qijG

h
ij(z) + µijS(xij , yij)]+

+
∑

(i,j)∈I(Γ) λijC(xij , uij),
(6.41)

L(z, q, µ, λ) = h2
∑

(i,j)∈I(Ω) f(xij , yij) + h
∑

(i,j)∈I(Γα) g(xij , yij , uij)+
+h

∑
(i,j)∈I(Γβ) K(xij , uij)+

+
∑

(i,j)∈I(Ω)[qijG
h
ij(z) + µijS(xij , yij)]+

+
∑

(i,j)∈I(Γα) qijB
h
ij(z) +

∑
(i,j)∈I(Γ) λijC(xij , uij),

(6.42)
where the Lagrange multipliers q = (qij)(i,j)∈I(Ω̄) for (6.40), q = (qij)(i,j)∈I(Ω)

for (6.41), q = (qij)(i,j)∈I(Ω)∪I(Γα) for (6.42) are associated with the equality
constraints and µ = (µij)(i,j)∈I(Ω̄) (or (i, j) ∈ I(Ω)) and λ = (λij)(i,j)∈I(Γ)

are related to the inequality constraints Sij(z) ≤ 0 and Cij(z) ≤ 0 respec-
tively. The ordering of the discrete variables yij and uij in the array z

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 127

Figure 6.1: Ordering of the discrete variables

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(1)

(2) (3)

(4)

determines the structure of the jacobian matrix of the equality constraints
and of the hessian matrix of the lagrangian function. The Figure 6.1 depicts
the strategy chosen here: the first entries of z are the yij , (i, j) ∈ I(Ω) in
lexicographic order from (i, j) = (1, 1) to (i, j) = (N, N). Then, when we
have boundary Neumann conditions, we store in the array z the boundary
values yij , where (i, j) ∈ Ik(Γ), for k = 1, 2, 3, 4. Finally, we store in the ar-
ray z the discrete control variables uij in the same order than the boundary
entries yij . For the problems (6.38) and (6.39), we use the same strategy.

6.1.4 Test problems: general description

In the following, we consider elliptic problems where the cost functional is
of tracking type

F (y, u) =
1
2

∫

Ω
(y(x)− yd(x))2dx +

α

2

∫

Γ
(u(x)− ud(x))2dx, (6.43)

with given function yd ∈ C(Ω̄), ud ∈ L∞(Γ) and a nonnegative weight α ≥ 0.
The control and state constraints are supposed to be box constraints of the

128 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

simple type

y(x) ≤ ψ(x) on Ω or Ω̄, (6.44)
u1(x) ≤ u(x) ≤ u2(x) on Γ, (6.45)

with functions ψ ∈ C(Ω̄) and u1, u2 ∈ L∞(Γ).
We assume that an optimal solution of the optimal control problem consid-
ered exists and we denote by ȳ(x) and ū(x) the optimal state function and
the optimal control function respectively. If the function b in (6.10) is such
that bu = 1 (or respectively b in (6.13) is such that bu = 1 or b1 in (6.16) is
such that b1u = 1), the optimal control ū(x) is completely determined.
In the case of Neumann boundary condition, if we denote by q̄(x) the adjoint
state corresponding to ȳ(x) and ū(x), we have:

• case α > 0:

ū(x) =

ud(x) + q̄(x)/α if ud(x) + q̄(x)/α ∈ (u1(x), u2(x)),
u1(x) if ud(x) + q̄(x)/α ≤ u1(x),
u2(x) if ud(x) + q̄(x)/α ≥ u2(x),

(6.46)

• case α = 0: we obtain an optimal control of bang–bang or singular
type:

ū(x) =

u1(x) if q̄(x) < 0,
u2(x) if q̄(x) > 0,
singular if q̄(x) = 0 on ΓS ⊂ Γ,

∫
ΓS

dx > 0.

(6.47)

For α = 0, the adjoint state function q̄(x) on the boundary plays the role of
a switching function. The isolated zeros of q̄(x)|Γ are switching points of a
bang–bang control.
For Dirichlet boundary conditions, we obtain the same results if we re-
place q̄(x) formally by −∂ν q̄(x). For α = 0, the outward normal derivatives
−∂ν q̄(x)|Γ plays the role of a switching function. The isolated zeros of
−∂ν q̄(x)|Γ are the switching points of a bang–bang control.
For mixed boundary conditions, if b1u = 1 and q̄(x) denotes the adjoint
state, we have:

• case α > 0: for x ∈ Γ(α), ū(x) is as in (6.46), while for x ∈ Γβ, ū(x)
is as in (6.46) with q̄(x) replaced by −∂ν q̄(x);

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 129

• case α = 0: we obtain an optimal control of bang–bang or singular
type; for x ∈ Γα, ū(x) is as in (6.47) while for x ∈ Γβ, ū(x) is as in
(6.47) with q̄(x) replaced by −∂ν q̄(x); here Γ is replaced by Γα or Γβ.

Then, for α = 0, the switching function is given by q̄(x) on Γα and by
−∂ν q̄(x) on Γβ. The isolated zeros of the switching function are the switching
points of a bang–bang control.
The discrete counterpart of q̄(x) is the vector of the Lagrange multipliers
q = qij . For Dirichlet boundary conditions, ∂ν q̄(x)|Γ is replaced by qν

ij/h,
where qν

ij is given by the finite differences of (6.21). In this case, we assume
that qij are equal to zero on Γ (qi0 = qiN+1 = q0j = qN+1j = 0). For mixed
boundary conditions, q̄(x) is replaced by the Lagrange multipliers on Γα and
∂ν q̄(x) is replaced by qν

ij/h on Γβ with qν
ij as in (6.21). Furthermore, qij = 0

for (i, j) ∈ I(Γβ).
In all the described test problems, the choice of symmetric function yd(x)
and ud(x) in the tracking functional implies that the optimal control is the
same on every edge of Γ.

6.1.5 Test problems: discretization technique.

When the discretization techniques described in section 6.1.3 are applied to
a cost functional of tracking type (6.43), F h(z) can be written as follows:

F h(z) =
1
2
h2

∑

(i,j)∈I(Ω)

(yij − yd(xij))2 +
α

2
h

∑

(i,j)∈I(Γ)

(uij − ud(xij))2.

The hessian matrix H of F h(z) is a diagonal matrix, given by

H = diag(h2In1 , 0n2 , hαIn3), (6.48)

where n1 = N2, n2 = 0, n3 = 4N for Dirichlet boundary conditions,
n1 = N2,n2 = 4N ,n3 = 4N for Neumann boundary conditions. For mixed
boundary conditions, n1, n2, n3 depend on the choice of Γα and Γβ (see
problems 6.1.9 and 6.1.10).
Now, we determine the jacobian matrix J of the equality constraints. For
Dirichlet boundary conditions, J is an N2 × (N2 + 4N) matrix, given by

J = [Y + D, E], (6.49)

where the N2 ×N2 matrix D is

D = h2diag

(
∂d(xij , yij)

∂yij

)
,

130 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

the N2 × 4N matrix E is a sparse matrix with non null entries equal to
−∂b(xij ,uij)

∂uij
, so that

ekl =

−∂b(xi0,ui0)
∂ui0

l, k, i = 1, . . . , N

−∂b(x0j ,u0j)
∂u0j

j = 1, . . . , N k = (j − 1)N + 1, l = N + j

−∂b(xN+1j ,uN+1j)
∂uN+1j

j = 1, . . . , N k = jN, l = 2N + j

−∂b(xiN+1,uiN+1)
∂uiN+1

i = 1, . . . , N k = N2 −N + i, l = 4N −N + i

(6.50)
and, finally, Y is an N ×N block tridiagonal matrix with N ×N diagonal
blocks given by

4 −1
−1 4 −1

.
−1 4 −1

−1 4

(6.51)

and off diagonal blocks equal to −IN .
For Neumann boundary conditions, J is an (N2 +4N)× (N2 +8N) matrix,
that can be written as follows

J =
[

Y + D Bt 04N

B T S

]
, (6.52)

where Y and D are N2×N2 matrices as in (6.49) and S, T are the following
4N × 4N diagonal matrices:

S = diag

(
−h

∂b(xij , yij , uij)
∂uij

)
, (i, j) ∈ I(Γ) (6.53)

T = diag

(
1− h

∂b(xij , yij , uij)
∂yij

)
, (i, j) ∈ I(Γ) (6.54)

and Bt is a sparse N2 × 4N matrix where the nonzero entries are equal to
1 and whose indices are the same of the nonzero entries of E in (6.49). We
point out that S = −hI4N if bu = 1.
For mixed boundary conditions, the structure of J is similar to (6.52), but
the sizes of B, T and S depend on the choice of Γα and Γβ (see problems 6.1.9
and 6.1.10). The hessian matrix H̄ of the lagrangian function is equal to H
in (6.48) for Dirichlet boundary conditions, while for Neumann conditions,
H̄ is given by

H̄ = H +

Ȳ 0 0
0 T̄ V̄
0 V̄ t S̄

 , (6.55)

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 131

where the N2 ×N2 matrix Ȳ , the 4N × 4N matrices T̄ , S̄ and V̄ are given
by

Ȳ = diag

(
h2qij

∂2d(xij , yij)
∂y2

ij

)
, (i, j) ∈ I(Ω), (6.56)

T̄ = diag

(
−hqij

∂2b(xij , yij , uij)
∂y2

ij

)
, (i, j) ∈ I(Γ), (6.57)

S̄ = diag

(
−hqij

∂2b(xij , yij , uij)
∂u2

ij

)
, (i, j) ∈ I(Γ), (6.58)

V̄ = diag

(
−hqij

∂2b(xij , yij , uij)
∂yijuij

)
, (i, j) ∈ I(Γ). (6.59)

Note that, if bu = 1, then S̄ = V̄ = 04N .
For mixed boundary conditions, the hessian matrix H̄ of the lagrangian
function is similar to (6.55), but the size of T̄ , S̄, and V̄ depends on the
choice of Γα and Γβ (see problems 6.1.9 and 6.1.10).
For convenience, the numerical results reported in the following of this sec-
tion for all the test problems are referred to the fixed stepsize h = 1/(N +1),
with N = 99.

Problem 6.1.1 (Example 5.5 in [55])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional (6.43)

F (y, u) =
1
2

∫

Ω
(y(x)− yd(x))2dx +

α

2

∫

Γ
(u(x)− ud(x))2dx,

subject to

on Ω : −∆y(x) = 0, yd(x) = 2− 2(x1(x1 − 1) + x2(x2 − 1)),
on Γ : ∂νy(x) = u(x)− y(x)2, 3.7 ≤ u(x) ≤ 4.5, ud(x) ≡ 0, α = 0.01
on Ω̄ : y(x) ≤ 2.071.

This problem leads to a NLP problem. The structure of the jacobian and
hessian matrices J and H are depicted in Figure 6.2. The pictures, here and
in the following, are obtained with N = 5.

132 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

45

nz = 185
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 45

Jacobian matrix J Hessian matrix H

Figure 6.2: Problem 6.1.1

Problem 6.1.1
Variables N2 + 8N
Constraints N2 + 4N
Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 4N
Nonzeros ∇2f(x) N2 + 4N
Nonzeros ∇g1(x) 5N2 + 12N

The hessian matrix H of F h is a positive semidefinite matrix, because the
entries related to yij , (i, j) ∈ I(Γ) are equal to zero, while the hessian matrix
H̄ of the lagrangian function is an indefinite diagonal matrix (see Figure 6.3).
The minimum of the cost functional is F (ȳ, ū) = 0.55224597. The optimal

control is a continuous function and, on the bottom edge of Γ, it is such that

• ū(x) = 3.7 for x = (x1, 0), with x1 ∈ (0, 0.18) ∪ (0.82, 1)

• ū(x) = 4.5 for x = (x1, 0), with x1 ∈ (0.36, 0.64).

Since bu = 1, on the edges of Γ, we have

ū(x) =

q̄(x) · 100 if q̄(x) · 100 ∈ (3.7, 4.5)
3.7 if q̄(x) · 100 ≤ 3.7
4.5 if q̄(x) · 100 ≥ 4.5

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 133

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 65

Figure 6.3: Problem 6.1.1: Hessian matrix H̄

The active set for the state constraint y(x) ≤ 2.071 is given by the midpoints
of the edges of Γ. The dual variable for this active inequality constraint is
0.0004478692. At xi0 = (0.5, 0), we have yi0 = 2.071, qi0 = −0.04651456.

Problem 6.1.2 (Example 5.6 in [55])

We consider the following elliptic control problem with nonlinear Neumann
boundary conditions: minimize the functional (6.43) subject to

on Ω : −∆y(x) = 0, yd(x) = 2− 2(x1(x1 − 1) + x2(x2 − 1)),
on Γ : ∂νy(x) = u(x)− y(x)2, 6 ≤ u(x) ≤ 9, ud(x) ≡ 0, α = 0,
on Ω̄ : y(x) ≤ 2.835.

The obtained programming problem is an NLP problem where the jacobian
matrix J and the hessian matrix H have the same structure of those of the
previous problem (see Figure 6.2), but the entries of the hessian matrix of
F h related to the control variables uij are equal to zero. These entries are
zero also in H̄.

134 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

Problem 6.1.2
Variables N2 + 8N
Constraints N2 + 4N
Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 4N
Nonzeros ∇2f(x) N2

Nonzeros ∇g1(x) 5N2 + 12N

Furthermore, the nonlinearity of the Neumann conditions leads to noncon-
stant diagonal entries (the ones related to the yij , (i, j) ∈ I(Γ)) in the hessian
H̄ of the Lagrangian, which is an indefinite diagonal matrix (see Figure 6.4).
The minimum of the cost functional is F (ȳ, ū) = 0.015078. The optimal con-
trol is a bang–bang control, that, on the edges of Γ, is given by

ū =
{

6 if qij < 0
9 if qij > 0

where j = 1 for the bottom edge, j = N for the top edge, i = 1 for the left
edge and i = N for the right edge. The switching points on the bottom edge
of Γ are approximately (0.33,0) and (0.67,0). The optimal state is equal to
2.835 at the midpoints of the edges of Γ. The dual variable for this active
inequality constraint is µij = 0.00002895.

Problem 6.1.3 (Example 5.7 in [55])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional (6.43) subject to

on Ω : −∆y(x)− y(x) + y(x)3 = 0, yd(x) = 2− 2(x1(x1 − 1) + x2(x2 − 1))
on Γ : ∂νy(x) = u(x), 1.8 ≤ u(x) ≤ 2.5, ud(x) ≡ 0, α = 0.01
on Ω̄ : y(x) ≤ 2.7.

