
Inner solvers for interior point methods

for large scale nonlinear programming ∗

Silvia Bonettini1, Emanuele Galligani1, Valeria Ruggiero2

1 Dipartimento di Matematica, Università di Modena e Reggio Emilia

Via Campi 213/b, 41100 Modena, Italy
2 Dipartimento di Matematica – Sede Distaccata, Università di Ferrara

Via Saragat 1, Blocco B, 44100 Ferrara, Italy

Abstract

This paper deals with the solution of nonlinear programming problems
arising from elliptic control problems by an interior point scheme.
At each step of the scheme, we have to solve a large scale symmetric and
indefinite system; inner iterative solvers, with an adaptive stopping rule,
can be used in order to avoid unnecessary inner iterations, especially when
the current outer iterate is far from the solution.
In this work, we analyse the method of multipliers and the preconditioned
conjugate gradient method as inner solvers for interior point schemes. We
discuss the convergence of the whole approach, the implementation details
and report the results of numerical experimentation on a set of large scale
test problems arising from the discretization of elliptic control problems.
A comparison with other interior point codes is also reported.

Keywords: Large scale nonlinear programming, interior point method,
method of multipliers, preconditioned conjugate gradient method.

1 Introduction

This work is concerned with the numerical solution of large scale nonlinear
programming problems with an interior point method. In particular, we present
three effective iterative inner solvers for the solution of the perturbed system
that occurs at each step of the interior point scheme.

∗This research was supported by the Italian Ministry for Education, University and
Research (MIUR) projects: FIRB Project: “Parallel Nonlinear Numerical Optimization
PN2O” (grant n. RBAU01JYPN, http://dm.unife.it/pn2o/) and COFIN/PRIN04 Project
“Numerical Methods and Mathematical Software for Applications” (grant n. 2004012559,
http://www.math.unifi.it/ brugnano/Cofin2004/).
E–mail addresses: bonettini.silvia@unimo.it (S. Bonettini), galligani@unimo.it (E. Galligani),
rgv@unife.it (V. Ruggiero).

1

2

The first one consists of applying the method of multipliers to the perturbed
system, since it can be seen as the optimality conditions of a linear–quadratic
programming problem; at each iteration of the method of the multipliers we
solve a symmetric positive definite system using the efficient library routine of
Ng and Peyton that implements Cholesky factorization ([36]).
The second solver is the conjugate gradient method combined with the indefinite
preconditioner introduced by Lukšan in [38]; exploiting the block structure of the
preconditioning matrix, at each step of the preconditioned conjugate gradient
method, we solve, using the Ng and Peyton routine, a symmetric positive definite
system.
The third solver also uses the conjugate gradient method with Lukšan precon-
ditioner, but the symmetric indefinite system that occurs at each step of the
preconditioned conjugate gradient method is solved by a routine that imple-
ments a Cholesky–like factorization with a regularization technique; this rou-
tine, introduced in [7] and available on the website dm.unife.it/blkfclt, is called
BLKFCLT.

These iterative solvers are inserted into an interior point scheme. The chosen
interior point scheme is the one which uses the Newton iteration and the reduc-
tion of the damping parameter (sections 2 and 3). This scheme permits simple
implementation and convergence is assured in the framework of inexact Newton
methods, even if iterative inner solvers are used (subsection 5.2). Furthermore,
in this context, a nonmonotone approach can be introduced (see [5]).
In subsection 5.3 we analyse with examples convergence failures of the interior
point scheme using the Newton iteration, indicating how to detect the failure.
In Section 6, we evaluate the effectiveness of the whole scheme, as in subsection
5.1, on a set of large and sparse nonlinear programming problems that arises
from finite difference discretization of elliptic boundary or distributed control
problems ([44], [40] and [41]).
These nonlinear problems have quadratic objective function, weakly nonlinear1

equality constraints and box constraints; the involved matrices have a PDE–type
structure.
In the experiments, we compare the whole scheme with the three solvers and a
direct library routine solver. Moreover, a comparison, in terms of CPU time,
with other interior point codes is reported and we also consider the results of
the nonmonotone interior point method introduced in [5] with the third, and
most efficient, inner solver. The results highlight the efficiency of the BLKFCLT
routine.

1A continuously differentiable mapping F (u) is said to be a weakly nonlinear mapping
if it has the form F (u) = Au + G(u) where A is a matrix and G(u) is a continuously
differentiable mapping. A weakly nonlinear system F (u) = 0, where F (u) is a nonlinear
weakly nonlinear mapping ([57]), arises from the discretization of many classical semilinear
elliptic partial differential equations by the finite difference or finite element methods.

3

2 Interior point framework

Consider the following nonlinear programming problem

min f(x)
g1(x) = 0
g2(x) ≥ 0
Plx ≥ l

Pux ≤ u

(1)

where x ∈ R
n, f(x) : R

n → R, g1(x) : R
n → R

neq, g2(x) : R
n → R

m, l ∈ R
nl,

u ∈ R
nu, Pl ∈ R

nl×n, Pu ∈ R
nu×n. Pl (Pu) is given by the rows of the identity

matrix whose indices are equal to those of the entries of x which are bounded
below (above). If xi ≥ lj for some i and, simultaneously, xi ≤ uh, we assume
lj < uh. This hypothesis means that there are no fixed variables. On the other
hand, in this case, the problem can be reduced by eliminating them.
We assume that f(x), g1(x), g2(x) are twice continuously differentiable and
that standard assumptions for a constrained nonlinear programming problems
hold ([37, Chapt. 10]). We are interested in the case where (1) is a large
nonconvex problem and the first and second derivatives of the objective function
and the constraints are available.
By introducing slack variables, the problem (1) can be rewritten as

min f(x)
g1(x) = 0
g2(x)− s = 0
Plx− l− rl = 0
Pux− u + ru = 0
s ≥ 0, rl ≥ 0, ru ≥ 0

(2)

whose Karush–Kuhn–Tucker optimality conditions are

α ≡ ∇f(x)−∇g1(x)λ1 −∇g2(x)λ2 − P t
l λl + P t

uλu = 0
ε ≡ −g1(x) = 0
β ≡ −g2(x) + s = 0
γ ≡ −Plx + l + rl = 0
δ ≡ Pux− u + ru = 0
θ ≡ Λ2Sem = 0
ζ ≡ ΛlRlenl = 0
η ≡ ΛuRuenu = 0

(3)

with
s, rl, ru ≥ 0; λ2,λl,λu ≥ 0

where s,λ2 ∈ R
m, rl,λl ∈ R

nl, ru,λu ∈ R
nu and Λ2 = diag(λ2); Λl = diag(λl);

Λu = diag(λu); S = diag(s); Rl = diag(rl); Ru = diag(ru).
The vector eN indicates the vector of N components whose values are equal to
1.

4

Here ∇f(x) denotes the gradient of f(x); ∇g1(x) and ∇g2(x) are the transpose
of the Jacobian matrices of g1(x) and g2(x) respectively.
Let us indicate s̃ = (st, rt

l , r
t
u)t ∈ R

p , w̃ = (λt
2,λ

t
l ,λ

t
u)t ∈ R

p and p = m+nl +
nu; the primal–dual system (3) can be written as

H(v) = 0
s̃ ≥ 0; w̃ ≥ 0

(4)

where

v =

























x

λ1

λ2

λl

λu







w̃

s

rl

ru







s̃

























and H(v) =

























α

ε

β

γ

δ























H1(v)

θ

ζ

η

























The Jacobian matrix of H is the matrix

H ′(v) =

























Q −∇g1(x) −∇g2(x) −P t
l P t

u 0 0 0
−∇g1(x)t 0 0 0 0 0 0 0
−∇g2(x)t 0 0 0 0 I 0 0
−Pl 0 0 0 0 0 I 0
Pu 0 0 0 0 0 0 I
0 0 S 0 0 Λ2 0 0
0 0 0 Rl 0 0 Λl 0
0 0 0 0 Ru 0 0 Λu

























where Q = ∇2f(x) −∑neq

1 λ1,i∇2g1,i(x) − ∑m

1 λ2,i∇2g2,i(x) is the Hessian
matrix of the Lagrangian function of the problem (2); ∇2f(x), ∇2g1,i(x), (i =
1, ..., neq), ∇2g1,j(x), (j = 1, ...,m), are the Hessian matrices of f(x), g1,i(x),
(i = 1, ..., neq) and g1,j(x), (j = 1, ...,m), respectively.
If we solve the system (4) using Newton’s method, at each iteration k we have
to compute the vector ∆v(k) which is the solution of the Newton equation

H ′(v(k))∆v = −H(v(k)) (5)

When we consider the last p equations of the system (5), the ones related to
the complementarity conditions S̃W̃ep = 0, it can be observed that if, at an

iteration k, s̃
(k)
i = 0 (or w̃

(k)
i = 0), then s̃

(j)
i = 0 (or w̃

(j)
i = 0), for all iterations

j with j > k. It means that if the iterate reaches the boundary of the feasible
region, it sticks on the boundary even if it is far from the solution.
In order to avoid this drawback, the idea of the interior point method ([21]) is
to perturb the system (4) only in the last p equations and generate a sequence
of iterates {v(k)} satisfying the perturbed system

H(v) = ρkẽ

s̃ > 0; w̃ > 0
(6)

5

and the Karush–Kuhn–Tucker conditions (4) only in the limit. The perturbation
parameter ρk tends towards 0 when k diverges. Here ẽ = (0t

n+neq , e
t
p)

t.
By introducing a “measure” M of the system (6), expressed by the vector
Hρk

(v) = H(v) − ρkẽ (for example M(Hρk
(v)) = ‖Hρk

(v)‖)2, we can write
a general scheme for the whole class of the interior point methods:

1. Choose the initial guess v(0) such that s̃(0), w̃(0) > 0, the stopping toler-
ance tol > 0, the measureM; k = 0;

2. While M(H0(v
(k))) ≥ tol

2a. Choose the perturbation parameter ρk and inner tolerance tolρk
;

2b. Compute a new point v(k+1) such that:

M(Hρk
(v(k+1))) < tolρk

(s̃(k+1), w̃(k+1)) > 0

2c. Set k = k + 1

The scheme described above includes a wide class of methods; it allows many
choices forM, for the perturbation parameter ρk and the method used to com-
pute the new point at step 2b. Barrier function methods (see e.g. [22, §12.1])
and most of the recent interior point methods (see [58] for one of the last survey
papers and the references therein) can also be described by such a scheme.

3 An interior point method as an inexact New-

ton scheme

The Newton interior point method for nonlinear programming (1) is obtained
when step 2b of the scheme in the previous section is performed by applying
Newton’s method to the perturbed system (6); that is, at each iteration k, we
compute the solution ∆v(k) of the perturbed Newton equation

H ′(v(k))∆v = −H(v(k)) + ρkẽ (7)

Let us define ρk = σkµk, where σk ∈ [σmin, σmax] ⊂ (0, 1); if the following
condition holds

µk ≤ µ(2)
k ≡ ‖H(v(k))‖√

p
, (8)

then the solution ∆v(k) of the system (7) is a descent direction for ‖H(v)‖2
([14]). The system (7) can also be viewed as one step of an inexact Newton
scheme ([12], [20]) applied to the exact system H(v) = 0, starting from v(k).
Indeed, the solution ∆v(k) of the system (7) satisfies the residual condition of
the inexact Newton method that is written as

‖H ′(v(k))∆v(k) + H(v(k))‖ ≤ ηk‖H(v(k))‖ (9)

2Here and subsequently, the vector norm ‖ · ‖ indicates the Euclidean norm

6

with the forcing term ηk = σk ≤ σmax < 1.

Furthermore, it is easy to prove that µ
(1)
k ≡ s̃(k)t

w̃(k)

p
≤ µ

(2)
k , where µ

(1)
k is

the usual choice of perturbation parameter in the interior point method and is
strictly connected with the notion of adherence to the central path (e.g. see
[21]). Then, the choice of the perturbation parameter

µk ∈ [µ
(1)
k , µ

(2)
k] (10)

assures that ∆v(k) satisfies the residual condition of the inexact Newton method
and is a descent direction for ‖H(v)‖2.
At the same time, the range of values of the perturbation parameter is enlarged
in order to avoid stagnation of the current iterate on the boundary of the non-

negative orthant (s̃, w̃) ≥ 0 that occurs when the value of µ
(1)
k is too small and

we are far away from the solution (see Section 5 in [15]).
When the size of the system (7) is large, the computation for the exact solution
can be too expensive and then it seems convenient the system (7) to be solved
approximately. We denote ∆v(k) again as the approximate solution of the system
(7). If the coefficient matrix has a special structure, an iterative scheme can
exploit this feature. Nevertheless, the use of an iterative solver determines the
necessity to state an adaptive termination rule so that the accuracy in solving
the inner system depends on the quality of the current iterate of the outer
method.
Then, we can apply an inner iterative scheme to the perturbed Newton equation
(7) until the final inner residual

r(k) = H ′(v(k))∆v(k) + H(v(k))− σkµkẽ (11)

satisfies the condition
‖r(k)‖ ≤ δk‖H(v(k))‖ (12)

That is, we introduce a further perturbation. Obviously, the choice δk = 0
means the system (7) is solved exactly.
It is possible to prove (see [6, Theor. 1]), that, if σk ∈ (0, σmax] ⊂ (0, 1),
δk ∈ [0, δmax] ⊂ [0, 1) and σmax+δmax < 1, then the vector ∆v(k), which satisfies
(11) and (12), is a descent direction for ‖H(v)‖2 and satisfies the residual
condition (9) with the forcing term ηk = σk + δk.

The new iterate v(k+1) can be obtained by a globally convergent modification
of Newton’s method, such as a line search technique or a trust region approach.
In particular, we consider a Newton line–search interior point method (or a
damped Newton interior point method) that computes the new iterate as follows

v(k+1) = v(k) + αk∆v(k) (13)

where the damping parameter αk has to satisfy the feasibility of the new iterate
and appropriate path–following conditions (centrality conditions) and has to
guarantee a sufficient decrease in a merit function, for example of the least
squares merit function.

7

In order to satisfy all these conditions, the damping parameter αk is determined
by the following sequence of steps:

1. feasibility condition: all the iterates v(k) have to belong to the feasible
region

{v ∈ R
n+neq+2p s.t. s̃i > 0 and w̃i > 0 ∀ i = 1, ..., p}.

So, if ∆s̃
(k)
i < 0 (or ∆w̃

(k)
i < 0), αk

(1) is chosen such that s̃
(k+1)
i > 0 (or

w̃
(k+1)
i > 0);

2. centrality conditions: they are expressed by the nonnegativity of the fol-
lowing functions introduced in [21] (see also [47, p. 402]):

ϕ(α) ≡ min
i=1,p

“

S̃(k)(α)W̃ (k)(α)ep

”

− γkτ1

s̃
(k)(α)

t
w̃

(k)(α)

p

!

≥ 0 (14)

ψ(α) ≡ s̃
(k)(α)

t
w̃

(k)(α) − γkτ2‖H1(v
(k)(α))‖ ≥ 0 (15)

where s̃(k)(α) = s̃(k) +α∆s̃(k) and w̃(k)(α) = w̃(k) +α∆w̃(k); γk ∈ [12 , 1).

At each iterate we choose α̃k as large as possible such that conditions
(14)–(15) are satisfied ∀α ∈ (0, α̃k] ⊆ (0, 1]; then αk

(2) = min{α̃k, αk
(1)}.

In order to satisfy the inequalities (14) and (15) at the starting iteration,

we have τ1 ≤
mini=1,p(S̃(0)W̃ (0)

ep)

(s̃
(0)t

w̃
(0)

p
)

, and τ2 ≤ s̃
(0)t

w̃
(0)

‖H1(v(0))‖ , where we assume

s̃(0) > 0, w̃(0) > 0.

Practically, we set

τ1 = min



0.99,
10−7 ·mini=1,p

(

S̃(0)W̃ (0)
ep

)

0.5 · (s̃
(0)t

w̃
(0)

p
)



 ; τ2 = 10−7 · s̃
(0)t

w̃
(0)

‖H1(v(0))‖
(16)

3. sufficient decrease in the merit function ‖H(v)‖2: it can be obtained by
implementing the Armijo backtracking procedure as in [21] or the one in
[14]

• Set β ∈ (0, 1), θ ∈ (0, 1), α = αk
(2);

• while ‖H(v(k) + α∆v(k))‖ > (1− βα(1 − (σk + δk)))‖H(v(k))‖
α← θα

endwhile

8

We observe that the first centrality condition, ϕ(α) ≥ 0, keeps the iterates
v(k)(α) = v(k) + α∆v(k) far from the boundary of the region defined by the

bound constraints, while the second, ψ(α) ≥ 0, forces the sequence {s̃(k)t
w̃(k)}

to converge to zero slower than the sequence {‖H1(v
(k))‖}.

If the backtracking procedure terminates after t̄ steps, we denote as αk the last

value α in the backtracking rule, i.e. αk = θt̄α
(2)
k .

Let us consider the following:

P1. Suppose that α
(1)
k is bounded below by a scalar greater than zero, say α(1),

and that also α
(2)
k is bounded below by a scalar greater than zero, say α̃. Thus,

we denote α(2) = min{α(1), α̃} > 0.
P2. Suppose that the backtracking rule terminates after a finite number of
steps, then αk is bounded below by a positive scalar, say ᾰ > 0.
We have the following result.
If P1 and P2 hold (see subsection 5.2), and denoting ᾱ = min{α(2), ᾰ} > 0,
then αk ≥ ᾱ > 0 and the vector αk∆v(k) satisfies the norm condition of the
inexact Newton method:

‖H(v(k) + αk∆v(k))‖ ≤ ξk‖H(v(k))‖
with 0 < ξk ≤ ξ̄ < 1 and ξ̄ = (1− βᾱ(1− (σmax + δmax))) < 1.
Moreover, from (8), (11) and (12), it is easy to prove that the vector αk∆v(k),
k ≥ 0, also satisfies the residual condition of the inexact Newton method (9) with
the forcing term ηk = 1−αk(1− (σk + δk)) ≤ 1− ᾱ(1− (σmax + δmax)) ≡ η̄ < 1.

In subsection 5.2, we report the convergence results for the Newton line–search
interior point method described in Section 3 (see [6]). They are based on con-
vergence results of inexact Newton methods.
Furthermore, in the context of the nonmonotone inexact Newton method ([5]),
choices for αk can be used in the interior point scheme, that allow a nonmono-
tone behavior of the merit function.
Indeed, let v(ℓ(k)) be the element of the nonmonotone interior point sequence
{vk)} such that

‖H(v(ℓ(k)))‖ ≡ max
0≤j≤min(M,k)

‖H(v(k−j))‖

where k − min(M,k) ≤ ℓ(k) ≤ k. Here M ∈ N is called memory or degree of
nonmonotonicity.
If we choose the parameter µk in the larger interval with respect to the one in
(10)

µk ∈
[

s̃(k)t
w̃(k)

p
,
‖H(v(ℓ(k)))‖√

p

]

then the direction ∆v(k), computed by approximately solving the system (7),
satisfies the condition

‖H ′(v(k))∆v(k) + H(v(k))‖ ≤ (σk + δk)‖H(v(ℓ(k)))‖

9

and this direction is a nonmonotone inexact Newton step with a forcing term
equal to δk + σk. A nonmonotone backtracking rule is also introduced

‖H(v(k) + αk∆v(k))‖ ≤ (1− αkβ(1 − (δk + σk))‖H(v(ℓ(k)))‖
We observe that the nonmonotone choices involve three crucial issues: the per-
turbation parameter, the inner adaptive stopping criterion and the backtracking
rule. The first two choices influence the direction itself, while a less restrictive
backtracking rule allows larger stepsizes than in the monotone case to be re-
tained.
Convergence properties and numerical experiences of this nonmonotone interior
point method are investigated in [5].

4 Iterative solvers for interior point iteration

We focus our attention on the solution of the linear system (7) that, by omitting
the iteration index k, can be written as














































Q∆x−∇g1(x)∆λ1 −∇g2(x)∆λ2 − P t
l ∆λl + P t

u∆λu = −α

−∇g1(x)t∆x = −ε

−∇g2(x)t∆x + ∆s = −β

−Pl∆x + ∆rl = −γ

+Pu∆x + ∆ru = −δ

S∆λ2 + Λ2∆s = −θ + ρem

Rl∆λl + Λl∆rl = −ζ + ρenl

Ru∆λu + Λu∆ru = −η + ρenu

From the complementarity equations we can deduce

∆s̃ =





∆rl

∆ru

∆s



 =





Λ−1
l [−Rl∆λl − ζ + ρenl]

Λ−1
u [−Ru∆λu − η + ρenu]
Λ−1

2 [−S∆λ2 − θ + ρem]





and then

∆w̃ =





∆λl

∆λu

∆λ2



 =





R−1
l [−ΛlPl∆x + Λlγ − ζ + ρenl]

R−1
u [ΛuPu∆x + Λuδ − η + ρenu]

S−1[−Λ2∇g2(x)t∆x + Λ2β − θ + ρem]





where ∆x and ∆λ1 are the solutions of the system in a condensed form
(

A B
Bt 0

)(

∆x

∆λ1

)

=

(

c

q

)