By means of the discretization techniques, a NLP problem is obtained; the
structures of the jacobian matrix J and of the hessian matrix H of F h are
the same of those in problem 6.1.1 (see Figure 6.2), but the hessian matrix
H̄ of the lagrangian function has the form in Figure 6.5.

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 135

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 25
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 45

Hessian matrix H Hessian matrix H̄

Figure 6.4: Problem 6.1.2

Problem 6.1.3
Variables N2 + 8N
Constraints N2 + 4N
Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 4N
Nonzeros ∇2f(x) N2 + 4N
Nonzeros ∇g1(x) 5N2 + 12N

In this case the first N2 entries of the diagonal depend on the values of
yij , (i, j) ∈ I(Ω). The minimum of the cost functional is F (ȳ, ū) = 0.264163
The optimal control is a continuous function and, on the bottom edge of Γ,
it is such that

• ū(x) = 1.8 for the points x = (x1, 0), x1 ∈ (0, 0.15) ∪ (0.85, 1)

• ū(x) = 2.5 for the points x = (x1, 0), x1 ∈ (0.29, 0.71).

Indeed, on the edges of Γ, we have

ū(x) =

q̄(x) · 100 if q̄(x) · 100 ∈ (1.8, 2.5)
1.8 if q̄(x) · 100 ≤ 1.8
2.5 if q̄(x) · 100 ≥ 2.5

136 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 45

Figure 6.5: Problem 6.1.3: Hessian matrix H̄

The active set for the state constraint y(x) ≤ 2.7 comprises the points
adjacent to the corners of the domain. The dual variable for this active
inequality constraint is µij = 0.0034573.

Problem 6.1.4 (Example 5.8 in [55])

The cost functional and the constraints are the same of problem 6.1.3, but
we choose α = 0; thus the jacobian matrix J has the same structure than
in problem 6.1.3, while the structures of the hessian matrix H of F h and of
the hessian matrix H̄ of the Lagrangian are given in Figure 6.6.

Problem 6.1.4
Variables N2 + 8N
Constraints N2 + 4N
Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 4N
Nonzeros ∇2f(x) N2

Nonzeros ∇g1(x) 5N2 + 12N

The minimum of the cost functional is F (ȳ, ū) = 0.165531. The optimal

control is a bang–bang control, and, on the bottom edge of Γ, it is given by

ū(x) =
{

1.8 if qij < 0
2.5 if qij > 0

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 137

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 25

Figure 6.6: Problem 6.1.4: Hessian matrices H and H̄

where j = 1 for the bottom edge, j = N for the top edge, i = 1 for the left
edge and i = N for the right edge of Γ. The switching points on the bottom
edge of Γ are approximately (0.21, 0) and (0.79, 0). Again, the optimal state
is active at the points adjacent to the corners of the domain. The dual
variable for this active inequality constraint is µij = 0.030118.

Problem 6.1.5 (Example 5.1 in [55])

We consider the following elliptic control problem with Dirichlet boundary
conditions: minimize the functional (6.43) subject to

on Ω : −∆y(x) = 20,
y(x) ≤ 3.5,
yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),

on Γ : y(x) = u(x), 0 ≤ u(x) ≤ 10, ud(x) ≡ 0, α = 0.01.

This control problem leads to a strictly convex quadratic programming prob-
lem (QP) whose jacobian and hessian matrices J and H are structured as
shown in Figure 6.7.

138 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

nz = 125
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 45

Jacobian matrix J Hessian matrix H = H̄

Figure 6.7: Problem 6.1.5

Problem 6.1.5
Variables N2 + 4N
Constraints N2

Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 0
Nonzeros ∇2f(x) N2 + 4N
Nonzeros ∇g1(x) 5N2

For N = 99, the minimum of the cost functional is F (ȳ, ū) = 0.196525. The
control constraints are not active while the state variable attains its upper
bound only in the center xij = (0.5, 0.5) of the unit square with dual variable
µij = 0.24602. Here qij = −0.21312, yij = 3.5, yij − yd(xij) = 0.1875.
Furthermore y(0.4, 0.5) = 3.449163 and u(0, 0.5) = 1.690270.

Problem 6.1.6 (Example 5.2 in [55])

The cost functional and the constraints are the same of problem 6.1.5, except
that we choose α = 0 instead of α = 0.01, Then, the jacobian matrix J has
the same structure as in Figure 6.7, while the diagonal entries of the hessian
matrix H related to the variables uij are equal to 0 (see Figure 6.8). The
programming problem is a convex QP problem.

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 139

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 25

Figure 6.8: Problem 6.1.6: Hessian matrix H = H̄

Problem 6.1.6
Variables N2 + 4N
Constraints N2

Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 0
Nonzeros ∇2f(x) N2

Nonzeros ∇g1(x) 5N2

In this case we can expect either a bang–bang or a singular control. We
observe the following numerical results (N = 99):

• the minimum of the cost functional is F (ȳ, ū) = 0.096695;

• both the control and state constraint do not become active; the optimal
control is totally singular on Γ; from the numerical point of view, this
means that the multipliers qi1, qiN , q1j , qNj are equal to zero.

Problem 6.1.7 (Example 5.3 in [55])

We consider the following elliptic control problem with Dirichlet boundary

140 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

conditions: minimize the functional (6.43) subject to

on Ω : −∆y(x) = 20,
y(x) ≤ 3.2,
yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),

on Γ : y(x) = u(x), 1.6 ≤ u(x) ≤ 2.3, ud(x) ≡ 0, α = 0.01.

The discretized problem is a strictly convex QP problem and the structures
of jacobian and hessian matrices are the same of problem 6.1.5 (see Figure
6.7).

Problem 6.1.7
Variables N2 + 4N
Constraints N2

Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 0
Nonzeros ∇2f(x) N2 + 4N
Nonzeros ∇g1(x) 5N2

For N = 99, the minimum of the cost functional is F (ȳ, ū) = 0.321010. Fur-
thermore y(x) = 3.2 at the center point xij = (0.5, 0.5). The corresponding
multiplier is µij = 0.642704; the optimal control is continuous and, on the
bottom edge of Γ, it is such that

• ui0 = 2.3 for the points on the edge having the x1 coordinate in
(0.002, 0.18) ∪ (0.82, 0.98);

• ui0 = 1.6 for the points on the edge having the x1 coordinate in
(0.23, 0.77);

Indeed, in view of α = h = 0.01, we have

ui,0 =

qi,1 · 104 if qi,1 · 104 ∈ (1.6, 2.3)
1.6 if qi,1 · 104 ≤ 1.6
2.3 if qi,1 · 104 ≥ 2.3

Problem 6.1.8 (Example 5.4 in [55])

The data are the same of problem 6.1.7, but α = 0, so the hessian matrix H
is positive semidefinite with zero entries in correspondence of the variables
uij . We have a convex QP problem.

6.1. ELLIPTIC BOUNDARY CONTROL PROBLEMS 141

Problem 6.1.8
Variables N2 + 4N
Constraints N2

Upper bounds N2 + 4N
Lower bounds 4N
Linear equalities N2

Nonlinear equalities 0
Nonzeros ∇2f(x) N2

Nonzeros ∇g1(x) 5N2

The minimum of the cost functional is F (ȳ, ū) = 0.249178. The optimal
control is a bang–bang control and

ui,0 =
{

1.6 if qi,1 < 0
2.3 if qi,1 > 0

The switching points on the bottom edge of Γ are (0.2, 0) and (0.8, 0). The
optimal state is active at the center point xij = (0.5, 0.5) and the multiplier
related to this active inequality constraint is µij = 0.73378.

Problem 6.1.9 (Example 4.1 in [57])

We consider the following elliptic control problem with mixed Dirichlet and
Neumann boundary conditions: given Γβ = {(x1, 1) : 0 ≤ x1 ≤ 1} and
Ω0 = [0.25, 0.75]2, minimize the cost functional

F (y, u) =
1
2

∫

Ω0

(y(x)− 1)2dx +
α

2

∫

Γβ

u(x)2dx (6.60)

subject to

on Ω : −∆y(x) = 0,
0 ≤ y(x) ≤ 3.15 on Ω0

0 ≤ y(x) ≤ 10 on Ω− Ω0

on Γα : δνy(x) = 0 for x2 = 0, 0 ≤ x1 ≤ 1
δνy(x) = y(x)− 5 for x1 ∈ {0, 1}, 0 ≤ x2 ≤ 1

on Γβ : y(x) = u(x) 0 ≤ u(x) ≤ 10
α = 0.005

In this case, z ≡ ((yij)(i,j)∈I(Ω)∪I(Γα), (uij)(i,j)∈I(Γβ)) ∈ RN2+4N . The pro-
gramming problem is a convex QP problem. The jacobian matrix J corre-
sponding to the equality constraints is given by

J =
[

Y U t E
U T 0N

]

142 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

nz = 155
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 14

Jacobian matrix J Hessian matrix H = H̄

Figure 6.9: Problem 6.1.9

where Y is a block tridiagonal N2×N2 matrix as in (6.49), [U t E] = Bt is
a N2×4N matrix as in (6.52), U is a sparse 3N×N2 matrix, T is a diagonal
3N × 3N matrix as in (6.54). The hessian matrix H of F h(y, u) is a square
diagonal matrix of order N2 + 4N . The hessian matrix H̄ of the lagrangian
function is equal to H. The structures of J and H are reported in Figure
6.9 The diagonal entries of H corresponding to the indices of xij ∈ Ω − Ω0

are equal to zero. In the same way, the diagonal entries of H corresponding
to yij , (i, j) ∈ I(Γα) are equal to zero. The entries related to uij are equal
to hα.

Problem 6.1.9
Variables N2 + 4N
Constraints N2 + 3N
Upper bounds N2 + N
Lower bounds N2 + 4N
Linear equalities N2 + 3N
Nonlinear equalities 0
Nonzeros ∇2f(x) ((N + 1)/2)2 + N
Nonzeros ∇g1(x) 5N2 + 3N

The minimum of the cost functional is F (ȳ, ū) = 0.26284923. The state
constraint y ≤ 3.15 for x ∈ Ω0 becomes active at the points (1

4 , 3
4) and (3

4 , 3
4)

while the state constraint y ≤ 10 in Ω − Ω0 does not become active. Since

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 143

no control is applied on the boundary Γα, we have

uiN+1 =

qiN/(αh) if qiN/(αh) ∈ (0, 10)
0 if qiN/(αh) ≤ 0
10 if qiN/(αh) ≥ 0

The graph of the discrete function qiN/(αh) is reported in Figure 6.25.

Problem 6.1.10 (Example 4.1 in [57] with α = 0)

The cost functional and the constraints are the same of the previous problem,
but in this case we choose α = 0. The optimal control is a bang–bang control,
given by

ui,N+1 =
{

0 if qiN ≤ 0
10 if qiN ≥ 0

The programming problem is a convex QP problem. The jacobian matrix
of the equality constraints is the same of the problem 6.1.9 (see Figure 6.9);
the hessian matrix H is a diagonal matrix as that of the problem 6.1.9, but
the entries corresponding to uij are equal to 0 (see Figure 6.10).

Problem 6.1.10
Variables N2 + 4N
Constraints N2 + 3N
Upper bounds N2 + N
Lower bounds N2 + 4N
Linear equalities N2 + 3N
Nonlinear equalities 0
Nonzeros ∇2f(x) ((N + 1)/2)2

Nonzeros ∇g1(x) 5N2 + 3N

6.2 Elliptic distributed control problems

6.2.1 Statement of the problem

We consider the following elliptic distributed control problem with mixed
Neumann and Dirichlet boundary conditions: given a bounded domain
Ω ⊂ R2 with piecewise smooth boundary Γ, where Γ = Γα ∪ Γβ with
disjoints sets Γα, Γβ ⊂ Γ that are composed of finitely many smooth and
connected components, determine a distributed control function u ∈ L∞(Ω)
that minimizes the cost functional

144 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 9

Figure 6.10: Problem 6.1.10: Hessian matrix H = H̄

F (y, u) =
∫

Ω
f(x, y(x), u(x))dx +

∫

Γα

g(x, y(x))dx, (6.61)

subject to the elliptic state equation

−∆y(x) + d(x, y(x), u(x)) = 0 for x ∈ Ω, (6.62)

and to the Neumann and Dirichet boundary conditions

∂νy(x) = b1(x, y(x)) for x ∈ Γα (6.63)
y(x) = b2(x) for x ∈ Γβ (6.64)

and mixed control–state or pure state inequality constraints

C(x, y(x), u(x)) ≤ 0 x ∈ Ω
S(x, y(x)) ≤ 0 x ∈ Ω ∪ Γα

(6.65)

The functions f : Ω × R2 → R, g : Γα × R → R, d : Ω × R2 → R,
b1 : Γα×R→ R, b2 : Γβ ×R→ R, C : Ω×R2 → R, and S : Ω∪Γα×R→ R
are assumed to be C1 functions. As for boundary control problem, also for
the distributed control problem, first order necessary conditions known in
literature (see [14] and [13], [8] for linear elliptic equations and [20], [49], [68]
for nonlinear elliptic equations of Lotka–Volterra type) have been formally
extended in [56]. In this way, the necessary conditions are consistent with
their counterparts in the discretized problems, given by the KKT conditions.

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 145

6.2.2 Discretization and optimization formulation

For the distributed control, we can use the same discretization and optimiza-
tion techniques described in section 6.1.3 for boundary control. Also in this
case, we consider the standard situation where the elliptic operator is the
laplacian and Ω = (0, 1) × (0, 1). Given a positive integer N and h = 1

N+1
consider the mesh points

xij = (ih, jh), 0 ≤ i, j ≤ N + 1.

Assume the same notations stated in 6.1.3. We define the vector z as the
vector whose entries are the approximations of the state variables yij , (i, j) ∈
I(Ω) ∪ I(Γα) and of the control variables uij , (i, j) ∈ I(Ω):

z
.=

(
(yij)(i,j)∈I(Ω)∪I(Γα), (uij)(i,j)∈I(Γ)

) ∈ R2N2+τ(N). (6.66)

where τ(N) is the number of index pairs of I(Γα). The remaining state vari-
ables yij , (i, j) ∈ I(Γβ) are determined by the Dirichlet condition (6.64)
as

yij = b2(xij) for (i, j) ∈ I(Γβ). (6.67)

The derivative ∂νy(xij) in the direction of the outward normal is approxi-
mated by yν

ij/h, where yν
ij is defined in (6.21). Then the discrete form of the

Neumann boundary condition (6.63) leads to the equality constraints

Bh
ij(z) .= yν

ij − hb1(xij , yij) = 0, for (i, j) ∈ I(Γα). (6.68)

The application of the five points formula to the elliptic equation (6.62)
yields the following equality constraint for all (i, j) ∈ I(Ω)

Gh
ij(z) .= 4yij−yi+1,j−yi−1,j−yi,j+1−yi,j−1 +h2d(xij , yij , uij) = 0, (6.69)

Note that the discrete Dirichlet conditions (6.67) are used in this equation
to substitute the variables yij for (i.j) ∈ I(Γβ). The control and state
inequality constraints (6.65) yield the inequality constraints

C(xij , yij , uij) ≤ 0 for (i, j) ∈ I(Ω), (6.70)
S(xij , yij) ≤ 0 for (i, j) ∈ I(Ω) ∪ I(Γα). (6.71)

The discretized form of the cost functional (6.61) is

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij , uij) + h
∑

(i,j)∈I(Γα)

g(xij , yij). (6.72)

146 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

In summary, for any N , we have the following nonlinear programming prob-
lem:

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Bh

ij(z) = 0 (i, j) ∈ I(Γα),
C(xij , yij , uij) ≤ 0 (i, j) ∈ I(Ω),

S(xij , yij) ≤ 0 (i, j) ∈ I(Ω) ∪ I(Γα),

(6.73)

with z ∈ R2N2+τ(N).
The lagrangian function of the NLP problem (6.73) is given by

L(z, q, λ, µ) = h2
∑

(i,j)∈I(Ω) f(xij , yij , uij) + h
∑

(i,j)∈I(Γα) g(xij , yij)+
+

∑
(i,j)∈I(Ω)[qijG

h
ij(z) + λijC(xij , yij , uij) + µijS(xij , yij)]+

+
∑

(i,j)∈I(Γα)[µijS(xij , yij) + qijB
h
ij(z)],

(6.74)
where the Lagrange multipliers q = (qij)(i,j)∈I(Ω)∪I(Γα), λ = (λij)(i,j)∈I(Ω)

and µ = (µij)(i,j)∈I(Ω)∪I(Γα) are associated respectively with the equality
constraints (6.69) and (6.68) and with the inequality constraints (6.70) and
(6.71). The ordering of the discrete variables yij and uij in the array z is
described in subsection 6.1.3 (see Figure 6.1).

6.2.3 Test problems: general description

In the following, we consider elliptic problems where the cost functional is
of tracking type (except for the last problems):

F (y, u) =
1
2

∫

Ω
(y(x)− yd(x))2dx +

α

2

∫

Ω
(u(x)− ud(x))2dx, (6.75)

with given function yd ∈ C(Ω̄), ud ∈ L∞(Ω) and a nonnegative weight α ≥ 0.
The control and state constraints are supposed to be box constraints of the
simple type

y(x) ≤ ψ(x) on Ω, (6.76)
u1(x) ≤ u(x) ≤ u2(x) on Ω, (6.77)

with functions ψ ∈ C(Ω̄) and u1, u2 ∈ L∞(Ω). We assume that an optimal
solution ȳ(x) and ū(x) of the optimal control problems exists. If d(x, y, u)
in the state equation (6.62) is linear in the control variable u, the optimal
control ū(x) is completely determined. If we denote by q̄(x) the adjoint state
corresponding to ȳ(x) and ū(x), we have:

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 147

• case α ≥ 0: for x ∈ Ω

ū(x) =

ud(x) + q̄(x)/α if ud(x) + q̄(x)/α ∈ (u1(x), u2(x)),
u1(x) if ud(x) + q̄(x)/α ≤ u1(x),
u2(x) if ud(x) + q̄(x)/α ≥ u2(x),

(6.78)

• case α = 0: we obtain an optimal control of bang–bang or singular
type:

ū(x) =

u1(x) if q̄(x) < 0,
u2(x) if q̄(x) > 0,
singular if q̄(x) = 0 on ΩS ⊂ Ω,

∫
ΩS

dx > 0.

(6.79)

The discrete counterpart of q̄(x) is the vector of the Lagrange multipliers
q = (qij), where we set qij = 0 for (i, j) ∈ I(Γβ).

6.2.4 Test problems: discretization techniques

When the discretization techniques described in section 6.2.2 are applied to
a cost functional of tracking type (6.75), F h(z) can be written as follows:

F h(z) =
1
2
h2

∑

(i,j)∈I(Ω)

(yij − yd(xij))2 +
α

2
h

∑

(i,j)∈I(Ω)

(uij − ud(xij))2.

The hessian matrix H of F h(z) is a diagonal matrix, given by

H = diag(h2In1 , 0n2 , hαIn3), (6.80)

where n1 = N2, n2 = τ(N), n3 = N2. If Γα = ∅ and Γβ = Γ (Dirichlet
boundary conditions only), then n2 = 0. If Γα = Γ and Γβ = ∅ (Neumann
boundary conditions), then n2 = 4N .

Now, we determine the jacobian matrix J of the equality constraints.
J is a sparse (N2 + τ(N)) × (2N2 + τ(N)) matrix, that can be written as
follows:

J =
[

Y + D Ū t Ē
Ū T 0

]
(6.81)

where Y is an N × N block tridiagonal matrix as in (6.49), D is a square
diagonal matrix of order N2 with diagonal entries of the form

(
h2 ∂d(xij , yij , uij)

∂yij

)
, (i, j) ∈ I(Ω),

148 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

Ū t is a sparse N2 × τ(N) matrix with non null entries equal to −1, Ē is
a square diagonal matrix of order N2 with diagonal entries h2 ∂d(xij ,yij ,uij)

∂uij
,

(i, j) ∈ I(Ω) and finally, T is a square diagonal matrix of order τ(N) with
diagonal entries

(
1− h

∂b1(xij , yij)
∂yij

)
, (i, j) ∈ I(Γα).

If Γα = ∅, Γβ = Γ, J becomes equal to the following N2 × 2N2 matrix:

J = [Y + D, Ē]. (6.82)

If Γα = Γ, Γβ = ∅, J is a (N2 + 4N)× (2N2 + 4N) matrix.
The hessian matrix H̄ of the lagrangian function has the following form:

H̄ = H +

Ȳ 0 Z̄
0 T̄ 0
Z̄t 0 S̄

 , (6.83)

where the N2 × N2 matrices Ȳ , Z̄, S̄ and the τ(N) × τ(N) matrix T̄ are
given by:

Ȳ = diag

(
h2qij

∂2d(xij , yij , uij)
∂y2

ij

)
, (i, j) ∈ I(Ω), (6.84)

S̄ = diag

(
−hqij

∂2d(xij , yij , uij)
∂u2

ij

)
, (i, j) ∈ I(Ω), (6.85)

Z̄ = diag

(
h2qij

∂2d(xij , yij , uij)
∂yij∂uij

)
, (i, j) ∈ I(Ω), (6.86)

T̄ = diag

(
−hqij

∂2b1(xij , yij)
∂y2

ij

)
, (i, j) ∈ I(Γα). (6.87)

If Γα = ∅, Γβ = Γ, H̄ becomes a 2N2×2N2 matrix with the following form:

H̄ = H +
(

Ȳ Z̄
Z̄t S̄

)

For convenience, the numerical results reported in the following of this sec-
tion for all the test problems are referred to the fixed stepsize h = 1/(N +1),
with N = 99 and in some cases also with N = 199.

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 149

Problem 6.2.1 (Example 1 in [56])

We consider the following elliptic control problem with Dirichlet boundary
conditions (Γα = ∅): minimize the cost functional (6.61) subject to

on Ω : −∆y(x)− y(x) + y(x)3 = u,
y(x) ≤ 0.185, 1.5 ≤ u(x) ≤ 4.5,
yd(x) = 1 + 2(x1(x1 − 1) + x2(x2 − 1)),

on Γ : y(x) = 0, ud(x) ≡ 0, α = 0.001.

The discretization techniques lead to a NLP problem.
Problem 6.2.1

Variables 2N2

Constraints N2

Upper bounds 2N2

Lower bounds N2

Linear equalities 0
Nonlinear equalities N2

Nonzeros ∇2f(x) 2N2

Nonzeros ∇g1(x) 6N2 − 4N

In Figure 6.11, the structure of the jacobian matrix J and that of the hes-
sian matrix H̄ of the lagrangian function are reported (for N = 5). Since
du(x, y, u) = 1 and α > 0, we have that

uij =

qij · 103 if qij · 103 ∈ (1.5, 4.5)
1.5 if qij · 103 ≤ 1.5
4.5 if qij · 103 ≥ 4.5

 (6.88)

The state constraint is active at the center (0.5, 0.5). For N = 99, F (ȳ, ū) =
0.0621615; for N = 199, F (ȳ, ū) = 0.0644263.

Problem 6.2.2 (Example 2 in [56])

The data are the same of the previous problem, but in this case α = 0. The
matrix J has the same structure than in the problem 6.2.1 (see Figure 6.11);
the hessian matrix H̄ of the lagrangian function is a diagonal matrix, but
the diagonal entries of H̄ corresponding to uij , (i, j) ∈ I(Ω) are equal to
0 (see Figure 6.12).

150 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 130
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 50

Jacobian matrix J Hessian matrix H̄

Figure 6.11: Problem 6.2.1

Problem 6.2.2
Variables 2N2

Constraints N2

Upper bounds 2N2

Lower bounds N2

Linear equalities 0
Nonlinear equalities N2

Nonzeros ∇2f(x) N2

Nonzeros ∇g1(x) 6N2 − 4N

Since α = 0, we obtain a bang–bang control, having the following form:

ū(x) =
{

1.5 if q̄(x) < 0
4.5 if q̄(x) > 0

}

For N = 99, F (ȳ, ū) = 0.0564479; for N = 199, F (ȳ, ū) = 0.0586978.

Problem 6.2.3 (Example 3 in [56])

We consider the following elliptic control problem with Dirichlet boundary
conditions: minimize the functional (6.61) subject to

on Ω : −∆y(x)− exp(y(x)) = u,
y(x) ≤ 0.11, −5 ≤ u(x) ≤ 5,
yd(x) = sin(2πx1) sin(2πx2),

on Γ : y(x) = 0, ud(x) ≡ 0, α = 0.001.

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 151

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 25

Hessian matrix H̄

Figure 6.12: Problem 6.2.2

The structure of the jacobian matrix J and of the hessian matrix H̄ for the
discretized NLP problem is the same of the problem 6.2.1 (see Figure 6.11).

Problem 6.2.3
Variables 2N2

Constraints N2

Upper bounds 2N2

Lower bounds N2

Linear equalities 0
Nonlinear equalities N2

Nonzeros ∇2f(x) 2N2

Nonzeros ∇g1(x) 6N2 − 4N

From (6.78), we have

uij =

qij · 1000 if qij · 1000 ∈ (−5, 5)
−5 if qij · 1000 ≤ −5
5 if qij · 1000 ≥ 5

The state constraint is active at the points (0.26, 0.26), (0.74, 0.74). For N =
99, at the point (0.26, 0.26), we have qij = 0.00858, yij = 0.11, yd(xij) = 1,
µij = 0.00251. Furthermore qi+1j = 0.00912, qi−1j = 0.00926, qij+1 =
0.00912, qij−1 = 0.00926. For N = 99, F (ȳ, ū) = 0.110263; for N = 199,
F (ȳ, ū) = 0.1102685.

152 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

45

nz = 190
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 50

Jacobian matrix J Hessian matrix H̄

Figure 6.13: Problem 6.2.4

Problem 6.2.4 (Example 4 in [56])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional (6.61) subject to

on Ω : −∆y(x)− exp(y(x)) = u,
y(x) ≤ 0.371, −8 ≤ u(x) ≤ 9,
yd(x) = sin(2πx1) sin(2πx2),

on Γ : ∂νy(x) + y(x) = 0, ud(x) ≡ 0, α = 0.001.

The Figure 6.13 illustrates the structure of the matrices of the NLP problem.
Problem 6.2.4

Variables 2N2 + 4N
Constraints N2 + 4N
Upper bounds 2N2

Lower bounds N2

Linear equalities 4N
Nonlinear equalities N2

Nonzeros ∇2f(x) 2N2

Nonzeros ∇g1(x) 6N2 + 4N

In this case Γα = Γ and Γβ = ∅. Since α > 0 and du(x, y, u) = 1, we have

uij =

qij · 1000 if qij · 1000 ∈ (−8, 9)
−8 if qij · 1000 ≤ −8
9 if qij · 1000 ≥ 9

For N = 99, F (ȳ, ū) = 0.07806389; for N = 199, F (ȳ, ū) = 0.07842597. We
report also the values of y and u at the point (0.5, 0.5): yij = −0.009152

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 153

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 25

Hessian matrix H̄

Figure 6.14: Problem 6.2.2

(N = 99) and yij = −0.008243 (N = 199) while uij = −1.619699 (N = 99)
and uij = −1.588730 (N = 199).

Problem 6.2.5 (Example 5 in [56])

This problem has the same data as the previous one, except for the choice
α = 0. The jacobian matrix J has the same structure of that in Figure
6.13; the hessian matrix H̄ of the lagrangian function has diagonal entries
corresponding to the variables uij equal to zero (see Figure 6.14).

Problem 6.2.5
Variables 2N2 + 4N
Constraints N2 + 4N
Upper bounds 2N2

Lower bounds N2

Linear equalities 4N
Nonlinear equalities N2

Nonzeros ∇2f(x) N2

Nonzeros ∇g1(x) 6N2 + 4N

In this case, the optimal control is a bang–bang control having the form:

ū(x) =
{ −8 if q̄(x) < 0

9 if q̄(x) > 0

154 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

For N = 99, F (ȳ, ū) = 0.0526639.

Problem 6.2.6 (Example 4.2 in [57])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional

∫

Ω
(Mu(x)2 −Ku(x)y(x))dx (6.89)

subject to

on Ω : −∆y(x) = y(x)(a(x)− u(x)− by(x)) y(x) ≤ ψ(x),
u1 ≤ u(x) ≤ u2,

on Γ : ∂νy(x) = 0.
(6.90)

where
a(x) = 7 + 4 sin(2πx1x2) (6.91)

b = 1, M = 1, K = 0.8, u1 = 1.7, u2 = 2, ψ(x) = 7.1 .