(17)

with

A = Q+∇g2(x)S−1Λ2∇g2(x)t + P t
l R

−1
l ΛlPl + P t

uR
−1
u ΛuPu

B = −∇g1(x)
c = −α−∇g2(x)S−1[Λ2g2(x) + ρem]− P t

l R
−1
l [Λl(Plx− l)− ρenl]−

−P t
uR

−1
u [Λu(Pux− u) + ρenu]

q = −ε

10

The system (17) is symmetric and indefinite and can be solved by sparse Bunch–
Parlett triangular factorization ([8]), that combines dynamic reordering for the
sparsity preserving and pivoting technique for numerical stability (such as the
algorithm implemented in the MA27 routine of HSL Library ([31])) or by con-
sidering an inertia–controlling factorization ([23]).
For systems arising from large scale nonlinear programming problems, the use
of direct methods can be very expensive and memory consuming. Then, in the
framework of direct methods, different approaches have been devised to avoid
the use of direct solvers. Some interior point schemes reduce (by elimination
techniques like the one above) the symmetric system (7) into a quasidefinite
form3 ([53]), that allows a Cholesky–like factorization. This factorization is
more convenient since it avoids the use of pivoting techniques (for the numer-
ical stability, see [28]). Furthermore, it enables an a priori determination of a
sparsity preserving reordering of the coefficient matrix (taking only its struc-
ture into account) and the symbolic Cholesky factor. Then, at each iteration,
only the computation of the Cholesky factor has to be performed, saving a lot
of CPU time. The reduction of a coefficient matrix into a quasidefinite form
can be obtained by a regularization technique, consisting of adding a convenient
diagonal matrix D̃ (e.g. see [54], [51], [2]) to this matrix. In [2] the matrix D̃
can be dynamically determined throughout the computation of the Cholesky
factor: when a critical pivot is reached, this is perturbed by a small quantity
with a convenient sign. This also prevents numerical instability.
This regularization approach requires the implementation of additional recovery
procedures involving several factorizations; for example to determine a pertur-
bation that is as small as possible ([54]) or to implement an iterative refinement
if the computed solution of the perturbed system is not satisfactory ([2]).
A different approach that avoids perturbations of the matrices of the subprob-
lems is the use of iterative inner solvers for (17), that exploit the sparsity of
the involved matrices, andapproximately solve the inner subproblems avoiding
unnecessary inner iterations when we are far from the solution (i.e. at the initial
outer iterations).
As seen in the previous section, the Newton line–search interior point method
(13) combined with an inner iterative solver can be viewed as an inexact Newton
method and we can deduce a suitable adaptive stopping rule for the inner solver
that assures the global convergence and local superlinear convergence of the
whole outer–inner scheme ([6], [19]).
We remark that, when the solution ∆v(k) is computed by approximately solving
the perturbed Newton equation (7) rewritten in the condensed form (17), the
further perturbation that the inner solver introduces on the residual (11), only
appears in the first two block–rows. That is, if we partition the residual r(k)

3A matrix

„

S V

V T −U

«

is quasidefinite if S and U are symmetric positive definite ma-

trices. A quasidefinite matrix is strongly factorizable, i.e. a Cholesky–like factorization LDLT

(with a diagonal matrix D and a lower triangular matrix L with diagonal elements equal to
one) exists for any symmetric permutation of the quasidefinite matrix. The diagonal matrix
D has a number of positive (negative) diagonal entries equal to the size of S (U respectively).

11

commensurately as v(k), we have

r(k) =









r
(k)
1

r
(k)
2

0
0









;

(

r
(k)
1

r
(k)
2

)

=

(

A B
Bt 0

)(

∆x

∆λ1

)

+

(

c

q

)

(18)

Here, remember that A, B, c, q, ∆x and ∆λ1 are dependent on the outer
iteration k.
In the following two subsections, we consider two different iterative methods
and discuss their implementation in the interior point scheme.

4.1 The method of multipliers

Suppose that the matrices A and B of the system (17) satisfy the following
conditions:

• Bt is a full row rank matrix;

• A is symmetric and positive definite on the null space of Bt: N (Bt) =
{x ∈ R

n : Btx = 0}.

These conditions assure that the matrix

M =

(

A B
Bt 0

)

(19)

is nonsingular ([37, p. 424]). We note that these assumptions are the standard
assumptions for the local sequential quadratic programming (SQP) method ([47,
p. 531])
The system (17) can be viewed as the Lagrange necessary conditions for the
minimum point of the following quadratic problem

min 1
2∆xtA∆x− ct∆x

Bt∆x− q = 0

This quadratic problem can be solved efficiently using the method of multipliers
4.
Starting from ∆λ

(0)
1 = 0 and ∆x(0) = 0, the method consists of updating the

dual variable from the rule

∆λ
(ν+1)
1 = ∆λ

(ν)
1 + χ(Bt∆x(ν) − q) (20)

4The method of multipliers [33, Chapt. 5, §10, p. 307], was originally suggested by Hestenes
in [32]; an equivalent method motivated from a different viewpoint has been proposed by
Powell in [48]. See [37, Chapt. 13] for the dual viewpoint of the method.
In [25] it is shown that the method of multipliers for equality constrained least squares prob-
lems is equal to the method of weighting [52] for a particular choice of the starting point.

12

where χ is a positive parameter (penalty parameter) and ∆x(ν) minimises the
augmented Lagrangian function of the quadratic problem

Lχ(∆x,∆λ
(ν)
1) =

1

2
∆xtA∆x−∆xtc+∆λ

(ν)
1

t

(Bt∆x−q)+
χ

2
(Bt∆x−q)t(Bt∆x−q)

This means that ∆x(ν) is the solution of the linear system of order n

(A+ χBBt)∆x = −B∆λ
(ν)
1 + c + χBq (21)

We remark that if we premultiply the augmented system (17) for an appropriate
matrix, we have

(

I χB
0 I

)(

A B
BT 0

)(

∆x

∆λ1

)

=

(

I χB
0 I

)(

c

q

)

then, changing the sign to the last block-row, we have

(

A+ χBBT B
−BT 0

)(

∆x

∆λ1

)

=

(

c + χBq

−q

)

If we split the coefficient matrix of this last system into:

(

A+ χBBT B
−BT 0

)

= D − L− U

with

D =

(

A+ χBBT 0
0 1

χ
I

)

; L =

(

0 0
BT 0

)

; U =

(

0 −B
0 1

χ
I

)

;

and apply the Gauss-Seidel method (SOR–like method in [30] with ω = 1, see
also [35]), we obtain the two iterations of the method of multipliers (20)–(21)
(see also [29]).
Moreover, we note that, since Bt has full row–rank, the null space of BBt is
equal to the null space of Bt and therefore the matrix A is positive definite on
the null space of BBt.
Then, from the theorem in ([37, p. 408]), there exists a positive parameter χ∗

such that for all χ > χ∗, the matrix A+ χBBt is positive definite.

This last result enables us to solve the system (21) by applying a Cholesky
factorization.
Even though we do not have an analytical way of determining the parameter
χ, we observe that, for any x 6= 0, we must have xt(A + χBBt)x > 0. When
Btx = 0, we have xtAx > 0.
If Btx 6= 0, xtBBtx > 0. Then, it follows that

χ > max(0, max
x 6∈N (Bt)

−xtAx

xtBBtx
)

13

Since ‖A‖ ≥ (−xtAx)/(xtx) for any natural norm and also for the Frobenius
norm ‖ · ‖F , and xtBBtx/(xtx) ≥ τmin, where τmin is the minimum nonzero
eigenvalue of BBt or of BtB, we can choose χ as the following value:

χ =
‖A‖F
tmin

where tmin is the minimum between 1 and the smallest positive diagonal element
of BtB. Although tmin ≥ τmin, tmin is an approximation of τmin ([26]).
As pointed out in [29], this tentative value may be a good choice, since it is
fairly close to the minimum of the condition number of A+χBBt with respect
to χ.
Furthermore, in order to avoid the value of χ being too small (the matrix is not
positive definite) or too large (too ill–conditioned system), it is convenient to
use safeguards:

χ = min(max(χmin,
max{‖A‖F , 1}

tmin

), χmax) (22)

For the test problems considered in the section Numerical Experiments, χmin =
107 and χmax = 108.
For an analysis of the conditioning of the system (21) and on the behaviour of
the method of multipliers with a normalization matrix see [26] and [13, §6].
Let us consider the implementation details of the method, assuming that the
matrices Q and Bt are stored in a column compressed format ([50]).

In the cases of the test problems in the numerical experiments section, the
inequality constraints are box constraints, then the matrices A and Q have the
same structure and differ only in the diagonal entries.
Thus, the method of multipliers requires:

• for any outer iteration, the computation of the matrix T = A+χBBt and
its Cholesky factorization T = LnL

t
n;

• for any inner iteration ν, the sparse matrix–vector products B(−∆λ
(ν)
1 +

χq) and Bt∆x(ν) and the solution of the triangular systems related to Ln

and Lt
n.

The computational complexity of any inner iteration is negligible with respect
to the operations required at any outer iteration.
When BBt is sufficiently sparse, in order to save a lot of CPU time, before
starting the outer scheme, we can perform a preprocessing procedure, executing
the following steps:

• the formation of a data structure for storing the indices of the nonzero
entries of the lower triangular part of T : for any nonzero entry of T , in
the same data structure we also store the pairs of indices of the elements of
B and Bt that give a nonzero contribution in the scalar product forming

14

the entry; this task can be expensive since we have to investigate the
O(n2/2) entries of the lower part of T and for each (i, j) entry, we have
to identify the nonzero pairs among the neq pairs of elements of the i–th
and j–th columns of BT ;

• the computation of the symbolic Cholesky factorization of the sparse sym-
metric and positive definite matrix T by the Fortran package (version 0.3)
of Ng and Peyton (included in the package LIPSOL, downloadable from
www.caam.rice.edu/˜zhang/lipsol); the multiple minimum degree reorder-
ing of Liu used to minimise the fill–ins in Ln and the supernodal block
factorization enables us to take advantage of the presence of the cache
memory in modern computer architecture ([36]).

Thus, in the numerical results, the time for solving a nonlinear programming
problem using the interior point scheme combined with the method of multi-
pliers can be subdivided into two parts: the preprocessing time and the time
for computing the solution. We observe that the preprocessing time is depen-
dent on the strategy used to perform the matrix–matrix products needed in the
method for computing T .
We denote IP–MM, the interior point method with the method of multipliers
as inner iterative solver.

4.2 Preconditioned conjugate gradient method

Another approach for the solution of the symmetric and indefinite system (17)
that occurs at each iteration of an interior point method, is the preconditioned
conjugate gradient (PCG) method (see e.g. [4], [11], [16], [17], [27], [38], [39],
[34]).
The PCG method, with the preconditioning matrix M̄ , for the solution of the
system (17)

My = b

where M is given by (19), y = (∆xt,∆λt
1)

t and b = (ct, qt)t requires at any
iteration the computation of the matrix–vector product Mp and the solution of
the linear system M̄d = r̂ ([47, p. 118])
The matrix–vector product Mp does not require the explicit computation of the
matrix A of system (17); indeed, if we set the n×pmatrix C = (∇g2(x), P t

l , P
t
u),

and the p × p diagonal matrices S̃ = diag(s̃) and W̃ = diag(w̃), respectively,
then, the matrix A becomes A = Q+ CS̃−1W̃Ct.
The computation of t = Mp, where p = (pt

1,p
t
2)

t, t = (tt
1, t

t
2)

t (p1, t1 ∈ R
n,

p2, t2 ∈ R
neq), can be carried out as

• t1 ← Ctp1

• t̂← S̃−1W̃ t1

• t1 ← C t̂

• t1 ← t1 +Qp1 +Bp2

15

• t2 ← Btp1

Here t̂ is a temporary array of size p.
In this work, we consider the indefinite preconditioner introduced by Lukšan in
[38]:

M̄ =

(

Ā B
Bt 0

)

=

(

I 0
BtĀ−1 I

)(

Ā 0
0 −BtĀ−1B

)(

I Ā−1B
0 I

)

(23)
where Ā is a positive diagonal approximation of A. We refer to [38] for the
spectral properties of the conjugate gradient method with this preconditioner.
The diagonal matrix Ā = diag(āii) is chosen as follows

āii =

{

aii = qii +
∑p

j=1 c
2
ijw̃j/s̃j if aii > 10−8

1.5 · 10−8 otherwise.
i = 1, ..., n (24)

where w̃j and s̃j , j = 1, ..., p are the components of the vectors w̃ and s̃ re-
spectively, the coefficients cij , i = 1, ..., n, j = 1, ..., p, are the entries of the
n×p matrix C defined above and qii, i = 1, ..., n, are the diagonal entries of the
matrix Q.
The solution of the linear system

M̄d = r̂ (25)

where M̄ is given by (23), d = (dt
1,d

t
2)

t and r̂ = (r̂t
1, r̂

t
2)

t, (d1, r̂1 ∈ R
n,

d2, r̂2 ∈ R
neq) can be carried out in two different ways.

The first method exploits the block structure of the matrix (23) while the second
solves the system (25) directly by introducing a regularisation technique on the
preconditioning matrix M̄ , in order to assure that it allows a Cholesky–like
factorization.
The two different techniques used to compute the solution of system (25) pro-
duce different performances, especially for large scale problems.
In the first case, at the beginning of the PCG method, we compute the sym-
metric positive definite matrix T = BtĀ−1B and its Cholesky factorization
T = LneqL

t
neq; then, taking into account M̄−1 from (23), the solution of (25)

can be determined by the following procedure

• d1 ← Ā−1r̂1

• d2 ← r̂2 −Btd1

• t̂← −L−1
neqd2

• d2 ← L−t
neq t̂

• d1 ← d1 − Ā−1Bd2

Here t̂ is a temporary array of size neq.
As in the implementation of the method of multipliers, when BtĀ−1B is suffi-
ciently sparse, a preprocessing routine executes:

16

• the formation of a data structure for storing the information needed to
compute the matrix T ;

• the determination of the minimum degree reordering of T and its symbolic
Cholesky factor.

For this last part and to compute the elements of Lneq, we use the Ng and
Peyton package.
We observe that this approach can be more convenient with respect to the
IP–MM method on two levels:

• at the preprocessing phase we have to compute the entries of the neq×neq
matrix BtĀ−1B instead of the ones of the n× n matrix A+ χBBt;

• at the solution phase, at any iterate of the inner solver, we have to solve
positive definite linear systems with the coefficient matrix BtĀ−1B instead
of A+ χBBt and neq < n.

Nevertheless, the formation of the data structure phase can be expensive since
we have to investigate the O(neq2/2) entries of the lower part of T and for each
(i, j) entry, we have to identify the nonzero pairs among the n pairs of elements
of the i–th and j–th columns of B.
We denote IP–PCG1, the interior point method with the preconditioned con-
jugate gradient as inner solver, with preconditioning matrix M̄ as in (23), and
the solution of the system (25) computed as described above.

The other method used to compute the solution of the system (25) uses the
property that the matrix M̄ can be factorized in a Cholesky–like form

Ln+neqDL
t
n+neq, (26)

where Ln+neq is a lower triangular matrix with diagonal entries equal to one and
D is a nonsingular diagonal matrix. In this way, the computation of the product
BtĀ−1B can be avoided but the factorization applied to M̄ can produce many
fill–ins. Furthermore, the application of a minimum degree reordering to M̄ does
not ensure that the symmetrically permuted matrix PM̄P t can be factorized in
the Cholesky–like form.
Nevertheless, using the regularisation technique described in [2] for M̄ , we can

compute the Cholesky–like factorization of a new matrix ¯̄M given by

¯̄M = M̄ +

(

R1 0
0 −R2

)

where R1 and R2 are nonnegative diagonal matrices such that P ¯̄MPT admits a
factorization of the form (26). The computation of R1 and R2 can be dynami-
cally obtained during the factorization procedure in order to reduce the pertur-
bation. If a pivot di is too small (|di| < 10−15 maxj<i |dj |), we put di =

√
eps

if 1 ≤ i ≤ n, or di = −√eps if n+ 1 ≤ i ≤ n+ neq, where eps is the machine
precision.

17

This approach is used in [4] for linear and quadratic programming problems
with equality and box constraints.
The Cholesky–like factorization of ¯̄M can be obtained by modifying the Ng and
Peyton package that maintains the efficient use of the cache memory. This pack-
age, called BLKFCLT, introduced in [7], can be downloaded from the website
dm.unife.it/blkfclt.
We denote IP–PCG2, the interior point method with the preconditioned con-
jugate gradient as the inner solver, with preconditioning matrix M̄ , as in (23),
and the solution of the system (25) computed by the package BLKFCLT.

5 Analysis of the convergence

5.1 Formulation of the algorithm

In this subsection, we state the damped Newton interior point algorithm as
described in the previous sections.
The algorithm can be formulated as follows:

• set v(0) s.t. s̃(0) > 0 and w̃(0) > 0;

• set the backtracking parameters β, θ ∈ (0, 1) and the centrality conditions
parameters τ1 and τ2, as in (16) with γk = 1

2 ; set the tolerance ǫexit > 0;

• for k = 0, 1, ... until the stopping rule is satisfied:

– set µk ∈ [µ
(1)
k , µ

(2)
k], δk ∈ [0, 1); σk > δk(1 + 1

2τ2) with σk + δk < 1;

– compute the solution ∆v(k) by solving the system (17) with a direct
or an iterative process. In this last case, the stopping rule satisfies
the condition (12), that is:

‖r‖ ≤ max(5ǫexit, δk‖H(v(k))‖)

where r is the inner current residual and is computed as in (18);

– find α such that s̃ = s̃(k) +α∆s̃(k) > 0 and w̃ = w̃(k) +α∆w̃(k) > 0
(feasibility conditions), i.e. (θ̂ < 1):

α ≡ α(1)
k = min

(

min

(

min
∆s̃

(k)
i

<0

−s̃(k)
i

∆s̃
(k)
i

, min
∆w̃

(k)
i

<0

−w̃(k)
i

∆w̃
(k)
i

)

θ̂, 1

)

(27)

– if necessary reduce the parameter α
(1)
k , by multiplying by a positive

factor θ̆ < 1, until the centrality conditions (14)–(15) are satisfied5.

Denote α
(2)
k the obtained value;

5In the experiments, we use an adaptive rule for θ̂ as in [3]; that is, if the result of the
minimum in (27) is less then 1 we have

θ̂ = max
“

0.8,min(0.9995, 1 − 100(s̃(k)t
w̃

(k)))
”

18

– apply the backtracking procedure [14]:

set α = αk
(2);

while ‖H(v(k) + α∆v(k))‖ > (1− βα(1 − (σk + δk)))‖H(v(k))‖
α← θα

endwhile

Denote αk the value of α at the final backtracking step;

– v(k+1) = v(k) + αk∆v(k)

Here, the outer iterations stop when the outer residual ‖H(v(k))‖ satisfies

‖H(v(k))‖ ≤ ǫexit

5.2 Convergence of the inexact Newton method for Karush–

Kuhn–Tucker systems

The analysis of the convergence of the damped Newton interior point algorithm
as described above, can be developed as an analysis of the convergence of the
inexact Newton method for solving Karush–Kuhn–Tucker systems.
Given ǫ ≥ 0, we define

Ω(ǫ) =
{

v : 0 ≤ ǫ ≤ ‖H(v)‖2 ≤ ‖H(v(0))‖2, s. t.

min
i=1,p

(

S̃W̃ep

)

≥ τ1
2

(

s̃tw̃

p

)

s̃tw̃ ≥ τ2
2
‖H1(v)‖

}

(28)

Let us assume that the following conditions hold [18] (see also [21] and [14]):

C1 in Ω(0), f(x), g1(x), g2(x) are twice continuously differentiable; the gra-
dients of the equality constraints are linearly independent and H ′

1(v) is
Lipschitz continuous;

C2 the sequences {x(k)} and {w̃(k)} are bounded;

C3 for any Ωs̃, the matrix H ′(v) is nonsingular. The set Ωs̃ is a compact
subset of Ω(0) where s̃ is bounded away from zero.

The condition C3 is equivalent to the condition that the matrix M of (19) is
nonsingular for any Ωs̃.
In general, in the literature, the condition C3 is replaced by a sufficient condition
to ensure that C3 holds.

otherwise, if ∆v
(k) does not bring the new iterate out of the feasible region, we set

θ̂ = max
“

0.8, 1 − 100(s̃(k)t
w̃

(k))
”

Furthermore, we set θ̆ = 0.5.

19

For example, a sufficient condition is to require that, for any Ωs̃, the matrix A
is symmetric and positive definite on the null space of Bt and Bt is a full row
rank matrix. Another sufficient condition is to require that, for any Ωs̃, the
matrices A and BtA−1B are nonsingular.
The boundedness of the sequence {x(k)} can be ensured by enforcing box con-

straints −li ≤ x(k)
i ≤ li for a sufficiently large li > 0, i = 1, ..., n.

The proof of the global convergence of the sequence {v(k)} generated by the
damped Newton interior point method consists of showing the following: given
any ǫ > 0, as long as the iteration sequence {v(k)} satisfies

{v(k)} ⊂ Ω(ǫ), ǫ > 0,

then, the step sequence {∆v(k)} and the steplength sequence {αk} are uniformly
bounded above and away from zero, respectively. Following the convergence the-
ory of the inexact Newton methods, we obtain the convergence of the algorithm.
For the sequence {v(k)} generated by the damped Newton interior point algo-
rithm, the following statements hold ([21], [6]):

(a) Ω(ǫ), ǫ ≥ 0, is a closed set;

(b) the sequence {v(k)} ⊂ Ω(0);

(c) when {v(k)} ⊂ Ω(ǫ) with ǫ > 0, the sequences {s̃(k)t
w̃(k)} and {s̃(k)

i w̃
(k)
i },

i = 1, . . . p, are bounded above and below away from zero;

(d) when {v(k)} ⊂ Ω(ǫ), with ǫ > 0, then {v(k)} is bounded above and the

sequences {s̃(k)
i } and {w̃(k)

i } are bounded away from zero;

(e) when {v(k)} ⊂ Ω(ǫ), with ǫ > 0, the sequence of matrices {H ′(v(k))−1} is
bounded and, since σk + δk < 1, the sequence of search steps {∆v(k)} is
bounded.

For the proofs of (a), (b), (c), see [21]; for (d), (e) see the proof of Theorem 2
in [6].
Hence, as a consequence, we will see that the damping parameter is uniformly
bounded away from zero.
Since the final value of the damping parameter is obtained after satisfaction of
the feasibility, path–following conditions and backtracking reduction, we sepa-
rate the analysis into three steps.

1. (Feasibility) It is easy to see that α
(1)
k in (27) is bounded away from zero,

i.e. α
(1)
k ≥ α(1) > 0, since, for any iteration k, s̃

(k)
i and w̃

(k)
i are bounded

away from zero and ∆s̃
(k)
i and ∆w̃

(k)
i are bounded above, for i = 1, ..., p.

2. (Path–following) When the sequence of the damped Newton interior point
method {v(k)} ⊂ Ω(ǫ), ǫ > 0, since σk ∈ [σmin, σmax] ⊂ (0, 1) and δk ∈
[0, δmax] ⊂ [0, 1), and

σk > δk(1 + γkτ2) (29)

then

20

• if ψ(k)(0) ≥ 0, there exists a positive number α̌
(2)
k > 0, such that

ψ(k)(α) ≥ 0 for all α ∈ (0, α̌
(2)
k];

• if ϕ(k)(0) ≥ 0, there exists a positive number α̂
(2)
k > 0, such that

ϕ(k)(α) ≥ 0 for all α ∈ (0, α̂
(2)
k].