The discrete Neumann conditions

yν
ij = 0 (i, j) ∈ I(Γ)

suggest to reduce the number of variables yij , (i, j) ∈ I(Γ)∪I(Ω). In other
words, from the equality constraints (6.68), we obtain

y0j = y1j ,
yN+1j = yNj ,
yi0 = yi1,
yiN+1 = yiN .

Thus the jacobian matrix J is an N2 × 2N2 matrix with the form

J = [Ỹ + D Ē]

where Ỹ is an N × N block tridiagonal matrix with the off diagonal block
equal to −IN and the diagonal block of the form

Ỹ11 = ỸNN =

2 −1
−1 3 −1

.
−1 3 −1

−1 2

,

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 155

Ỹii =

3 −1
−1 4 −1

.
−1 4 −1

−1 3

, i = 2, . . . , N − 1.

Furthermore, the matrices D and Ē are as in (6.81). The matrix H has the
form (

0N2 −Kh2IN2

−Kh2IN2 2h2MIN2

)

and the matrix H̄ is equal to

H̄ = H +
(

Ȳ Z̄
Z̄t S̄

)

where Ȳ , Z̄, and S̄ are as in (6.83) (in this case S̄=0). The structures of
matrices J and H̄ are depicted in Figure6.15.

Problem 6.2.6
Variables 2N2

Constraints N2

Upper bounds 2N2

Lower bounds N2

Linear equalities 0
Nonlinear equalities N2

Nonzeros ∇2f(x) 4N2

Nonzeros ∇g1(x) 6N2 − 4N

The discretized problem is again a NLP problem.
The state variable attains its upper bound at the two points (0.21, 0.99) and
(0.99, 0.21) close to the boundary. For N = 99, F (ȳ, ū) = −6.576428; for
N = 199, F (ȳ, ū) = −6.620092.

Problem 6.2.7 Example 4.2 in [57]

The problem has the same data of the previous problem, but in this case we
choose

b = 1, M = 0, K = 1, u1 = 2, u2 = 6, ψ(x) = 4.8 .

The structure of the jacobian matrix J is the same of the previous problem
(see Figure 6.15). The matrix H̄ has the diagonal entries corresponding to

156 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 130
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 100

Jacobian matrix J Hessian matrix H̄

Figure 6.15: Problem 6.2.6

the variables uij equal to zero (see Figure 6.16).

Problem 6.2.7
Variables 2N2

Constraints N2

Upper bounds 2N2

Lower bounds N2

Linear equalities 0
Nonlinear equalities N2

Nonzeros ∇2f(x) 3N2

Nonzeros ∇g1(x) 6N2 − 4N

In this case, the optimal control is a bang–bang control. For N = 99,
F (ȳ, ū) = −18.73615; for N = 199, F (ȳ, ū) = −18.86331.

6.2. ELLIPTIC DISTRIBUTED CONTROL PROBLEMS 157

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 75

Hessian matrix H̄

Figure 6.16: Problem 6.2.7

158 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

6.3 Figures

0 0.2 0.4 0.6 0.8 1

0

0.5

1

2

2.05

2.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

State variable Control variable

0
0.2 0.4

0.6 0.8
1

0
0.2

0.4
0.6

0.8
1

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.025

0.03

0.035

0.04

0.045

0.05

Adjoint variable Switching function

Figure 6.17: Problem 6.1.1

6.3. FIGURES 159

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

6.5

7

7.5

8

8.5

9

State variable Control variable

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−4

−2

0

2

4

6

8

10

12

x 10
−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5
x 10

−4

Adjoint variable Switching function

Figure 6.18: Problem 6.1.2

160 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 0.2 0.4 0.6 0.8 1

0

0.5

1
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

State variable Control variable

0 0.2 0.4 0.6 0.8 1

0

0.5

1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Adjoint variable Switching function

Figure 6.19: Problem 6.1.3

0
0.2

0.4
0.6

0.8
1

0

0.5

1
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

State variable Control variable

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Adjoint variable Switching function

Figure 6.20: Problem 6.1.4

6.3. FIGURES 161

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

State variable Control variable

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Adjoint variable

Figure 6.21: Problem 6.1.5

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

State variable Control variable

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Adjoint variable

Figure 6.22: Problem 6.1.6

162 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

State variable Control variable

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4
x 10

−4

Adjoint variable Switching function

Figure 6.23: Problem 6.1.7

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

State variable Control variable

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4
x 10

−4

Adjoint variable Switching function

Figure 6.24: Problem 6.1.8

6.3. FIGURES 163

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Optimal state Optimal control on Γα

0

0.5

1 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

Adjoint variable on Ω Adjoint variable qiN

Figure 6.25: Problem 6.1.9

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Optimal state Optimal control on Γα

0
0.5

1 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8

10
x 10

−4

Adjoint variable on Ω Adjoint variable qiN

Figure 6.26: Problem 6.1.10

164 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
1.5

2

2.5

3

3.5

4

4.5

Optimal State Optimal Control

0 0.2 0.4 0.6 0.8 1

0

0.5

1
−3

−2

−1

0

1

2

3

4

5

x 10
−3

Adjoint Variable

Figure 6.27: Problem 6.2.1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
1.5

2

2.5

3

3.5

4

4.5

Optimal State Optimal Control

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0

0 0 1 1

1

Adjoint Variable Switching Curve

Figure 6.28: Problem 6.2.2

6.3. FIGURES 165

0
0.2

0.4
0.6

0.8
1 0

0.5

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−5

0

5

Optimal State Optimal Control

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1

−0.015

−0.01

−0.005

0

0.005

0.01

Adjoint Variable

Figure 6.29: Problem 6.2.3

166 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

0 0.2 0.4 0.6 0.8 1 0

0.5

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.5

1

−8

−6

−4

−2

0

2

4

6

8

10

Optimal State Optimal Control

00.20.40.60.81

0

0.5

1

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Adjoint Variable

Figure 6.30: Problem 6.2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−8

−6

−4

−2

0

2

4

6

8

10

Optimal State Optimal Control

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−12

−10

−8

−6

−4

−2

0

2

4

6

8

x 10
−3

1

1

0

0

Adjoint Variable Switching curve

Figure 6.31: Problem 6.2.5

6.3. FIGURES 167

00.20.40.60.81

0

0.5

1

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

00.10.20.30.40.50.60.70.80.91

0

0.5

1

1.7

1.75

1.8

1.85

1.9

1.95

2

Optimal State Optimal Control

00.10.20.30.40.50.60.70.80.91

0
0.2

0.4
0.6

0.8
1

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

Adjoint Variable

Figure 6.32: Problem 6.2.6

00.10.20.30.40.50.60.70.80.91

0

0.5

1

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

2

2.5

3

3.5

4

4.5

5

5.5

6

Optimal State Optimal Control

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0

0

1

1

Adjoint Variable

Figure 6.33: Problem 6.2.7

168 CHAPTER 6. DESCRIPTION OF THE TEST PROBLEMS

Chapter 7

Numerical experience

The nonlinear programming problems problems described in the previous
section constitute a test set for the optimization codes, and they also are
very interesting from a strictly numerical point of view for their structure
and for the possibility to use them in order to test the numerical stability
and efficiency of the algorithms. In this chapter we present the numerical
results of the Algorithm 4.1 on this test set, by increasing the number of
mesh points. Furthermore, we report the value of the cost functional for any
considered case.
We experimented also the influence of the nonmonotone choices presented
in Section 4.3 in both cases of direct and iterative inner solver.

7.1 Implementation of the algorithm

The Algorithm 4.1 has been implemented in Fortran 90 programming lan-
guage in four different versions, for each of the inner solvers described in
Section 4.2.
In case of the direct solution of the perturbed Newton equation described in
section 4.2.1, we choose as linear solver the subroutine MA27 of the Harwell
Subroutine Library and we refer to this version as IP-MA27. The version
with the Hestenes multipliers’ method (Section 4.2.2) as inner solver is called
IP-Hestenes, while the two different implementations of the preconditioned
conjugate gradient method (Section 4.2.3) yield the codes IP-PCG1 and IP-
PCG2 respectively.

169

170 CHAPTER 7. NUMERICAL EXPERIENCE

All the versions deal with a programming problem of the form

min f(x)
s.t. g1(x) = 0

g̃2(x) ≥ 0
−Plx + l ≥ 0
Pux− u ≥ 0

(7.1)

where Pl end Pu are two diagonal rectangular matrices of size nl × n and
nu×n respectively, where nl and nu indicate the number of the components
of x bounded below and above respectively, and g̃2 : Rn → Rm̃ are the in-
equality constraints which are not simple bound. Following this notation,
the total number of the inequality constraints is m = m̃ + nl + nu.
The rectangular matrices Pl end Pu have unitary diagonal entries corre-
sponding to the component of x which is bounded below and above respec-
tively. The vectors l ∈ Rnl and u ∈ Rnu are the lower and upper bounds.
The initial values for the multipliers and for the slack variables are set to 1
while the value (x0)i are set equal to zero if the i–th component xi is a free
variable, equal to (ui + li)/2 if xi is bounded above and below, and equal to
ui−1 or li +1 if xi is bounded above or below respectively. In the following,
we specify if different choices for the starting values have been made.
For the codes employing an iterative method as inner solver, the initial value
of the inner iterations has been fixed equal to the null vector.
All the results in this section have been obtained with the choice µk =
st
kwk/

√
m: even if the choice of the perturbation parameter is crucial, in

these test problems the two safeguard values of the perturbation parameter
µ1 and µ2 of formula (3.39) are very close (indeed we have st

kwk ∼ ‖H(vk)‖),
and there is no significant difference in the results, in terms of iterations
number and execution time.
Moreover, the maximum value of inner iterations has been set to 15 for the
IP-Hestenes code, to neq for IP-PCG1 and to n + neq for IP-PCG2.
The other settings are described in Section 4.1.
An explicit computation of the matrices Q = A + χBBt, BtB and of the
preconditioner M̄ is needed for the factorization, which is performed in
two phases: the symbolic factorization exploiting only the structure of the
matrices and can be made once before the first iteration, and the actual
factorization performed at each iteration. As explained in Section 4.2.2, for
the IP-Hestenes and IP-PCG1 codes the structure of the matrices Q and
BtB respectively is computed with a preprocess routine. This preprocess is
not needed for the code IP-PCG2, since it does not require the computation
of a matrix–matrix product.

7.2. THE RESULTS 171

We declare a failure of the algorithm when a maximum number of itera-
tions, fixed to 1500 is reached or when the backtracking procedure produces
a damping parameter smaller than 10−8. e The test problems

We will refer to the test problems of the previous chapter in the following
way: 6.1.1-199 indicates the test problem 6.1.1 with a mesh of N = 199 point
per axis, etc. Following this notation, 6.1.*-* are related to the boundary
control problems, while the script P6.2.*-* refers to the distributed case.
The minimum values of the objective functional are listed in Tables 7.4 and
7.5. The differences on the minimum values obtained by the different solvers
are not significant, of the order of 10−8.
In Tables 7.1 and 7.2 the test problems are described: for each test problem
the number of primal variables n, the number of equality (neq) constraints,
the number of lower (nl) and upper (nu) are reported, while the last two
columns are related to the number of nonzero entries of the jacobian (nnziac)
and hessian of the lagrangian (nnzhess) matrices.
In Tables 7.1 and 7.2 we have taken into account that some test problems
have the same structure.

We observe that the inequality constraints are only box constraints, thus
the matrix CS−1WCt is a diagonal matrix and the computation of the block
A in the condensed system (3.33) is inexpensive.
The sparsity pattern of the matrices A, BtB and of the preconditioner M̄
is showed in figure 7.1 for the test problem 6.2.6 with N = 5. In Table 7.3
the number of nonzero entries of one triangular part (including the diagonal
elements) of the matrices Q, BtB and of the preconditioner M̄ is reported
in the columns “nnzhes”, “nnzpcg1” and “nnzpcg2” respectively, while the
number of nonzero entries of the Cholesky factor is listed in the columns
“Lhes”, “Lpcg1” and “Lpcg2”. The different values of the meshpoint num-
ber is reported in the column “Grid”. It can be observed that the number of
nonzero entries in the Cholesky factor is quite similar in the three cases. In
the two cases IP-Hestenes and IP-PCG1, even if a matrix–matrix product
is involved, the matrices A + χBBt and BtB have a density at most equal
to 0.1%, while the ratio of the nonzero entries of the Cholesky factor is at
most equal to 15.3%.