For the proof, see the one in Theorem 3 in [6], which runs like that of
Lemma 6.3 in [21].

Thus we have
min{α̂(2)

k , α̌
(2)
k , 1} ∈ (0, 1] ≥ α̃ > 0

Then, α
(2)
k ≥ α(2) = min{α(1), α̃} > 0.

In [6, Prop. 1] it is proved that the strict feasibility of the initial vectors

s̃(0) > 0 and w̃(0) > 0 is sufficient to guarantee the nonnegativity of the
centrality functions ϕ(α) and ψ(α) at each iterate k.

3. (Backtracking) As shown in [6, Theor. 4], under the conditions C1, C2
and C3, as long as the iteration sequence {v(k)} ⊂ Ω(ǫ), ǫ > 0, the while
loop of the backtracking procedure of the damped Newton interior point
algorithm, terminates in a finite number of steps (see also [20, Lemma
5.1]).

Thus, by P1 and P2, the damping parameter αk is bounded below away from
zero and the damped Newton interior point step αk∆v(k) satisfies the norm and
residual conditions of the inexact Newton method.
Hence, here we report the convergence theorem for the damped Newton interior
point method, based on the fundamental convergence theorem of the inexact
Newton method ([49, Theor. 6.7]).

Theorem. Suppose that the assumptions C1, C2 and C3 hold. Suppose that
σk ∈ [σmin, σmax] ⊂ (0, 1), δk ∈ [0, δmax] ⊂ [0, 1), σmax + δmax < 1 and σk >
δk(1+γkτ2). Then, the damped Newton interior point algorithm, with ǫexit = 0,

generates a sequence {v(k)} such that:

(i) the sequence {‖H(v(k))‖} converges to zero and each limit point of the
sequence {v(k)} satisfies the Karush–Kuhn–Tucker conditions (3) for (1)
and (2);

(ii) if the sequence {v(k)} converges to v∗ with H ′(v∗) nonsingular matrix,
σk = O(‖H(v(k))‖ζ), 0 < ζ < 1, and δk = O(‖H(v(k))‖), then there
exists an index k̄ such that αk = 1 for k ≥ k̄. Thus, the damped Newton
interior point method has a superlinear local convergence.

Proof. (i) The sequence {‖H(v(k))‖} is monotone, nonincreasing and bounded.
Hence, this sequence has a limit H∗ ∈ R. If H∗ = 0, we have the result.
Suppose, by contradiction, that H∗ > 0. Then the sequence {v(k)} ⊂ Ω(ǫ)

with ǫ = (H∗)2 > 0. Since {v(k)} is bounded above, then it possesses limit
points (Bolzano–Weierstrass Theorem [1, p. 54]). Let v∗ be one of these limit

21

points. Then, there is a subsequence of {v(k)} that converges to v∗. Denoting
this converging subsequence from {v(ki)}, we have that v(ki) → v∗ as ki →∞.
Since H(v) is continuous, it follows that H(v(ki))→H(v∗) and ‖H(v(ki))‖ →
‖H(v∗)‖. But ‖H(v(ki))‖ → H∗. Therefore, ‖H(v∗)‖ = H∗.
This implies that v∗ belongs to Ω(ǫ), ǫ > 0; then, the matrixH ′(v∗) is invertible.
Consequently from Theorem 6.7 in [49, p. 70] (see also Theorem 6.1 in [20]), we
deduce that H(v∗) = 0. This contradicts our assumptions that H∗ > 0. Hence,
the sequence {H(v(k))} must converge to zero.
Moreover, the limit point v∗ satisfies H(v∗) = 0 and (s̃∗, w̃∗) ≥ 0, i.e., v∗

satisfies the KKT conditions for the problem (1).
(ii) See part (c) of the proof in Theorem 5 in [6]. �

5.3 On the global convergence

In this subsection, we briefly make some remarks on cases of global convergence
failure of the damped Newton interior point method. Obviously, when it hap-
pens, at least one of the sufficient conditions C1–C3 for the convergence is not
satisfied.
We will check some small examples.
Let us consider, for instance, the example in [56] where it is stressed that algo-
rithms which use the Newton direction could fail:

minx
x2 ≥ −a
x ≥ b

As pointed out in [18, Example 3.1], when the initial point is taken as x(0) = −3,

w̃(0) = e2 (a = −1, b = 1), the damped Newton interior point method generates
a sequence which is not convergent to the optimal solution x∗ = 1. In this case,
as observed in [18], the sufficient condition on the boundedness of the sequence

of the inequality multipliers {w̃(k)} is not satisfied.

Indeed, the values of w̃(k) increase and the values of s̃(k) become very small

with respect to (s̃(k)t
w̃(k))/p. This is a case where the sequence generated by

the damped Newton interior point iteration tends towards a solution which does
not belong to the feasible region.
On the other hand, if we start with x(0) = 3, w̃(0) = e2, the sequence {w̃(k)} is
bounded and the algorithm converges to the solution.
Thus, an increase in the values of the sequence {w̃(k)} shows that the sequence
of the solution could not converge and then, another choice of initial point is
recommended.
Moreover, we observe that the sufficient condition (C4) in [21] of linear inde-
pendence of the gradients of the active constraints is violated here, either if we
start from a bad or good initial point. Thus, the condition on the boundedness
of the inequality multipliers is more general with respect to the condition (C4)
in [21].

22

ν k x s rl λ2 λl s̃tw̃/2 ‖H(v)‖

0 - 3.0 1.0 1.0 1.0 1.0 1.0 10.58
1 - 0.69 1.38 0.63 1.0 · 10−5 1.31 0.41 2.3
2 0 1.58 0.90 0.12 1.0 · 10−5 1.11 6.7 · 10−2 0.76
- 1 1.46 0.95 0.34 0.26 0.22 0.16 0.33
- 2 1.16 0.19 0.11 0.31 0.25 4.3 · 10−2 0.17
- 3 1.05 3.8 · 10−2 3.3 · 10−2 0.34 0.26 1.1 · 10−2 6.3 · 10−2

- 4 1.01 7.6 · 10−3 8.0 · 10−3 0.36 0.27 2.4 · 10−3 1.6 · 10−2

- 5 1.00 1.5 · 10−3 1.7 · 10−3 0.36 0.27 5.0 · 10−4 3.5 · 10−3

- 6 1.00 1.5 · 10−4 1.7 · 10−4 0.37 0.27 5.1 · 10−5 3.6 · 10−4

Table 1: Polyalgorithm for Example 3.1 in [18]

An example of large scale nonlinear programming problem, for which the damped
Newton interior point method gives the same behaviour, is still given in [18, Ex-
ample 3.2].
A way to compute a suitable starting point could be to execute some steps of
the gradient projection method (e.g. see [37, §11.4, p. 330]), before starting
with the damped Newton interior point method.
In Table 1, we report the number of iterations and the values of the primal
and dual variables of the sequence generated by the polyalgorithm composed
of the gradient projection method, with the Armijo backtracking procedure for
the merit function ‖H(v)‖2 and, the damped Newton interior point method for
Example 3.1 in [18].
The result shows that only two iterations ν of the gradient projection method are
necessary to enter a good region for the damped Newton interior point method.

Finally, we consider Example 3 of nonlinear programs in [10]

min 1
3 (x− 1)3 + x

x ≥ 0

where it is stressed that Newton iteration with a decrease in the merit function
‖H(v)‖2 fails, since the Newton direction becomes orthogonal to the gradient
of the merit function.
If we indicate ϑk the angle between the opposite of the direction of the damped
Newton interior point method and the gradient of ‖H(v)‖2, at the iteration k,
in [24] it is shown that,

cosϑk ≥
1− ηk

2K(H ′(v(k)))

where K(H ′(v(k))) = ‖H ′(v(k))‖ · ‖H ′(v(k))−1‖ indicates the condition number
of the Jacobian matrix at the point v(k) and ηk is the forcing term.
If the matrix H ′(v(k)) becomes nearly singular, then condition C3 does not
hold and then the condition number might be not bounded since the sequences
{‖H ′(v(k))‖} and/or {‖H ′(v(k))−1‖} are not bounded. This is the case in this

23

k x ‖H(v)‖ α 1 − η cos ϑ K(H′(v))
0 2 1.73205 0.80 0.48 0.76 2.88
1 1.30667 0.844158 5.3 · 10−7 3.2 · 10−7 2.7 · 10−4 9590.65
2 0.49322 0.825476 3.3 · 10−6 2.0 · 10−6 8.5 · 10−4 3082.29
3 0.49535 0.825476 3.1 · 10−5 1.8 · 10−5 2.0 · 10−3 1309.26
4 0.50103 0.825475 2.0 · 10−4 1.2 · 10−4 6.5 · 10−3 398.28
5 0.51249 0.825473 9.4 · 10−4 5.6 · 10−4 1.5 · 10−2 168.49
6 0.53582 0.825406 3.8 · 10−3 2.3 · 10−3 3.2 · 10−2 80.27
7 0.58411 0.825049 1.4 · 10−2 8.4 · 10−3 6.0 · 10−2 42.08
8 0.68787 0.823723 2.0 · 10−2 1.2 · 10−2 8.7 · 10−2 28.22
9 0.80922 0.821058 2.7 · 10−3 1.6 · 10−3 4.7 · 10−2 51.66
10 0.84640 0.817953 5.1 · 10−4 3.1 · 10−4 1.7 · 10−2 139.76
11 0.86634 0.817029 2.6 · 10−6 1.6 · 10−6 1.4 · 10−3 1713.55
12 0.86504 0.81698 3.1 · 10−8 1.8 · 10−8 1.3 · 10−4 18551.1
13 0.86488 0.81698 8.5 · 10−10 5.1 · 10−10 2.9 · 10−5 83680.8
14 0.86490 0.81698 1.3 · 10−10 7.9 · 10−11 8.9 · 10−6 2.69 · 105

15 0.86491 0.81698 8.7 · 10−13 5.2 · 10−13 9.4 · 10−7 2.56 · 106

Table 2: Newton interior point method for Example 3 in [10]

example, as shown in Table 2. The starting point of the example is x = 2,
λl = 1 and rl = 1 and the backtracking rule used is the one in [14].
The results of Tables 1 and 2 were obtained using a Matlab code which directly
solves the inner linear system that occurs at each Newton iteration. The forcing
term ηk is equal to ηk = 1− αk(1− σk).

6 Numerical experiments

In this section we consider a set of nonlinear programming test problems that
arise from discretization with finite difference formulae of boundary and dis-
tributed elliptic control problems ([40], [41], [44], [42]).
All the problems have quadratic functional, nonlinear equality constraints and
box constraints. The Hessian of the objective function and the Jacobian of the
constraints are large and sparse.
Furthermore, the matrix ∇g2(x)S−1Λ2∇g2(x)t +P t

l R
−1
l ΛlPl + P t

uR
−1
u ΛuPu is

diagonal and the computation of this matrix in block A of (17) is inexpensive.
In Table 3, we report the references of the test problems shown in the tables.
The symbol N denotes the number of grid points of the discretization along each
axis. We remark that the size of any problem depends on the value of N.
In Table 4, we report the number of primal variables n, the number of equal-
ity neq constraints, the numbers nl and nu of variables bounded below and
above, the number of nonzero entries nnzjac and nnzhess of matrices B and Q
respectively.
In Table 5 we report some results, obtained by Hans Mittelmann at the Arizona
State University [43], of a comparison among interior point codes for nonlin-
ear programming: the LOQO algorithm, version 6.2 ([54]), the KNITRO al-
gorithms, version 3.1 ([9]) with the direct (KNITRO–D) or with the iterative
(KNITRO–I) solution ([46]) of inner subproblems and IPOPT algorithm ([55]).