7.2 The results

In tables 7.6, 7.7, 7.8, 7.9 and 7.10 we compare the performances of the
different versions of the code implementing the iterative inner solvers, while
in tables 7.12 and 7.11 there are the data related to the code with the di-

172 CHAPTER 7. NUMERICAL EXPERIENCE

0 5 10 15 20 25

0

5

10

15

20

25

nz = 229
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 464
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 360

IP-Hestenes matrix IP-PCG1 matrix IP-PCG2 matrix

Figure 7.1: Sparsity pattern of the matrix factorized by the codes. The
figure refers to problem 6.2.6

rect inner solver. Our comparison takes into account the number of outer
iterations, reported in the column “it.”, where in brackets the number of
inner iterations is also reported, and the execution time of the algorithms.
The times are reported in seconds in the column “prep.+iter”, specifying
the two partial times, the one employed by the preprocess routine in the
computation of the matrices structure and the one needed for the iterations.
The total CPU time is listed in the column “total”.
The symbol “*” indicates that the algorithm failed because of a too small
damping parameter which produces a stagnation of the iterates. The sym-
bol “i” denotes that the maximum number of iterations (fixed to 1000) has
been reached and “m” indicates that the needs of memory is grater than the
available memory.
The codes ran on a workstation HP zx6000 with an Intel Itanium2 proces-
sor 1.3 GHz with 2Gb of RAM and they have been compiled with a “+O3”
optimization level of the HP compiler.
In the tables 7.12 and 7.11 only the successful tests have been reported in
the boundary and distributed case. In any other case, we observed a failure
of the algorithm after a few iterates, due to the fill-in of the Cholesky factor
which exceeds the available memory. Indeed, the Gauss factor computed by
the subroutine MA27 not only depends on the matrix structure, and at each
iteration the fill-in can change.
In the iterative case, we can observe that the more expensive computational
task for the codes IP-Hestenes and IP-PCG1 is the preprocess phase. We
can also notice that the preprocess time is smaller for the IP-PCG1 code,

7.3. RESULTS IN THE NONMONONONE CASE 173

since the size of the matrix BtB is neq, while Q is an n × n matrix. This
gain in terms of time is more significant when the test problem arises from
a distributed control problem, since in such case the number of equality
constraints is an half of the number of the variables. On the other hand,
beside a “heavy” preprocess phase, the iterations are very fast. This fact
could be exploited when different problems with the same structure or the
same problem with different parameters have to be solved in sequence.
A further improvement of the iterations times can be obtained as explained
in the following section.
In terms of total time, the more effective code is the IP-PCG2, which does
not require the preprocess phase and needs almost the same number of outer
and inner iterations than the version IP-PCG1.
At each iteration of the IP-PCG2 code, the preconditioner M̄ is factorized
as explained in section 4.2.3. The size of M̄ is n + neq, thus the iterations
are not so fast as in the two other cases, but the total execution time is
smaller since for IP-PCG2 the preprocess is not needed.
Another characteristic of this code is to require a relatively little memory
occupancy: this allows us to solve very large scale problems up to one mil-
lion primal variables.
In table 7.13, the performances of IP-PCG2 are compared in terms of ex-
ecution time with the direct and iterative versions of Knitro (version 3.1),
reported in the columns Knitro-D and Knitro-I respectively, on the test
problem 6.1.1. The comparison puts in evidence the good stability and effi-
ciency of IP-PCG2 on this kind of test problems. The faster Knitro version
is the one implementing the direct inner solver, but it runs out the memory
for a discretization with a number of meshpoints per axis grater than 499.
The Knitro-Iterative code can solve problems with a discretization grid up
to 699 meshpoints per axis, then it runs out the available memory too. The
faster code among the considered three is the IP-PCG2. Our comparison
also included the IP-PCG1, whose results are not reported in table 7.13. It
showed to be faster than the Knitro codes but slower than IP-PCG2: for
example, it solves the problem 6.1.1-499 in 1997 seconds and 6.1.1-899 in
19835 seconds.

7.3 Results in the nonmononone case

In this section we analyse the results produced when the nonmonotone
choices explained in section 4.3 are taken.

The direct case

174 CHAPTER 7. NUMERICAL EXPERIENCE

In table 7.14 we consider the code IP-MA27 with nonmonotone backtracking
rule and nonmonotone choice of the perturbation parameter. Our goal was to
investigate the effects of such choices in some critical cases and for this reason
we have considered starting points which lead the algorithm to perform
many backtracking loops. We choose (x0)i = 1 for the problem P6.1.1,
(x0)i = 0.01 for P6.1.2, (x0)i = 0.5 for P6.1.3 and (x0)i = 3.995 for P6.1.4
for any i = 1, ..., n. In the table, the failures of the algorithm produced by a
stagnation of the iterates due to the backtracking reductions are indicated by
the symbol “-”. The columns with the label “b.” refer to the total number of
backtracking reductions, while in the columns with the label “it.” the total
number of iterations ir reported.
We can observe that in some cases the nonmonotone algorithm prevents the
algorithm from the failures.

The iterative case
In this case we allow the nonmonotonicity in the inner stopping criterion
and in the backtracking rule, while the perturbation parameter is chosen as
in the monotone case as st

kwk/m.
We experimented different degrees of nononotonicity by varying the pa-
rameter N which, following the notation in (2.53), defines the size of the
“memory”.
In general the experiments have shown that the nonmonotone rules can be
useful also in the iterative case, producing a decrease of the number of inner
iterations and thus a reduction of the execution time.
This good behaviour has been observed above all in the IP-Hestenes algo-
rithm, as shown in table 7.15, where for different values of nonmonotonicity
degree N , we report the number of outer and inner iterations (in brackets)
in the columns labelled with the “it.” symbol, and the total and iterations
time (in brackets) in seconds in the columns “sec”.
We observe a reduction of the inner iterations number, while the number of
outer iterations is maintained.
An explanation of this fact is that the nonmonotone stopping criterion can
avoid unnecessary Hestenes iterations when the system is ill conditioned and
the tolerance is small. Indeed, in many of these cases, the first Hestenes step
produces a residual which is only a little grater than the adaptive tolerance.
Hence, it is forced to execute other steps until the desired tolerance is satis-
fied, but when the system is ill conditioned, a too small tolerance could not
be reached.
This observation seems to be confirmed by the numerical experience, since
with a certain degree of nonmonotonicity in many cases the Hestenes inner

7.4. TABLES 175

solver tends to execute only one step for each outer iteration.
The remarks above, suggested us a variant of the IP-Hestenes code, where,
staying in this nonmonotone contest, the number of inner iterations is fixed
to 1. Some results of this modification are reported in the table 7.16. We
can observe that the number of outer iterations, which now coincides with
the number of inner iterations and which is reported in the column “it.”,
does not increase and the iterations time, reported in brackets in the column
“sec.” together with the total time, becomes very small.
We experimented the nonmonotone stopping criterion also on the IP-PCG2
code and the results are reported in table 7.17. We can observe that, setting
the nonmonotonicity parameter N = 4, the iteration time can be shortened
up to a 50% of the time needed in the monotone case, but for other values
of N , the results of the monotone algorithm can not be improved.

In general, the nonmonotone inner stopping rule with a moderate degree of
nonmonotonicity produces a decreasing in the number of the inner iteration,
while for larger value of the nonmonotonicity degree, it can happens that
this decreasing is offset by an increasing of the number of outer iterations.
This suggests that the nonmonotone flavour should be carefully handled,
and possibly adapted to each case.

7.4 Tables

176 CHAPTER 7. NUMERICAL EXPERIENCE

P Grid n neq nu nl nziac nzhess
6.1.1 99 10593 10197 10593 39204 50193 10593

199 41193 40397 41193 158404 200393 41193
299 91793 90597 91793 357604 450593 91793
399 162393 160797 162393 636804 800793 162393
499 252993 250997 252993 996004 1250993 252993
599 363593 361197 363593 1435204 1801193 363593

6.1.2 99 10593 10197 10593 39204 50193 10197
199 41193 40397 41193 158404 200393 40397
299 91793 90597 91793 357604 450593 90597
399 162393 160797 162393 636804 800793 160797
499 252993 250997 252993 996004 1250993 250997
599 363593 361197 363593 1435204 1801193 361197

6.1.3 99 10593 10197 10593 39204 50193 10593
199 41193 40397 41193 158404 200393 41193
299 91793 90597 91793 357604 450593 91793
399 162393 160797 162393 636804 800793 162393
499 252993 250997 252993 996004 1250993 252993
599 363593 361197 363593 1435204 1801193 363593

6.1.4 99 10593 10197 10593 39204 50193 9801
199 41193 40397 41193 158404 200393 39601
299 91793 90597 91793 357604 450593 89401
399 162393 160797 162393 636804 800793 159201
499 252993 250997 252993 996004 1250993 249001
599 363593 361197 363593 1435204 1801193 358801

6.1.5 99 10197 9801 10197 396 49005 10197
and 199 40397 39601 40397 796 198005 40397
6.1.7 299 90597 89401 90597 1196 447005 90597

399 160797 159201 160797 1596 796005 160797
499 250997 249001 250997 1996 1245005 250997
599 361197 358801 361197 2396 1794005 361197

6.1.6 99 10197 9801 10197 396 49005 9801
and 199 40397 39601 40397 796 198005 39601
6.1.8 299 90597 89401 90597 1196 447005 89401

399 160797 159201 160797 1596 796005 159201
499 250997 249001 250997 1996 1245005 249001
599 361197 358801 361197 2396 1794005 358801

6.1.9 119 14637 14518 14280 14637 71519 3840
179 32757 32578 32220 32757 161279 8460
279 78957 78678 78120 78957 390879 20160
379 145157 144778 144020 145157 720479 36870
479 231357 230878 229920 231357 1150079 58560
579 337557 336978 335820 337557 1679679 85260

6.1.10 119 14637 14518 14280 14637 71519 3721
179 32757 32578 32220 32757 161279 8281
279 78957 78678 78120 78957 390879 19881
379 145157 144778 144020 145157 720479 36491
479 231357 230878 229920 231357 1150079 58081
579 337557 336978 335820 337557 1679679 84681

Table 7.1: Description of the test problems: boundary control

7.4. TABLES 177

P Grid n neq nu nl nziac nzhess
6.2.1 99 19602 9801 19602 9801 59202 19602

199 79202 39601 79202 39601 238402 79202
299 178802 89401 178802 89401 537602 178802
399 318402 159201 318402 159201 956802 318402
499 498002 249001 498002 249001 1496002 498002

6.2.2 99 19602 9801 19602 9801 59202 9801
199 79202 39601 79202 39601 238402 39601
299 178802 89401 178802 89401 537602 89401
399 318402 159201 318402 159201 956802 159201
499 498002 249001 498002 249001 1496002 249001

6.2.3 99 19998 10197 19602 9801 59598 19602
and 199 79998 40397 79202 39601 239198 79202
6.2.4 299 179998 90597 178802 89401 538798 178802

399 319998 160797 318402 159201 958398 318402
499 499998 250997 498002 249001 1497998 498002

6.2.5 99 19998 10197 19602 9801 59598 10197
199 79998 40397 79202 39601 239198 40397
299 179998 90597 178802 89401 538798 90597
399 319998 160797 318402 159201 958398 160797
499 499998 250997 498002 249001 1497998 250997

6.2.6 99 19602 9801 19602 9801 58410 39204
199 79202 39601 79202 39601 236810 158404
299 178802 89401 178802 89401 535210 357604
399 318402 159201 318402 159201 953610 636804
499 498002 249001 498002 249001 1492010 996004

6.2.7 99 19602 9801 19602 9801 58410 29403
199 79202 39601 79202 39601 236810 118803
299 178802 89401 178802 89401 535210 268203
399 318402 159201 318402 159201 953610 477603
499 498002 249001 498002 249001 1492010 747003

Table 7.2: Description of the test problems: distributed control.

178 CHAPTER 7. NUMERICAL EXPERIENCE

Problem Grid nnzhes Lhes nnzpcg1 Lpcg1 nnzpcg2 Lpcg2
6.1.1 99 70783 622759 69991 621571 60786 718637
6.1.2 199 281583 3181444 279195 3179056 241586 3416032
6.1.3 299 632383 8374469 628795 8370881 542386 9084296
6.1.4 399 1123183 16252152 1118395 16247364 9631186 20102932

499 1753983 26855490 1747995 26849502 1503986 28784753
599 2524783 41135305 2517595 41128117 2164786 43488232

6.1.5 99 69595 621571 67619 619595 59202 716261
6.1.6 199 279195 3179056 275219 3175080 238401 3411256
6.1.7 299 628795 8370881 622819 8364905 537602 9011520
6.1.8 399 1118395 16247364 1110419 16239388 956802 20093356

499 1747995 26849502 1738019 26839526 1496002 28772777
599 2517595 41128117 2505619 41116141 2155202 43473654

6.1.9 119 100315 945546 99720 944951 86156 1029560
6.1.10 179 226075 2541572 225180 2540677 194036 2733190

279 547675 7167732 546280 7166337 469836 8619291
379 1009275 14501957 1007380 14500062 865636 15396152
479 1610875 24901311 1608480 24898916 1381436 26203761
579 2352475 37810473 2349580 37807578 2017236 48288922

6.2.1 99 126029 715465 67619 619595 78012 735071
6.2.2 199 512029 3409660 275219 3175080 316012 3488866
6.2.3 299 1158029 8900195 622819 8364905 714012 9253530

399 2064029 20090160 1110419 16239388 1272012 20405866
499 3230029 28768781 1738019 26839526 1990012 29266787

6.2.4 99 128401 717837 69595 621571 79596 737447
6.2.5 199 516801 3414432 517993 3179056 319196 3493642

299 1165201 8907367 1166993 8370881 718796 9260706
399 2073601 20099732 2075994 16247364 1278396 20418142
499 3242001 28780753 3244994 26849502 3244994 29278763

6.2.6 99 72816 715465 67619 619595 78012 735071
6.2.7 199 295620 3409660 510837 3175080 316012 3488866

299 1158029 8900195 622819 8364905 714012 9079001
399 2064029 20090160 1110419 16239388 1272012 20408566
499 3230029 28768781 1738019 26839526 1990012 29266787

Table 7.3: Nonzero entries of the matrices and of the Choleski factors

7.4. TABLES 179

Boundary control
Problem min Problem min
6.1.1-99 0.55224625 6.1.6-99 0.09669507
6.1.1-199 0.55436881 6.1.6-199 0.10044221
6.1.1-299 0.55507372 6.1.6-299 0.10170115
6.1.1-399 0.55542568 6.1.6-399 0.10233242
6.1.1-499 0.55580371 6.1.6-499 0.10271175
6.1.1-599 0.55577731 6.1.6-599 0.10296487
6.1.2-99 0.01507867 6.1.7-99 0.32100965
6.1.2-199 0.01560172 6.1.7-199 0.32812152
6.1.2-299 0.01577842 6.1.7-299 0.33050688
6.1.2-399 0.01586721 6.1.7-399 0.33170235
6.1.2-499 0.01592062 6.1.7-499 0.33242047
6.1.2-599 0.01595628 6.1.7-599 0.33289956
6.1.3-99 0.26416255 6.1.8-99 0.24917848
6.1.3-199 0.26728343 6.1.8-199 0.25587655
6.1.3-299 0.26832628 6.1.8-299 0.25812464
6.1.3-399 0.26884799 6.1.8-399 0.25925143
6.1.3-499 0.26916120 6.1.8-499 0.25992872
6.1.3-599 0.26937006 6.1.8-599 0.26038061
6.1.4-99 0.16553111 6.1.9-119 0.25908196
6.1.4-199 0.16778056 6.1.9-179 0.25305430
6.1.4-299 0.16854245 6.1.9-279 0.24894250
6.1.4-399 0.16892441 6.1.9-379 0.24705220
6.1.4-499 0.16915379 6.1.9-479 0.24596630
6.1.4-599 0.16930712 6.1.9-579 0.24526176
6.1.5-99 0.19651967 6.1.10-119 0.15741541
6.1.5-199 0.20077162 6.1.10-179 0.15128350
6.1.5-299 0.20219539 6.1.10-279 0.14694570
6.1.5-399 0.20290856 6.1.10-379 0.14492090
6.1.5-499 0.20333682 6.1.10-479 0.14375680
6.1.5-599 0.20362247 6.1.10-579 0.14299524

Table 7.4: Minimum values of the objective functional: boundary control

180 CHAPTER 7. NUMERICAL EXPERIENCE

Distributed control
Problem min Problem min
6.2.1-99 0.06216164 6.2.5-99 0.05266390
6.2.1-199 0.06442591 6.2.5-199 0.05293239
6.2.1-299 0.06519262 6.2.5-299 0.05302628
6.2.1-399 0.06557820 6.2.5-399 0.05307458
6.2.1-499 0.06581034 6.2.5-499 0.05310603
6.2.2-99 0.05644747 6.2.6-99 -6.57642757
6.2.2-199 0.05869688 6.2.6-199 -6.62009226
6.2.2-299 0.05946010 6.2.6-299 -6.63464408
6.2.2-399 0.05984417 6.2.6-399 -6.64192346
6.2.2-499 0.06007572 6.2.6-499 -6.64629219
6.2.3-99 0.11026306 6.2.7-99 -18.73618438
6.2.3-199 0.11026872 6.2.7-199 -18.86331163
6.2.3-299 0.11026969 6.2.7-299 -18.90575104
6.2.3-399 0.11027035 6.2.7-399 -18.92698093
6.2.3-499 0.11027047 6.2.7-499 -18.93972227
6.2.4-99 0.07806386
6.2.4-199 0.07842594
6.2.4-299 0.07854995
6.2.4-399 0.07861255
6.2.4-499 0.07865054

Table 7.5: Minimum values of the objective functional: distributed control

7.4. TABLES 181
IP

-H
es

te
ne

s
IP

-P
C

G
1

IP
-P

C
G

2
P

ro
bl

em
it

.(
in

n.
)

ti
m

e(
pr

ep
.+

it
er

.)
to

ta
l

it
.(

in
n.

)
ti

m
e(

pr
ep

.+
it

er
.)

to
ta

l
it

.(
in

n.
)

to
ta

l
6.

1.
1

99
29

(3
2)

2.
22

+
2.

03
4.

25
37

(3
0)

2.
21

+
2.

46
4.

67
37

(7
2)

5.
24

19
9

54
(5

9)
36

.3
8+

22
.8

7
59

.2
5

45
(3

7)
35

.8
1+

18
.3

1
54

.1
2

45
(9

5)
38

.9
29

9
18

1(
18

6)
20

6.
35

+
24

6.
8

45
3.

15
52

(4
7)

19
7.

29
+

68
.0

9
25

6.
38

52
(1

16
)

15
6.

49
39

9
32

7(
34

1)
83

3.
79

+
96

1.
08

17
94

.9
2

58
(5

3)
75

8.
23

+
17

4.
82

93
3.

05
58

(1
37

)
49

3.
07

49
9

50
1(

52
7)

19
33

.8
+

27
68

.7
47

02
.5

63
(5

9)
16

35
.6

4+
34

1.
65

19
77

.3
7

63
(1

58
)

84
5.

76
59

9
*

*
*

66
(6

2)
19

02
.2

1+
70

1.
21

26
03

.5
5

66
(1

81
)

13
77

.6
1

6.
1.

8
99

34
(3

4)
2.

2+
2.

3
4.

6
35

(3
9)

2.
3+

2.
4

4.
7

35
(3

7)
4.

5
19

9
40

(4
0)

37
.8

+
17

.3
55

.1
41

(4
5)

37
.8

+
17

.3
55

.1
41

(4
1)

32
.6

29
9

55
(5

6)
17

2.
8+

73
.5

24
6.

3
51

(5
5)

20
1.

8+
68

.1
3

26
9.

9
50

(5
2)

14
0.

3
39

9
14

3(
14

4)
55

8.
1+

42
0.

8
97

9
58

(6
4)

65
5.

9+
17

1.
6

82
7.

5
59

(6
0)

44
1.

7
49

9
19

7(
19

8)
14

18
.3

+
10

76
.1

24
94

.4
66

(7
6)

16
21

.4
+

36
4+

9
19

86
.4

70
(7

3)
82

9.
1

59
9

24
2(

24
3)

29
97

.4
+

23
67

.5
53

64
.9

74
(8

7)
34

56
.5

+
71

4.
5

41
71

.1
79

(8
9)

15
60

.2
6.

1.
3

99
21

(2
3)

3.
02

+
1.

46
4.

49
29

(3
6)

2.
22

+
2.

05
4.

28
28

(7
9)

4.
31

19
9

26
(2

7)
47

.8
3+

10
.8

7
58

.7
1

33
(4

2)
45

.8
7+

14
.4

6
60

.3
5

33
(9

1)
30

.0
2

29
9

39
(4

5)
16

2.
15

+
52

.8
8

21
5.

03
36

(4
7)

19
4.

79
+

49
.7

24
3.

52
37

(1
09

)
11

5.
84

39
9

36
(3

9)
83

1.
0+

10
5.

29
93

6.
34

39
(5

4)
61

7.
47

+
11

7.
91

73
5.

42
38

(1
20

)
31

2.
78

49
9

65
(8

7)
20

62
.1

1+
36

0.
03

24
22

.2
2

42
(5

5)
15

22
.1

1+
23

2.
93

17
55

.1
2

41
(1

46
)

53
5.

14
59

9
*

*
*

44
(6

0)
39

28
.5

4+
42

7.
12

39
28

.5
4

43
(1

59
)

92
5.

84
6.

1.
4

99
31

(3
1)

2.
2+

2.
1

4.
3

33
(4

2)
2.

3+
2.

3
4.

6
31

(4
4)

4.
2

19
9

38
(9

8)
34

.5
+

18
.9

53
.5

40
(5

1)
36

.6
+

17
.2

53
.8

38
(5

9)
31

.5
29

9
41

(5
8)

17
2.

7+
56

.3
22

8.
9

45
(6

0)
18

9.
9+

61
.3

25
1.

3
40

(5
9)

11
4.

7
39

9
43

(4
5)

56
0.

3+
12

5.
3

68
5.

7
49

(6
6)

60
3.

6+
14

7.
2

75
0.

8
45

(6
7)

34
1.

7
49

9
*

*
*

51
(6

7)
14

99
.3

+
28

3.
7

17
83

.1
50

(7
6)

60
1.

7
59

9
*

*
*

69
(8

2)
36

21
.0

+
66

2.
8

42
84

82
(1

53
)

16
60

.4

T
ab

le
7.

6:
N

um
er

ic
al

re
su

lt
s:

bo
un

da
ry

co
nt

ro
l

182 CHAPTER 7. NUMERICAL EXPERIENCE

IP
-H

es
te

ne
s

IP
-P

C
G

1
IP

-P
C

G
2

P
ro

bl
em

it
.(

in
n.

)
ti

m
e(

pr
ep

.+
it

er
.)

to
ta

l
it

.(
in

n.
)

ti
m

e(
pr

ep
.+

it
er

.)
to

ta
l

it
.(

in
n.

)
to

ta
l

6.
1.

5
99

28
(2

8)
2.

1+
1.

9
4

31
(3

1)
2.

1+
2.

1
4.

2
28

(3
4)

3.
6

19
9

33
(3

3)
33

.8
+

13
.6

47
.4

37
(3

7)
35

.7
+

15
.2

50
.9

32
(4

2)
26

29
9

40
(5

5)
16

9.
0+

54
.8

22
3.

8
41

(4
1)

19
4.

9+
53

.9
24

8.
8

36
(5

0)
99

.6
39

9
45

(7
5)

54
8.

0+
13

7.
4

68
5.

4
44

(4
5)

75
1.

0+
12

8.
1

87
9.

1
39

(6
2)

29
8.

3
49

9
49

(7
9)

13
80

.6
+

27
5.

1
16

55
.8

46
(4

7)
15

83
.6

+
24

8.
5

18
32

.1
43

(7
3)

52
0.

2
59

9
51

(1
26

)
29

78
.9

+
53

4.
4

35
13

.3
48

(5
0)

33
36

.1
+

45
6.

7
37

92
.9

46
(7

7)
92

5.
3

6.
1.

6
99

30
(3

0)
2.

1+
2.

0
4.

1
35

(3
7)

2.
1+

2.
4

4.
5

30
(3

9)
3.

9
19

9
33

(3
3)

33
.2

+
13

.6
46

.7
37

(4
1)

35
.4

+
15

.4
50

.8
32

(4
1)

25
.8

29
9

40
(5

5)
16

8.
3+

54
.3

22
2.

6
41

(4
7)

23
1.

6+
55

.8
28

7.
4

37
(5

4)
10

2.
8

39
9

46
(6

1)
54

6.
9+

13
6.

7
68

3.
7

44
(5

0)
63

4.
8+

12
9.

4
76

4.
2

40
(6

5)
30

6.
1

49
9

50
(9

5)
13

77
.3

+
28

8.
2

16
65

.5
47

(5
6)

15
87

.4
+

25
8.

6
18

46
.1

44
(7

5)
53

3.
5

59
9

51
(1

26
)

29
71

.5
+

53
2.

8
35

04
.5

49
(5

9)
32

90
.6

+
47

0.
1

37
60

.8
46

(7
7)

92
5.

2
6.

1.
7

99
39

(3
9)

2.
1+

2.
7

4.
8

42
(4

2)
2.

1+
2.

8
4.

9
40

(5
4)

5.
2

19
9

46
(4

6)
33

.2
+

19
.0

52
.1

46
(4

6)
35

.6
+

18
.9

54
.5

45
(7

2)
37

.4
29

9
64

(9
9)

16
8.

4+
89

.2
25

7.
6

52
(5

2)
19

3.
6+

69
.5

26
3.

1
49

(8
7)

13
8.

7
39

9
96

(1
41

)
54

9.
3+

28
8.

5
83

7.
8

55
(5

8)
63

6.
0+

16
0.

5
79

6.
5

53
(9

5)
40

7.
9

49
9

12
7(

16
9)

13
87

.3
+

70
3.

4
20

90
.7

57
(6

4)
15

83
.1

+
31

1.
9

18
95

.1
52

(9
4)

63
0

59
9

15
9(

20
2)

30
20

.9
+

15
48

.1
45

69
.1

59
(6

9)
33

09
.4

+
56

3.
6

38
73

.1
52

(9
8)

10
51

.9
6.

1.
8

99
40

(4
0)

2.
1+

2.
7

4.
8

43
(4

3)
2.

1+
2.

9
5

41
(5

2)
5.

3
19

9
48

(4
8)

33
.2

+
20

.5
53

.7
50

(5
0)

35
.4

+
20

.6
56

47
(7

4)
38

.8
29

9
66

(1
06

)
16

8.
9+

93
.1

29
2

55
(5

5)
19

5.
3+

72
.8

26
8.

2
52

(9
0)

14
6.

8
39

9
10

1(
15

6)
54

6.
1+

30
4.

3
85

1.
4

60
(6

3)
63

7.
0+

17
4.

6
80

8.
7

58
(1

05
)

44
7.

2
49

9
13

3(
19

5)
14

04
.1

+
74

5.
6

21
49

.8
62

(7
0)

15
89

.4
+

33
7.

4
19

26
.9

57
(1

05
)

69
3.

1
59

9
16

7(
36

4)
30

33
+

17
25

.1
47

58
.1

65
(7

6)
35

95
.4

+
62

2.
9

42
18

.4
58

(1
12

)
11

75
.5

T
ab

le
7.

7:
N

um
er

ic
al

re
su

lt
s:

bo
un

da
ry

co
nt

ro
l

7.4. TABLES 183

IP
-H

es
te

ne
s

IP
-P

C
G

1
IP

-P
C

G
2

P
ro

bl
em

it
.(

in
n.

)
ti

m
e(

pr
ep

.+
it

er
.)

to
ta

l
it

.(
in

n.
)

ti
m

e(
pr

ep
.+

it
er

.)
to

ta
l

it
.(

in
n.

)
to

ta
l

6.
1.

9
11

9
41

(4
1)

4.
4+

4.
3

8.
7

45
(4

7)
4.

5+
4.

8
9.

3
48

(7
4)

9.
6

17
9

75
(8

7)
17

.1
+

25
.7

42
.8

51
(5

6)
23

.2
+

16
.9

40
.1

46
(7

3)
30

.1
27

9
63

(6
3)

13
3.

1+
69

.4
20

2.
5

57
(6

3)
14

0.
7+

62
.4

20
3.

4
51

(9
0)

13
6.

2
37

9
82

(9
7)

44
8.

9+
21

2.
5

66
1.

4
62

(7
8)

48
2.

3+
16

1.
9

64
4.

2
55

(1
12

)
30

2.
1

47
9

95
(1

85
)

12
26

.6
+

52
3.

1
17

49
.7

65
(8

4)
12

55
.2

+
34

1.
1

15
96

.3
58

(1
29

)
63

8.
5

57
9

11
0(

27
5)

25
62

+
99

7.
8

35
60

67
(9

6)
26

58
.7

+
57

0.
9

32
29

.6
61

(1
49

)
15

45
.1

6.
1.

10
11

9
44

(4
4)

4.
4+

4.
6

9
49

(5
2)

4.
5+

5.
2

9.
8

44
(7

0)
8.

9
17

9
56

(5
6)

22
.4

+
18

.4
40

.8
59

(6
5)

23
.2

+
19

.5
42

.7
55

(8
9)

36
27

9
72

(8
7)

12
9.

1+
80

.1
20

9.
2

67
(7

9)
14

0.
9+

74
.3

21
5.

2
63

(1
17

)
16

9.
2

37
9

10
1(

25
1)

45
2.

9+
29

0.
5

74
3.

5
77

(1
00

)
48

3.
6+

20
4.

9
68

8.
6

74
(1

65
)

40
8.

6
47

9
10

5(
36

0)
12

02
.8

+
62

9.
1

18
32

81
(1

13
)

12
35

.4
+

42
9.

9
16

65
.3

78
(1

90
)

86
4.

7
57

9
11

9(
37

4)
25

58
.6

+
11

23
.8

36
82

.5
86

(1
30

)
26

60
.6

+
73

8.
9

22
99

.6
83

(2
24

)
21

18
.1

T
ab

le
7.