24

In the table, “it” and “sec” indicate the number of iterations and the time
expressed in seconds respectively, the symbols “*” and “m” denote an algorithm
failure and a memory failure. The codes have been carried out in order to obtain
the same precision on the solution.
See [45] for a comparison of interior point codes and active set sequential
quadratic programming codes on CUTE collection test problems.
In order to evaluate the effectiveness of the damped Newton interior point
method with different inner solvers, Fortran 90 codes, implementing the method,
have been carried out on a workstation HP zx6000 with an Intel Itanium2 pro-
cessor 1.3 GHz with 2Gb of RAM and have been compiled using a “+O3”
optimization level of the HP compiler.
In this section we only report the results related to a few test problems; the
details of the numerical experiments and a complete set of results for all the
test problems in [40], [41] and [44] can be downloaded from dm.unife.it/blkfclt.
In the experiments, we set the starting point of the damped Newton interior
point method as follows: the initial values for the multipliers and the slack

variables are set to 1, while the value x
(0)
i , i = 1, ..., n are set equal to zero if

the i–th component xi is a free variable, equal to (ui + li)/2 if xi is bounded
above and below, and equal to ui − 1 or li + 1 if xi is bounded above or below
respectively. Only for the test problem P2-6, the first n/2 initial values for x(0)

are set equal to 6 and the last n/2 initial values are set equal to 1.8, as suggested
by Mittelmann in [44]. Moreover, for the codes employing an iterative method
as the inner solver, the initial value of the inner iterations was fixed equal to
the null vector.
All the results in this section were obtained using the choice µk = µ

(1)
k =

s̃(k)t
w̃(k)/p.

Furthermore, the maximum value of inner iterations was set equal to 15 for the
IP–MM code, to neq for IP–PCG1 and to n+ neq for IP–PCG2.
We set the backtracking parameters θ = 0.5, β = 10−4 while the forcing term
parameters σk, δk were chosen as in the following: set

δmax =
0.8

1 + 0.5 τ2

√
2

min(1,τ2)

; σmax =
δmax0.5τ2

√
2

min(1, τ2)
· 1.1

we have for the initial value δ0 = min(δmax, 0.8·‖H(v(0))‖) and for the iterations
k, k > 1, we have

δk = min

(

δmax,max

(

5.0 · 10−5, ‖H(v(k))‖, 0.5 · ‖H1(v
(k))‖

‖H1(v(k−1))‖

))

The forcing term σk is chosen of the same order as δk as

σk = min

(

σmax,max

(

1.1 · 0.5τ2δk
√

2

min(1, τ2)
, 0.01‖H(v(k))‖

))

25

In the three inner solvers, an explicit computation of the matrices A + χBBt,
BtĀ−1B and the preconditioner ¯̄M is needed for the factorization. As explained
in Section 4, for the IP–MM and IP–PCG1 codes the structure of matrices
A+χBBt and BtĀ−1B respectively, is computed with a preprocessing routine.
This preprocess is not needed for the code IP–PCG2.
In Table 6, the number of nonzero entries of one triangular part (including the
diagonal elements) of the matrices A + χBBt, BtĀ−1B and M̄ is reported in
the columns “nnz-mat1”, “nnz-mat2” and “nnz-mat3” respectively, while the
number of nonzero entries of the Cholesky factor is listed in the columns “L-
mat1”, “L-mat2” and “L-mat3”.
From Table 6, it can be observed that the number of nonzero entries in the
Cholesky factor is quite similar in the three cases: the matrices A+ χBBt and
BtĀ−1B have a density equal to 0.1% at most, while the ratio of the nonzero
entries of the Cholesky factor and the lower triangular part of A+χBBt is equal
to 15.3 at most.

In Table 7, we evaluate the effectiveness of the different versions of the code,
implementing the damped Newton interior point method with the iterative inner
solvers with ǫexit = 10−8. The number of outer iterations (“it”), the total
number of inner iterations (“inn”) and the execution time in seconds (“time”)
are reported.
In IP–MM and IP–PCG1 codes the CPU time is divided into the time re-
quired by the preprocessing routine in the computation of the matrix structures
(“prep”) and the time needed for the the computation of the iterations (“iter”).
We consider that an algorithm fails when the backtracking procedure produces
a damping parameter smaller than 10−8 (we use the symbol “*”). The symbol
“m” indicates a memory failure.
The code with the direct inner solver MA27 (with pivot tolerance equal to 10−8)
allows the chosen test problems to be solved with N=99 (27.38 secs and it=29
for P1-1; 22.52 secs and it=24 for P1-3; 24.71 secs and it=25 for P2-6) and with
N=199 (349.66 secs and it=37 forP1-1; 250.28 secs and it=27 for P1-3; 304.11
secs and it=26 for P2-6). For N> 299 we observe a memory failure after a few
iterates due to the factor fill–ins.
The minimum values of the objective functional computed by the codes differ
by a factor of 10−8 and are in accordance with the values reported in [40], [41],
[44].
From the numerical experiments, we can draw the following remarks:

• the number of inner iterations per outer iteration is very small for all three
inner solvers; we observe that in the experiments the total number of inner
iterations is sometimes less than the number of outer iterations. This can
happen in any code that uses an iterative inner solver with an adaptive
stopping rule. Indeed, for some values of v(0), it can happen that the
inner stopping rule (12) with r(k) as in (18) and k = 0, is satisfied without
the necessity of inner iterations, since ‖H(v(0)‖ is large. Nevertheless,
even if ∆x and ∆λ1 are unchanged, ∆s̃ and ∆w̃ change and then, in
the subsequent iteration, ‖H(v)‖ decreases until causing the necessity of

26

iterations of the inner solver. In other words, for some values of v(0), the
iterate of the interior point method moves only along the directions of s̃

and w̃; this can occur for some initial iterations;

• the most expensive computational task for the codes IP–MM and IP–
PCG1 is the preprocessing phase; we can also notice that the preprocess-
ing time for the IP–PCG1 code is smaller than the one of IP–MM code,
since the size of the matrix to preprocess is neq with respect to the size of
the matrix to preprocess for IP–MM which is n and neq < n. This gain
in terms of time is more significant when the test problem arises from
distributed control problems, since in such cases the number of equality
constraints is half the number of the variables. On the other hand, beside
a “heavy” preprocessing phase, the time for the computation of the itera-
tions is very fast. This feature could be exploited when different problems
with the same structure or the same problem with different parameters
have to be solved in sequence;

• in terms of total time, the most effective code is IP–PCG2, which does
not require the preprocessing phase and needs almost the same number
of outer and inner iterations than the version IP–PCG1. Thus, since at
each iteration of the conjugate gradient, the IP–PCG2 code has to solve a
system with the matrix ¯̄M of order n+ neq while the IP–PCG1 code has
to solve systems of order neq with Ng and Peyton routine, we point out
the efficiency of the BLKFCLT routine;

• another feature of the IP–PCG2 code is that it requires relatively little
memory storage; this allows us to solve very large scale problems up to
one million primal variables.

The results in Tables 8, 9, 10, 11 and 12 show the performance of the IP–PCG2
code (ǫexit = 10−8) and the direct and iterative versions of KNITRO (version
4.0.2), with different values of the tolerance parameter (“opttol”). We report
the computed minimum f(v(it)), value of ‖H(v(it))‖, execution time in seconds
(“time”) and number of outer iterations (“it”). For the IP–PCG2” code and the
iterative version of KNITRO, we also report the total number of inner iterations
(“inn”).
The notation 1e-6 denotes 10−6. For these experiments, IP–PCG2 uses the
same input AMPL models of the discretized PDE problems as KNITRO. The
primal variables are initialized the same way as in the AMPL models. Then the
execution time and number of iterations of IP-PCG2 are different with respect
to those reported in Table 7.
This comparison highlights the good stability and efficiency of the IP–PCG2
method on this kind of test problem for large scale problems.
Finally, in Table 13 we report the results on the distributed control problem
P2-7 of the IP–PCG2 algorithm with the nonmonotone choices for the additive
inner stopping rule and for the backtracking rule, as seen in subsection 4.2;
different values of degree of nonmonotonicity M are examined. Obviously, for

27

Test problems References
Elliptic boundary control problems
P1-1 Example 5.5 in [40]
P1-3 Example 5.7 in [40]
Elliptic distributed control problems
P2-1 Example 1 in [41]
P2-6 Example 4.2 in [44] with a(x) = 7 + 4 sin(2πx1x2),

M = 1, K = 0.8, b = 1, u1 = 1.7, u2 = 2, ψ(x) = 7.1
P2-7 Example 4.2 in [44] with a(x) = 7 + 4 sin(2πx1x2),

M = 0, K = 1, b = 1, u1 = 2, u2 = 6, ψ(x) = 4.8

Table 3: Description of test problems

M = 1, we have the monotone algorithm. From Table 13, we observe that an
improvement in efficiency of the method can be obtained by using M > 1, for
example, in this case M = 4.

Acknowledgements. The authors are very grateful to Hans Mittelmann
for fruitful discussions and the results in Table 5 and to the anonymous referee
who stimulated us with his comments to improve the paper.

References

[1] Apostol T.M.; Mathematical Analysis, Second Edition, Addison–Wesley
Publ. Reading MA, 1974.

[2] Altman A. , Gondzio J.; Regularized symmetric indefinite systems in in-
terior point methods for linear and quadratic optimization, Optim. Meth.
Software 11–12 (1999), 275–302.

[3] Argáez M., Tapia R., Velázquez L.; Numerical comparisons of path–
following strategies for a primal–dual interior–point method for nonlinear
programming, J. Optim. Theory Appl. 114 (2002), 255–272.

[4] Bergamaschi L., Gondzio J., Zilli G.; Preconditioning indefinite systems in
interior point methods for optimization, Comput. Optim. Appl. 28 (2004),
149–171.

[5] Bonettini S.; A nonmonotone inexact Newton method, Optim. Meth. Soft-
ware 20 (2005), 475–491.

[6] Bonettini S., Galligani E., Ruggiero V.; An inexact Newton method com-
bined with Hestenes multipliers’ scheme for the solution of Karush–Kuhn–
Tucker systems, Appl. Math. Comput. 168 (2005), 651–676.

[7] Bonettini S., Ruggiero V.; Some iterative methods for the solution of a
symmetric indefinite KKT system, to appear on Comput. Optim. Appl.
2006.