8:
N

um
er

ic
al

re
su

lt
s:

bo
un

da
ry

co
nt

ro
l

184 CHAPTER 7. NUMERICAL EXPERIENCE

IP
-H

es
te

ne
s

IP
-P

C
G

1
IP

-P
C

G
2

P
ro

bl
em

it
.(

in
n.

)
ti

m
e(

pr
ep

.+
it

er
.)

to
ta

l
it

.(
in

n.
)

ti
m

e(
pr

ep
.+

it
er

.)
to

ta
l

it
.(

in
n.

)
to

ta
l

6.
2.

1
99

23
(2

3)
4.

8+
2.

2
7.

1
26

(2
5)

2.
5+

1.
9

4.
36

24
(2

3)
3.

3
19

9
28

(1
93

)
12

3.
1+

26
.4

14
9.

5
28

(2
6)

41
.5

+
12

.1
53

.7
27

(2
6)

22
.6

29
9

*
*

*
30

(2
9)

21
8.

3+
41

.2
25

9.
5

28
(2

7)
81

.2
39

9
*

*
*

31
(5

6)
70

6.
4+

10
0.

9
80

7.
4

29
(2

8)
22

2
49

9
*

*
*

32
(6

9)
21

66
.8

+
19

6.
3

23
63

.2
29

(2
8)

35
1.

8
6.

2.
2

99
28

(2
8)

4.
8+

2.
6

7.
5

31
(4

5)
2.

5+
2.

4
4.

9
29

(2
8)

3.
9

19
9

31
(1

66
)

78
.8

+
25

.8
10

4.
6

33
(5

3)
41

.7
+

15
.7

57
.4

30
(2

9)
24

.7
4

29
9

*
*

*
34

(6
4)

21
7.

7+
51

.5
26

9.
2

32
(3

1)
92

.8
39

9
*

*
*

36
(9

5)
70

4.
9+

12
5.

7
83

0.
7

33
(3

2)
25

2.
3

49
9

*
*

*
37

(1
32

)
17

41
.9

+
25

2.
1

19
94

.1
33

(3
2)

39
9.

1
6.

2.
3

99
25

(2
5)

4.
8+

2.
4

7.
2

31
(2

6)
2.

5+
2.

2
4.

7
25

(2
2)

3.
4

19
9

31
(1

96
)

11
9.

0+
27

.9
14

7
33

(2
7)

41
.5

+
14

.5
55

.7
26

(2
3)

21
.7

29
9

43
(4

03
)

69
4.

4+
13

1.
1

82
5.

6
34

(2
8)

21
8.

4+
46

.1
26

4.
5

28
(2

5)
80

.8
39

9
89

(1
18

4)
23

39
.9

+
75

8.
3

30
98

.2
37

(5
8)

86
9.

4+
11

9.
4

98
8.

9
30

(2
7)

22
9.

1
49

9
*

*
*

36
(6

1)
17

42
.2

5+
21

2.
91

19
55

.3
29

(2
6)

35
0.

23
6.

2.
4

99
24

(5
4)

5.
0+

2.
9

7.
9

20
(1

6)
3.

08
+

1.
45

4.
53

20
(3

8)
3.

11
19

9
27

(2
37

)
80

.6
+

29
.4

10
9.

9
21

(1
7)

40
.8

2+
9.

11
49

.9
4

21
(3

7)
19

.0
2

29
9

35
(3

35
)

42
4.

2+
10

8.
3

53
2.

5
22

(1
8)

22
7.

65
+

30
.0

2
25

7.
67

22
(3

9)
68

.2
1

39
9

36
(3

51
)

14
80

.1
+

25
6.

3
17

36
.5

23
(1

9)
75

2.
20

+
69

.3
0

82
1.

5
23

(4
2)

18
4.

77
49

9
*

*
*

23
(1

9)
21

19
.5

9+
12

7.
88

22
47

.4
7

23
(4

2)
29

0.
58

T
ab

le
7.

9:
N

um
er

ic
al

re
su

lt
s:

di
st

ri
bu

te
d

co
nt

ro
l

7.4. TABLES 185

IP
-H

es
te

ne
s

IP
-P

C
G

1
IP

-P
C

G
2

P
ro

bl
em

it
.(

in
n.

)
ti

m
e(

pr
ep

.+
it

er
.)

to
ta

l
it

.(
in

n.
)

ti
m

e(
pr

ep
.+

it
er

.)
to

ta
l

it
.(

in
n.

)
to

ta
l

6.
2.

59
9

48
(6

3)
5.

0+
4.

8
9.

9
56

(1
52

)
2.

6+
5.

2
7.

8
47

(4
3)

6.
4

19
9

68
(3

83
)

80
.7

+
58

.2
13

8.
9

78
(7

12
)

52
.7

+
74

.7
12

7.
4

65
(6

1)
53

.9
29

9
10

4(
14

39
)

42
1.

5+
40

3.
4

82
5.

4
91

(1
35

6)
22

6.
9+

32
0.

7
54

7.
7

80
(7

7)
23

0.
9

39
9

15
5(

22
55

)
14

89
.0

+
13

76
.1

28
65

.2
10

7(
14

36
)

71
8.

6+
70

4.
4

14
23

.1
93

(9
2)

70
9.

7
49

9
i

i
i

11
6(

31
25

)
17

98
.6

+
20

40
.4

38
39

.1
10

4(
10

4)
12

56
6.

2.
69

9
28

(2
9)

5.
77

+
2.

7
8.

48
35

(7
0)

2.
46

+
3.

03
5.

5
34

(1
22

)
6.

28
19

9
48

(4
9)

11
8.

03
+

25
.1

1
14

3.
17

51
(8

8)
41

.2
5+

25
.1

9
66

.4
4

51
(1

78
)

53
.2

29
9

81
(1

11
)

68
6.

30
+

13
1.

49
81

7.
99

56
(9

7)
22

3.
61

+
85

.7
9

30
9.

41
54

(1
77

)
17

3.
82

39
9

10
2(

15
3)

22
92

.1
1+

47
7.

5
27

69
.7

71
(1

30
)

72
7.

06
+

23
9.

67
96

6.
73

64
(2

21
)

55
3.

78
49

9
10

1(
16

6)
54

96
.6

6+
69

9.
3

61
96

.1
1

62
(1

07
)

18
49

.8
2+

36
1.

12
22

10
.9

5
61

(2
09

)
82

3.
08

6.
2.

79
9

51
(5

1)
4.

8+
4.

9
9.

7
51

(9
0)

2.
5+

4.
2

6.
7

35
(7

0)
5.

5
19

9
62

(1
07

)
11

8.
7+

35
.6

15
4.

3
63

(2
84

)
41

.4
+

41
.8

83
.2

51
(8

8)
45

.8
29

9
68

(1
88

)
68

4.
8+

12
7.

4
81

2.
4

70
(4

93
)

21
7.

14
+

16
4.

1
38

1.
29

54
(9

4)
15

8.
7

39
9

80
(1

01
0)

22
99

.4
+

65
4.

9
29

54
.3

81
(1

01
4)

70
3.

2+
52

2.
5

12
25

.8
65

(1
09

)
51

5.
9

49
9

90
(1

17
0)

38
08

.8
+

11
50

.7
49

59
.6

87
(1

33
1)

17
33

.9
+

10
83

.6
28

17
.7

80
(1

15
)

98
9.

4

T
ab

le
7.

10
:

N
um

er
ic

al
re

su
lt

s:
di

st
ri

bu
te

d
co

nt
ro

l

186 CHAPTER 7. NUMERICAL EXPERIENCE

IP-MA27
Prob. iter time Prob. iter. time

6.1.1 99 29 27.38 1.2 99 24 23.1
199 37 349.66 199 26 258.7

6.1.2 99 1.3 99 26 22.1
199 35 339.1 199 31 269.1

6.1.3 99 24 22.52 1.4 99 27 22.9
199 27 250.28 199 33 285.1

6.1.4 99 25 22.7 1-1 119 31 48.1
199 30 269.7 179 34 406.7

6.1.5 99 24 21.7 1-0 119 35 54.6
199 26 370 179 40 581.5

Table 7.11: Boundary control problems with direct inner solver
IP-MA27

Prob. iter time
6.2.6 99 25 24.71

199 26 304.11

Table 7.12: Distributed control problems with direct inner solver

N IP-PCG2 KNITRO-I KNITRO-D
99 6 40 17

199 46 321 127
299 243 1353 759
399 799 4990 1939
499 1372 10343
599 2512 17577 7447*
699 6575 30069
799 7279
899 10290
999 20892

1099 20168
1199 27624
KNITRO: opttol=1e-9 * on 2GHz Opteron

Table 7.13: Comparison IP-PCG2-Knitro v3.1 on the test problem 6.1.1 on
a 3.2MHz Pentium 4

7.4. TABLES 187

Table 7.14: Numerical results: nonmonotone algorithm with direct inner
solver

Monotone Nonmonotone
N = 0 N = 2 N = 4 N = 9

P it b. it b. it b. it b.
6.1.1-49 27 1 26 0 26 0 26 0
6.1.2-49 30 15 – – 26 2 26 2

6.1.3 – – 25 0 25 0 25 0
6.1.4 33 6 – – – – 34 2

6.1.1-99 46 55 – – – – 33 0
6.1.2-99 – – – – – – 32 13
6.1.3-99 – – 26 1 27 0 27 0
6.1.4-99 31 0 31 0 31 0 31 0
6.1.2-199 – – – – – – 41 19
6.1.3-199 – – 26 1 27 0 27 0
6.1.4-199 29 2 32 1 32 1 32 1

188 CHAPTER 7. NUMERICAL EXPERIENCE

N
=

2
N

=
3

N
=

4
P

ro
b.

it
se

c
it

se
c

it
se

c
6.

2.
7-

19
9

62
(9

2)
11

3.
2(

34
.5

)
62

(7
7)

11
2.

1(
33

.4
)

62
(7

7)
11

2.
1(

33
.4

)
6.

2.
7-

29
9

68
(1

43
)

53
8.

5(
11

9.
4)

68
(1

13
)

53
3.

4(
11

4.
2)

68
(1

13
)

53
3.

1(
11

4)
6.

2.
7-

39
9

80
(9

95
)

21
01

.1
(1

44
7.

7)
80

(9
05

)
20

56
.5

(6
14

.1
)

80
(8

15
)

20
37

(5
89

.8
)

6.
2.

7-
49

9
90

(1
17

0)
49

59
(1

15
0)

89
(1

13
9)

49
84

.3
(1

15
4.

4)
89

(1
05

2)
48

91
.3

(1
08

2.
4)

N
=

5
N

=
7

it
se

c
it

se
c

62
(6

2)
11

1.
0(

32
.3

)
62

(6
2)

11
1.

0(
32

.3
)

68
(9

8)
53

0.
6(

11
1.

4)
68

(6
8)

52
5.

3(
10

6.
0)

80
(6

36
)

19
62

.5
(5

20
.1

)
80

(5
00

)
19

15
.2

(4
72

.7
)

89
(9

74
)

48
99

.0
(1

06
9.

1
89

(8
24

)
48

21
.5

(9
91

.6
)

N
=

2
N

=
3

N
=

4
P

ro
b.

it
se

c
it

se
c

it
se

c

6.
2.

5-
99

48
(6

3)
9.

8(
4.

8)
48

(4
8)

9.
62

(4
.5

)
48

(4
8)

9.
62

(4
.5

)
6.

2.
5-

19
9

68
(2

78
)

13
1.

4(
50

.6
)

68
(1

73
)

12
3.

7(
42

.9
)

68
(1

13
)

11
9(

38
.5

)
6.

2.
5-

29
9

10
3(

14
08

)
82

2(
39

2.
1)

10
4(

13
34

)
81

0(
38

0.
1)

10
3(

12
13

)
78

7.
1(

35
7.

2)
6.

2.
5-

39
9

14
8(

21
58

)
28

04
.1

(1
31

1.
2)

15
0(

21
45

)
28

06
.6

(1
31

3.
7)

15
0(

21
45

)
28

06
.6

(1
31

3.
7)

N
=

5
N

=
7

48
(4

8)
9.

62
(4

.5
)

48
(4

8)
9.

62
(4

.5
)

68
(9

8)
11

8.
2(

37
.4

)
68

(6
8)

11
6.

5(
35

.4
)

10
3(

99
6)

74
8.

5(
31

8.
6)

10
4(

44
9)

64
7.

8(
22

2.
6)

15
0(

21
00

)
27

90
.9

(1
29

8)
15

0(
20

14
)

27
36

.8
(1

24
4.

8)

T
ab

le
7.

15
:

R
es

ul
ts

fo
r

IP
-H

es
te

ne
s

w
it

h
no

nm
on

ot
on

e
st

op
pi

ng
an

d
ba

ck
tr

ac
ki

ng
ru

le
s

7.4. TABLES 189

Prob it. time Prob it. time
6.2.7-199 62 111(32.3) 6.2.5-99 48 9.6(4.6)
6.2.7-299 68 525.3(106) 6.2.5-199 68 116.5(35.5)
6.2.7-399 80 1456(330) 6.2.5-299 105 591.3(164.9)
6.2.7-499 91 4428.6(612.7) 6.2.5-399 156 2104.3(634)

Table 7.16: IP-Hestenes with the number of inner iterations fixed to one.

N=1 N=2 N=3 N=4
Prob. it(inn.) time it(inn.) time it(inn.) time it(inn.) time

6.2.7-99 35(70) 5.5 39(70) 5.9 42(72) 6.3 25(52) 3.9
6.2.7-199 51(88) 45.8 54(94) 48.4 62(105) 55.3 28(37) 24.3
6.2.7-299 54(94) 158.7 57(95) 167.2 73(114) 212.5 32(51) 93.8
6.2.7-399 65(109) 515.9 79(144) 630.5 32(38) 248.6 35(37) 269.9

Table 7.17: IP-PCG2 with the nonmonotone inner stopping rule

190 CHAPTER 7. NUMERICAL EXPERIENCE

Bibliography

[1] A. Altman and J. Gondzio (1999). Regularized symmetric indefinite sys-
tems in Interior–Point methods for linear and quadratic optimization,
Optim. Meth. Software, 11, 12, pp. 275–302.

[2] M. Argaez and R. A. Tapia (2002). On the global convergence of a mod-
ified augmented lagrangian linesearch Interior–Point method for non-
linear programming J. Optim. Theory Appl., 114,1, pp. 1–25.

[3] M. Argaez, R. A. Tapia and L. Velasquez (2002). Numerical com-
parisons of path–following strategies for a primal–dual interior–point
method for nonlinear programming J. Optim. Theory and Appl., 114,2,
pp. 255–272.

[4] S. Bellavia (1998). Inexact Interior–Point Method, J. Optim. Theory
Appl., 96, 1, pp. 109–121.

[5] S. Bellavia, M. Macconi and B. Morini (2004). STRSCNE: A scaled
trust region solver for constrained nonlinear equations, Comput. Optim.
Appl., 98, pp. 31–50.

[6] H. Benson, D. F. Shanno and R.J. Vanderbei (2001). Interior-Point
methods for nonconvex nonlinear programming: filter methods and
merit functions, Technical Report of Operations Research and Financial
Engineering, Princeton University, ORFE-00-06.

[7] L. Bergamaschi, J. Gondzio and G. Zilli (2003). Preconditioning indef-
inite systems in Interior Point methods for optimization, to appear on
Comput. Optim. Appl.

[8] M. Bergounioux, K. Ito and K. Kunish (1997). Primal–dual strategy for
constrained optimal control problems, SIAM J. Control Optim. 35, pp.
1524–1543.

191

192 BIBLIOGRAPHY

[9] M. Bergounioux and K. Kunish (1999). Augmented Lagrangian tech-
niques for elliptic state constrained optimal control problems, SIAM J.
Control Optim. 37, pp. 1176–1194.

[10] J. T. Betts (2001). Practical Methods for Optimal Control Using Non-
linear Programming, SIAM, Philadelphia.

[11] S. Bonettini, E. Galligani and V. Ruggiero (2004). An inexact Newton
method combined with Hestenes multipliers’ scheme for the solution of
Karush–Kuhn–Tucker Systems, Appl. Math. Comput., to appear.

[12] S. Bonettini (2004). A Nonmonotone Inexact Newton Method Optim.
Meth. Software, to appear.

[13] F. Bonnans and E. Casas (1989). Optimal control of semilinear multi-
state systems with state constraints, SIAM J. Control Optim., 27, pp.
303–325.

[14] F. Bonnans and E. Casas (1995). An extension of Pontryagin’s principle
for state–constrained optimal control of semilinear elliptic equations and
variational inequalities, SIAM J. Control Optim., 33, pp. 274–298.

[15] F. H. Branin (1972). Widely convergent method for finding multiple
solution of simultaneous nonlinear equations, IBM J. Res. Devel., 16,
pp. 504–525.

[16] J. R. Bunch and B. N. Parlett (1971). Direct methods for solving sym-
metric indefinite systems of linear equations, SIAM J. Numer. Anal.,
8, pp. 639–655.

[17] R. H. Byrd, J.C. Gilbert, and J. Nocedal (2000). A trust region method
based on Interior Point techniques for nonlinear programming, Math.
Programming A, 89, pp.149–185.

[18] R. H. Byrd, M. E. Hribar and J. Nocedal (1999). An interior point al-
gorithm for large–scale nonlinear programming, SIAM J. Optimization,
9, 4, pp. 877–900.

[19] R. H. Byrd, M. Marazzi and J. Nocedal (2002). On the convergence of
Newton iterations to non–stationary points, Report OTC 2001/01, Op-
timization Technology Center, Northwestern University, Evanston,IL.

[20] A. Canãda, J.L. Gámez and J. A. Montero (1998). Study of an optimal
control problem for diffusive nonlinear elliptic equations of logistic type,
SIAM J. Control Optim., 36, pp. 1171–1189.

BIBLIOGRAPHY 193

[21] M.D. Canon, C. D. Cullum and E. Polak (1970). Theory of Optimal
Control and Mathematical Programming, Mc Graw–Hill, New York.

[22] E. Casas (1993). Boundary control with pointwise state constraints,
SIAM J. Control Optim., 31, pp. 993–1006.

[23] E. Casas, F. Trölzsch and A. Unger (1996). Second order sufficient
optimality conditions for a nonlinear ellptic control problem, J. Anal.
Appl., 15, pp. 687–707.

[24] E. Casas, F. Trölzsch and A. Unger (2000). Second order sufficient
optimality conditions for some state constrained control problems of
semilinear elliptic equations, SIAM J. Control Optim., 38, pp. 1369–
1391.

[25] R. S. Dembo, S. C. Eisenstat and T. Steihaug(1982). Inexact Newton
methods, SIAM J. Numer. Anal., 19, pp. 400–408.

[26] J. E. Dennis and R. B. Schnabel (1983). Numerical Methods for Un-
constrained Optimization and Nonlinear Equations, Prentice–Hall, Inc.,
Englewood Cliffs, New Jersey.

[27] P. Deuflhard and A. Hohomann (1995). Numerical Analysis. A First
Course in Scientific Computation, Walter de Gruyter, Berlin–New–
York.

[28] C. Durazzi (2000). On the Newton Interior–Point method for nonlinear
programming problems, J. Optim. Theory Appl., 104, 1, pp. 73–90.

[29] C. Durazzi and V. Ruggiero (2003). Indefinitely preconditioned conju-
gate gradient method for large sparse equality and inequality constrained
quadratic problems, Numer. Linear Algebra Appl., 10, pp. 673–688 .

[30] C. Durazzi and V. Ruggiero (2003). A Newton inexact Interior–Point
method for large scale nonlinear optimization problems, Annali Univ.
Ferrara, Sez. VII, Sc. Matem. IL, pp. 333–357.

[31] C. Durazzi and V. Ruggiero (2004). Global convergence of the Newton
Interior–Point method for nonlinear programming, J. Optim. Theory
Appl. 120, pp. 199–208.

[32] C. Durazzi, V. Ruggiero and G. Zanghirati (2001). Parallel interior–
point method for linear and quadratic programs with special structure,
J. Optim. Theory Appl., 110, pp. 289–313.

194 BIBLIOGRAPHY

[33] S. C. Eisenstat and H. F. Walker (1994). Globally convergent inexact
Newton methods, SIAM J. Optimization, 4, pp. 393–422.

[34] M. El Hallabi and R. A. Tapia (1993). A global convergence theory for
arbitrary norm trust–region methods for nonlinear equations, Tech Re-
port TR93-41, Department of Mathematical Sciences, Rice University,
Houston, TX, September 1993; revised May, 1995.

[35] A. S. El–Bakry, R. A. Tapia, T. Tsuchiya and Y. Zhang (1996). On
the formulation and theory of the Newton Interior–Point method for
nonlinear programming, J. Optim. Theory Appl., 89, 3, pp. 507–541.

[36] D. K. Faddeev and V. N. Faddeeva (1963). Computational Methods
for Linear Algebra, W. H. Freeman Co., San Francisco.

[37] A. V. Fiacco and G. P. McCormick (1968). Nonlinear Programming:
Sequential Unconstrained Minimization Techniques, Wiley, New York,
reprinted by SIAM Publications, 1990.

[38] R. Fletcher and S. Leyffer (2002). Nonlinear programming without a
penalty function, Math. Programming, 91, pp. 239–269.

[39] E. Galligani (2004) Analysis of the convergence of an inexact Newton
method for solving Karush–Kuhn–Tucker systems, to appear on Atti
Sem. Matem. Fis. Univ. Modena.

[40] I. Galligani and D. Trigiante (1974). Numerical methods for solving
large algebraic systems, IAC Pubblication N. 98, ser. 3.

[41] J. Gondzio (1995).HOPDM (version 2.12)–A fast LP solver based on
a primal-dual Interior Point method, European J. Oper. Res., 85, pp.
221–225

[42] N.I.M. Gould (1985). On practical conditions for the existence and
uniqueness of solutions to the general equality quadratic programming
problem, Math. Programming, 32, pp. 90–99.

[43] J. Nocedal, M.E. Hribar and N.I.M. Gould (2001). On the solution of
equality constrained quadratic programming problems arising in opti-
mization, SIAM J. Sci. Computing, 23, 4, pp. 1375-1394.

[44] L. Grippo, F. Lampariello and S. Lucidi (1986). A nonmonotone line
search technique for Newton’s method, SIAM J. Num. Anal., 23, pp.
707–716.

BIBLIOGRAPHY 195

[45] I. Griva, D. F. Shanno and R. J. Vanderbei (2004). Con-
vergence analysis of a primal-dual interior-point method for
nonlinear programming, Technical Report downloadable from
http://www.princeton.edu/ rvdb/techreps pdf.html.

[46] M.R. Hestenes (1975). Optimization Theory. The Finite Dimensional
Case, J. Wiley & Sons, New York.

[47] C. T. Kelley (1995). Iterative Methods for Solving Linear and Nonlinear
Equations, SIAM, Philadelphia

[48] F. Leibfritz and E. W. Sachs (1994). Numerical Solution of Parabolic
State Constrained Control Problems usaing SQP and Interior–Point–
Methods, Large Scale Optimization: Stare of the Art, W. W. Hager et
al. eds., Kluwer Academic Publisher, pp. 245–258.

[49] A. Leung and S. Stojanovic (1993). Optimal control for Volterra–Lotka
equations, J. Math. Anal. Appl., 173, pp. 603–619.

[50] L. Lukšan, J. Vlček (1998). Indefinitely preconditioned Inexact Newton
method for large sparse equality constrained non–linear programming
problems, Numer. Linear Algebra Appl., 5, pp. 219–247.

[51] L. Lukšan, C. Matonoha and J. Vlček (2004). Interior–Point method for
nonlinear nonconvex optimization, to appear on Numer. Linear Algebra
Appl.

[52] B. N. Lundberg, A. B. Poore and B. Yang (1990). Smooth penalty func-
tions and continuation methods for constrained optimization, Lectures
in Applied Mathematics, SIAM, Philadelphia, 26, pp. 389–412.

[53] D.G. Luenberger (1969). Optimization by Vector Space Methods, John
Wiley and Sons, New York.

[54] D.G. Luenberger (1984). Linear and Nonlinear Programming, Addison-
Wesley Publishing Company, Reading.

[55] H. D. Mittelmann and H. Maurer (1999). Optimization techiques for
solving elliptic control problems with control and state constraints: Part
1. Boundary control, Comput. Optim. Appl., 16, pp. 29–55.

[56] H. D. Mittelmann and H. Maurer (2001). Optimization techiques for
solving elliptic control problems with control and state constraints: Part
2. Distributed control, Comput. Optim. Appl., 18, pp. 141–160.

196 BIBLIOGRAPHY

[57] H. D. Mittelmann and H. Maurer (2000). Solving elliptic control prob-
lems with Interior Point and SQP Methods: control and state con-
straints, J. Comput. Appl. Math., 120, pp. 175–195.

[58] W. Murray (1971) Analytical expressions for the eigenvalues and eigen-
vectors of the hessian matrices of barrier and penalty functions, J. Op-
tim. Theory Appl., 7, pp.189–196.

[59] (1993). J.W. Liu, E.G. Ng and B.W. Peyton; On finding supernodes for
sparse matrix computations, SIAM J. Matrix Anal. Appl., 14, pp.242–
252.

[60] J. Nocedal and S. J. Wright (1999) Numerical Optimization, Springer–
Verlag, New–York.

[61] J. M. Ortega and W. C. Rheimboldt (1970). Iterative Solution of Non-
linear Equations in Several Variables, Academic Press, New York.

[62] M. J. D. Powell (1970). A hybrid method for nonlinear equations, in P.
Rabinowitz editor, Numerical Methods for Nonlinear Algebraic Equa-
tions, Gordon and Breach, London, pp. 87–114.

[63] W.C. Rheinboldt (1998). Methods for Solving Systems of Nonlinear
Equations, Second Edition, SIAM, Philadelphia.

[64] Y. Saad (1996). Iterative Methods for Sparse Linear System, PSW Publ.
Co., Boston MA.

[65] D. F. Shanno and R. J. Vanderbei (1999). Interior-Point methods for
nonconvex nonlinear programming: orderings and higher-order meth-
ods, Technical Report of Statistics and Operations Research, Princeton
University SOR-99-5.

[66] D. F. Shanno and E. M. Simantiraki (1997). Interior–Point methods for
linear and nonlinear programming, The State of the Art in Numerical
Analysis, I.S. Duff and G. A. Warson eds., Clarendon Press, Oxford.

[67] T. Steihaug (1983). The conjugate gradient method and trust regions in
large scale optimization, SIAM J. Numer. Anal., 20, 3, pp.626–638.

[68] S. Stojanovic (1991). Optimal damping control and nonlinear elliptic
problem, SIAM J. Control Optim., 29, pp. 594–608.

BIBLIOGRAPHY 197

[69] M. Ulbrich, S. Ulbrich and L. N. Vicente (2000). A globally conver-
gent primal–dual Interior–Point filter method for nonconvex nonlinear
programming, Tecnical Report TR00–12, Department of Computational
and Applied Mathematics, Rice University, Houston, TX, USA, revised
March 2003.

[70] R. J. Vanderbei and D. F. Shanno (1999). An Interior–Point algorithm
for nonconvex nonlinear programming, Comput. Optim. Appl., 13, pp.
231–252.

[71] A. Wächter and L. T. Biegler (2004). On the implementation of an
Interior-Point filter line-search algorithm for large-scale nonlinear pro-
gramming, Research Report RC 23149, IBM T. J. Watson Research
Center, Yorktown, USA

[72] A. Wächter and L. T. Biegler (2000). Failure of global convercence for
a class of interior point methods for nonlinear programming, Math.
Programming Series A, 83, 3, pp. 565–574.

[73] A. Wächter (2002). An Interior–Point Algorithm for Large–Scale Non-
linear Optimization with Applications in Process Engineering, Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.

[74] M. H. Wright (1991). Interior methods for constrained optimization,
Acta Numerica, pp. 341–407.

[75] M. H. Wright (1995). Why a pure primal newton barrier step may be
infeasible, SIAM J. Optimization, 5, 1, pp. 1–12.

[76] M. H. Wright (1998). Ill–conditioning and computational error in inte-
rior methods for nonlinear programming, SIAM J. Optimization, 9, 1,
pp. 84–111.

[77] M. H. Wright (2004). The interior methods revolution in optimiza-
tion: history, recent developments and lasting consequences, Bulletin of
American Mathematical Society (New series), S-0273-0979(04)01040-7.

[78] S. J. Wright (2001). effects of finite precision arithmetic on interior–
point methods for nonlinear programming, SIAM J. Optim., 12, 1, pp.
36-78.