28

N n neq nu nl nnzjac nnzhess

P1-1 99 10593 10197 10593 10593 50193 10593
199 41193 40397 41193 41193 200393 41193
299 91793 90597 91793 91793 450593 91793
399 162393 160797 162393 162393 800793 162393
499 252993 250997 252993 252993 1250993 252993
599 363593 361197 363593 363593 1801193 363593

P1-3 99 10593 10197 10593 396 50193 10197
199 41193 40397 41193 796 200393 40397
299 91793 90597 91793 1196 450593 90597
399 162393 160797 162393 1596 800793 160797
499 252993 250997 252993 1996 1250993 250997
599 363593 361197 363593 2396 1801193 361197

P2-1 99 19602 9801 19602 9801 58410 19602
199 79202 39601 79202 39601 236810 79202
299 178802 89401 178802 89401 535210 178802
399 318402 159201 318402 159201 953610 318402
499 498002 249001 498002 249001 1492010 498002

P2-6 99 19602 9801 19602 9801 58410 39204
199 79202 39601 79202 39601 236810 158404
299 178802 89401 178802 89401 535210 357604
399 318402 159201 318402 159201 953610 636804
499 498002 249001 498002 249001 1492010 996004

P2-7 99 19602 9801 19602 9801 58410 29403
199 79202 39601 79202 39601 236810 118803
299 178802 89401 178802 89401 535210 268203
399 318402 159201 318402 159201 953610 477603
499 498002 249001 498002 249001 1492010 747003

Table 4: Parameters of test problems

LOQO KNITRO–D KNITRO–I IPOPT
it sec it sec it sec it sec

P1-3-199 39 108 19 72 12 94 25 276
P1-3-299 * * 20 278 12 322 20 1143
P1-3-399 * * 21 786 15 1020 28 3618
P1-3-499 * * 22 1585 14 1754 22 7374
P1-3-599 * * * * 16 2876 m m
P2-6-99 131 51 34 17 45 33 91 29

P2-6-199 143 427 44 180 41 263 74 302
P2-6-299 * * 41 674 101 1637 113 1670
P2-6-399 * * 40 1829 109 4693 90 3518
P2-6-499 * * 42 3498 * * 88 7034

Table 5: Comparison on elliptic control test problems ([43])

29

N nnz-mat1 L-mat1 nnz-mat2 L-mat2 nnz-mat3 L-mat3

P1-1,P1-3 99 70783 622759 69991 621571 60786 718637
199 281583 3181444 279195 3179056 241586 3416032
299 632383 8374469 628795 8370881 542386 9084296
399 1123183 16252152 1118395 16247364 9631186 20102932
499 1753983 26855490 1747995 26849502 1503986 28784753
599 2524783 41135305 2517595 41128117 2164786 43488232

P2-1,P2-6, 99 126029 715465 67619 619595 78012 735071
P2-7 199 512029 3409660 275219 3175080 316012 3488866

299 1158029 8900195 622819 8364905 714012 9253530
399 2064029 20090160 1110419 16239388 1272012 20405866
499 3230029 28768781 1738019 26839526 1990012 29266787

Table 6: Nonzero entries of the matrices and Cholesky factors

IP–MM IP–PCG1 IP–PCG2
N it(inn) prep+iter time it(inn) time(prep+iter) time it(inn) time

P1-1 99 29(32) 2.22+2.03 4.25 37(30) 2.21+2.46 4.67 37(72) 5.24
199 54(59) 36.38+22.87 59.25 45(37) 35.81+18.31 54.12 45(95) 38.9
299 181(186) 206.35 +246.8 453.15 52(47) 197.29+68.09 256.38 52(116) 156.49
399 327(341) 833.79+961.08 1794.92 58(53) 758.23+174.82 933.05 58(137) 493.07
499 501(527) 1933.8+2768.7 4702.5 63(59) 1635.64+341.65 1977.37 63(158) 845.76
599 * * * 66(62) 1902.21+701.21 2603.55 66(181) 1377.61

P1-3 99 21(23) 3.02+1.46 4.49 29(36) 2.22+2.05 4.28 28(79) 4.31
199 26(27) 47.83+10.87 58.71 33(42) 45.87+14.46 60.35 33(91) 30.02
299 39(45) 162.15+52.88 215.03 36(47) 194.79+49.7 243.52 37(109) 115.84
399 36(39) 831.0+105.29 936.34 39(54) 617.47+117.91 735.42 38(120) 312.78
499 65(87) 2062.11+360.03 2422.22 42(55) 1522.11+232.93 1755.12 41(146) 535.14
599 * * * 44(60) 3928.54+427.12 3928.54 43(159) 925.84

P2-1 99 23(23) 4.8+2.2 7.1 26(25) 2.5+1.9 4.36 24(23) 3.3
199 28(193) 123.1+26.4 149.5 28(26) 41.5+12.1 53.7 27(26) 22.6
299 * * * 30(29) 218.3+41.2 259.5 28(27) 81.2
399 * * * 31(56) 706.4+100.9 807.4 29(28) 222
499 * * * 32(69) 2166.8+196.3 2363.2 29(28) 351.8

P2-6 99 28(29) 5.77+2.7 8.48 35(70) 2.46+3.03 5.5 34(122) 6.28
199 48(49) 118.03+25.11 143.17 51(88) 41.25+25.19 66.44 51(178) 53.2
299 81(111) 686.30+131.49 817.99 56(97) 223.61+85.79 309.41 54(177) 173.82
399 102(153) 2292.11+477.5 2769.7 71(130) 727.06+239.67 966.73 64(221) 553.78
499 101(166) 5496.66+699.3 6196.11 62(107) 1849.82+361.12 2210.95 61(209) 823.08

P2-7 99 51(51) 4.8+4.9 9.7 51(90) 2.5+4.2 6.7 35(70) 5.5
199 62(107) 118.7+35.6 154.3 63(284) 41.4+41.8 83.2 51(88) 45.8
299 68(188) 684.8+127.4 812.4 70(493) 217.14+164.1 381.29 54(94) 158.7
399 80(1010) 2299.4+654.9 2954.3 81(1014) 703.2+522.5 1225.8 65(109) 515.9
499 90(1170) 3808.8+1150.7 4959.6 87(1331) 1733.9+1083.6 2817.7 80(115) 989.4

Table 7: Numerical results: boundary and distributed control problems

30

N Solver opttol f(x(it)) ‖H(v(it))‖ time it (inn)
99 IP–PCG2 0.55224625 5.7e-9 9.52 37(33)

KNITRO–D 1e-6 0.55332954 4e-7 5.44 15
1e-8 0.55224722 3.9e-9 8.47 24
1e-9 0.55224625 4.2e-11 9.52 27

KNITRO–I 1e-6 0.55331458 3.9e-7 8.6 14(93)
1e-8 0.55224739 8.66e-9 33.12 22(983)
1e-9 0.55224641 7.02e-10 39.57 25(1210)

199 IP–PCG2 0.5543688 3.6e-9 43.6 45(40)
KNITRO–D 1e-6 0.55446811 2.2e-8 45.22 18

1e-8 0.55437617 6.4e-9 52.45 21
1e-9 0.55436933 1e-9 56.71 23

KNITRO–I 1e-6 0.554480051 3.1e-7 97.84 15(418)
1e-8 0.554376509 7.4e-9 242.84 22(1462)
1e-9 0.554368888 1.9e-10 319.27 27(2054)

299 IP–PCG2 0.55507371 5.1e-9 157.41 52(50)
KNITRO–D 1e-6 0.57017027 8.1e-7 98.79 10

1e-8 0.555099009 5.9e-9 212.04 23
1e-9 0.555073838 2.9e-10 474.95 34

KNITRO–I 1e-6 0.555405597 3.3e-8 202.48 14(153)
1e-8 0.555099497 5.55e-9 693.32 21(1665)
1e-9 0.55507386 7.7e-11 1636.35 28(4472)

399 IP–PCG2 0.555425678 2.8e-9 531.16 58(58)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 m m m m
1e-8 m m m m
1e-9 m m m m

Table 8: Comparison of IP–PCG2 with KNITRO v4.0.2 on test problem P1-1

31

N Solver opttol f(x(it)) ‖H(v(it))‖ time it (inn)
99 IP–PCG2 0.2641625459 3.5e-9 5.9 28(24)

KNITRO–D 1e-6 0.2642862472 4.5e-7 5.5 14
1e-8 0.264163747 4.7e-9 7.0 18
1e-9 0.2641625452 7.2e-11 7.7 20

KNITRO–I 1e-6 0.2643159559 5.5e-7 7.0 11(38)
1e-8 0.2641637501 5.0e-9 13.0 15(173)
1e-9 0.2641625452 5.2e-10 16.3 17(247)

199 IP–PCG2 0.2672834461 9.0e-9 40.0 35(34)
KNITRO–D 1e-6 0.2676809839 5.6e-7 37.2 14

1e-8 0.2672858418 5.5e-9 49.5 19
1e-9 0.2672839122 9.2e-10 54.4 21

KNITRO–I 1e-6 0.2676583552 8.0e-7 57.8 14(85)
1e-8 0.2672838028 4.8e-9 100.5 21(231)
1e-9 0.2672835172 3.7e-10 155.2 23(536)

299 IP–PCG2 0.2683261906 6.6e-10 125.9 37(36)
KNITRO–D 1e-6 0.2683490951 7.6e-7 174.6 19

1e-8 0.2683296025 9.0e-9 191.7 21
1e-9 0.2683262257 2.3e-10 217.3 24

KNITRO–I 1e-6 0.2694845168 4.0e-7 258.2 19(110)
1e-8 0.2683272538 6.3e-9 361.6 25(217)
1e-9 0.2683263348 5.0e-10 494.2 27(488)

399 IP–PCG2 0.26884799937 4.3e-9 352.3 39(34)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 0.2684751969 3.1e-7 401.9 11(70)
1e-8 0.2688521643 9.6e-9 523.9 14(127)
1e-9 0.2688480413 3.6e-10 916.4 17(509)

Table 9: Comparison of IP–PCG2 with KNITRO v4.0.2 on test problem P1-3

32

N Solver opttol f(x(it)) ‖H(v(it))‖ time it (inn)
99 IP–PCG2 6.216167657e-2 8.0e-9 5.9 23(22)

KNITRO–D 1e-6 6.28379652e-2 4.2e-7 4.28 8
1e-8 6.21720059e-2 4.2e-8 6.95 14
1e-9 6.21637312e-2 9.1e-10 7.85 16

KNITRO–I 1e-6 6.290104777e-2 1.9e-7 3.51 4(11)
1e-8 6.21659812e-2 2.5e-9 6.4 8(30)
1e-9 6.2162183013e-2 4.1e-10 8.86 10(66)

199 IP–PCG2 6.44262870e-2 8e-9 33.3 25(24)
KNITRO–D 1e-6 6.519188743e-2 1.3e-7 20.39 6

1e-8 6.44368448e-2 3.5e-9 36.8 12
1e-9 6.442826536e-2 2.3e-10 45.2 15

KNITRO–I 1e-6 6.5203856844 8e-7 16.5 3(8)
1e-8 6.444127289e-2 3.6e-9 33.7 7(25)
1e-9 6.44335931e-2 7.8e-10 44.1 9(47)

299 IP–PCG2 6.5193140696e-2 9.3e-9 100.1 26(25)
KNITRO–D 1e-6 6.5970554302e-2 1.1e-7 66.3 6

1e-8 6.5269064297e-2 1.8e-10 92.4 9
1e-9 6.519765283e-2 6.2e-11 159.1 16

KNITRO–I 1e-6 6.597880027e-2 5.2e-7 52.1 3(8)
1e-8 6.525495675e-2 1.1e-9 91.7 6(17)
1e-9 6.519876526e-2 3.0e-10 147.2 10(46)

399 IP–PCG2 6.5578165106e-2 8.8e-10 279.8 28(27)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 m m m m
1e-8 m m m m
1e-9 m m m m

Table 10: Comparison of IP–PCG2 with KNITRO v4.0.2 on test problem P2-1

33

N Solver opttol f(x(it)) ‖H(v(it))‖ time it (inn)
99 IP–PCG2 -6.57642730 9.4e-8 10.1 29(66)

KNITRO–D 1e-6 -6.57629592 3.9e-7 13.8 18
1e-8 -6.57640594 8.9e-9 14.8 20
1e-9 -6.57642744 1.1e-10 16.8 24

KNITRO–I 1e-6 -6.57585240 6.3e-7 9.9 6(30)
1e-8 -6.57642667 5.2e-10 42.2 12(494)
1e-9 -6.57642667 5.2e-10 42.2 12(494)

199 IP–PCG2 -6.62009225 3.9e-8 46.3 27(61)
KNITRO–D 1e-6 -6.61987115 4.7e-8 63.2 17

1e-8 -6.62007441 5.6e-9 72.9 20
1e-9 -6.62009178 3.7e-10 79.5 22

KNITRO–I 1e-6 -6.61925123 1.2e-7 67.4 6(17)
1e-8 -6.62009137 2.0e-9 185.2 12(198)
1e-9 -6.62009225 6.0e-9 984.2 36(1802)1

299 IP–PCG2 -6.63464400 5.5e-9 126.3 27(55)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 -6.63316140 1.3e-7 240.8 6(16)
1e-8 -6.63462656 6.2e-9 373.5 9(38)
1e-9 * * * *

Table 11: Comparison of IP–PCG2 with KNITRO v4.0.2 on test problem P2-6
1 Current solution estimate cannot be improved by the code.

34

N Solver opttol f(x(it)) ‖H(v(it))‖ time it (inn)
99 IP–PCG2 -18.73614837 5.9e-9 13.9 49(54)

KNITRO–D 1e-6 -18.73188084 4.8e-7 7.0 13
1e-8 -18.73611604 9.3e-9 14.8 29
1e-9 -18.73614224 6.8e-10 17.4 34

KNITRO–I 1e-6 -18.73221830 4.2e-7 20.5 19(133)
1e-8 -18.73608419 7.8e-9 33.3 32(214)
1e-9 -18.73614833 1.8e-10 38.6 38(235)

199 IP–PCG2 -18.86331163 4.9e-9 87.4 60(73)
KNITRO-D 1e-6 -18.84530188 4.5e-7 38.2 11

1e-8 -18.86315409 4.0e-9 119.7 37
1e-9 -18.86328069 8.1e-10 141.0 44

KNITRO–I 1e-6 -18.84592606 4.5e-7 88.4 14(118)
1e-8 -18.86315369 4.7e-9 213.1 33(307)
1e-9 -18.86329639 5.5e-10 248.2 40(339)

299 IP–PCG2 -18.905751265 3.3e-9 278.1 67(93)
KNITRO–D 1e-6 -18.862397636 5.0e-7 126.7 10

1e-8 -18.905307698 6.1e-9 361.2 31
1e-9 -18.905681444 9.7e-10 472.5 41

KNITRO–I 1e-6 -18.836892321 8.4e-7 309.1 14(153)
1e-8 -18.905301531 6.1e-9 578.6 28(282)
1e-9 * * * *

399 IP–PCG2 -18.926980012 2.9e-7 825.2 76(113)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 m m m m
1e-8 m m m m
1e-9 m m m m

Table 12: Comparison of IP–PCG2 with KNITRO v4.0.2 on test problem P2-7

M=1 M=2 M=3 M=4

N it(inn) time it(inn) time it(inn) time it(inn) time

P2-7 99 35(70) 5.5 39(70) 5.9 42(72) 6.3 25(52) 3.9
199 51(88) 45.8 54(94) 48.4 62(105) 55.3 28(37) 24.3
299 54(94) 158.7 57(95) 167.2 73(114) 212.5 32(51) 93.8
399 65(109) 515.9 79(144) 630.5 32(38) 248.6 35(37) 269.9

Table 13: IP–PCG2 with nonmonotone choices

35

[8] Bunch J. R., Parlett B. N.; Direct methods for solving symmetric indefinite
systems of linear equations, SIAM J. Numer. Anal. 8 (1971), 639–655.

[9] Byrd R.H., Gilbert J.C., Nocedal J.; A trust region method based on
interior–point techniques for nonlinear programming, Math. Program. 89
(2000), 149–185.

[10] Byrd R.H., Marazzi M., Nocedal J.; On the convergence of Newton iter-
ations to non–stationary points, Tech. Rep. OTC 2001/01, Optimization
Technology Center, Nortwestern University, Evaston IL, 2001.

[11] D’Apuzzo M., Marino M.; Parallel computational issues of an interior point
method for solving large bound–constrained quadratic programming prob-
lems, Parallel Computing, 29 (2003), 467–483.

[12] Dembo R.S., Eisenstat S.C., Steihaug T.; Inexact Newton methods, SIAM
J. Numer. Anal. 19 (1982), 400–408.

[13] Durazzi C.; Numerical solution of discrete quadratic optimal control prob-
lems by Hestenes’ method, Rend. Circ. Matem. Palermo, Ser. II, Suppl. 58
(1999), 133–154.

[14] Durazzi C.; On the Newton interior–point method for nonlinear program-
ming problems, J. Optim. Theory Appl. 104 (2000), 73–90.

[15] Durazzi C., Galligani E.; Nonlinear programming methods for solving opti-
mal control problems, Equilibrium Problems: Nonsmooth Optimization and
Variational Inequality Models (F. Giannessi, A. Maugeri, P.M. Pardalos
eds.), Nonconvex Optimization and Its Applications 58, Kluwer Academic
Publ., Dordrecht, 2001, 71–99.

[16] Durazzi C., Ruggiero V.; Indefinitely preconditioned conjugate gradient
method for large sparse equality and inequality constrained quadratic prob-
lems, Numer. Linear Algebra Appl. 10 (2003), 673–688.

[17] Durazzi C., Ruggiero V.; Numerical solution of special linear and quadratic
programs via a parallel interior–point method, Parallel Computing 29
(2003), 485–503.

[18] Durazzi C., Ruggiero V.; Global convergence of the Newton interior–point
method for nonlinear programming, J. Optim. Theory Appl. 120 (2004),
199–208.

[19] Durazzi C., Ruggiero V., Zanghirati G.; Parallel interior–point method
for linear and quadratic programs with special structure, J. Optim. The-
ory Appl. 110 (2001), 289–313.

[20] Eisenstat S.C., Walker H.F.: Globally convergent inexact Newton methods,
SIAM J. Optim. 4 (1994), 393–422.

36

[21] El–Bakry A.S., Tapia R.A., Tsuchiya T., Zhang Y.; On the formulation
and theory of Newton interior–point method for nonlinear programming, J.
Optim. Theory Appl. 89 (1996), 507–541.

[22] Fletcher R.; Practical Methods of Optimization, Second Edition, John Wi-
ley & Sons, Chichester, 1987.

[23] Forsgren A.; Inertia–controlling factorizations for optimization algorithms,
Appl. Numer. Math. 43 (2002), 91–107.

[24] Galligani E.: The Newton–arithmetic mean method for the solution of sys-
tems of nonlinear equations, Appl. Math. Comput. 134 (2003), 9–34.

[25] Galligani E., Ruggiero V., Zanni L.; A minimization method for the solution
of large symmetric eigenproblems, Intern. J. Computer Math. 70 (1998),
99–115.

[26] Galligani I., Ruggiero V.; Numerical solution of equality–constrained
quadratic programming problems on vector–parallel computers, Optim.
Meth. Software 2 (1993), 233–247.

[27] Gill P.E., Murray D.B., Ponceleon D.B., Saunders M.A.; Preconditioners
for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl.
13 (1992), 292–311.

[28] Gill P.E., Saunders M.A., Shinnerl J.R.; On the stability of Choleski factor-
ization for symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl.
17 (1996), 35–46.

[29] Golub G.,Greif C.; On solving block–structured indefinite linear systems,
SIAM J. Sci. Comput. 24 (2003), 2076–2092.

[30] Golub G., Wu X., Yuan J.Y.; SOR–like methods for augmented system,
BIT 41 (2001), 71–85.

[31] Harwell Subroutine Library; A Catalogue of Subroutines (HSL 2000), AEA
Technology, Harwell, Oxfordshire, England (2002).

[32] Hestenes M.R.; Multiplier and gradient methods, J. Optim. Theory Appl.
4 (1969), 303–320.

[33] Hestenes M.R.; Optimization Theory. The Finite Dimensional Case, John
Wiley & Sons, New York, 1975.

[34] Keller C., Gould N.I.M., Wathen A.J.; Constraint preconditioners for in-
definite linear systems, SIAM J. Matrix Anal. Appl. 21 (2000), 1300–1317.

[35] Li C., Li Z., Shao X., Nie Y., Evans D.J.; Optimum parameter for the SOR–
like method for augmented system, Intern. J. Computer Math. 81 (2004),
749–763.

37

[36] Liu J.W., Ng E.G., Peyton B.W.; On finding supernodes for sparse matrix
computations, SIAM J. Matrix Anal. Appl. 14 (1993), 242–252.

[37] Luenberger D.G.; Linear and Nonlinear Programming, Second Edition,
Addison–Wesley Publ., Reading, 1984.

[38] Lukšan L., Vlček J.; Indefinitely preconditioned inexact Newton method for
large sparse equality constrained non–linear programming problems, Numer.
Linear Algebra Appl. 5 (1998), 219–247.

[39] Lukšan L., Matonoha C., Vlček J.; Interior–point method for non–linear
non–convex optimization, Numer. Linear Algebra Appl. 11 (2004), 431–453.

[40] Maurer H., Mittelmann H.D.; Optimization techniques for solving ellip-
tic control problems with control and state constraints: Part 1. Boundary
control, Comput. Optim. Appl. 16 (2000), 29–55.

[41] Maurer H., Mittelmann H.D.; Optimization techniques for solving elliptic
control problems with control and state constraints: Part 2. Distributed
control, Comput. Optim. Appl. 18 (2001), 141–160.

[42] Mittelmann H.D.; Verification of second-order sufficient optimality condi-
tions for semilinear elliptic and parabolic control problems, Comput. Optim.
Appl. 20 (2001), 93–110.

[43] Mittelmann H.D.; Private communication, 2004.

[44] Mittelmann H.D., Maurer H.; Solving elliptic control problems with interior
point and SQP methods: control and state constraints, J. Comput. Appl.
Math. 120 (2000), 175–195.

[45] Morales J.L., Nocedal J., Waltz R.A., Liu G., Goux J.P.; Assessing the
potential of interior methods for nonlinear optimization, Tech. Rep. OTC
2001/04, Optimization Technology Center, Nortwestern University, Evas-
ton IL, 2001.

[46] Nocedal J., Hribar M.E., Gould N.I.M.; On the solution of equality con-
starined quadratic programming problems arising in optimization, SIAM J.
Sci. Comput. 23 (2001), 1375–1394.

[47] Nocedal J., Wright S.J.; Numerical Optimization, Springer, New York,
1999.

[48] Powell M.J.D.; A method for nonlinear constraints in minimization prob-
lems, Optimization (R. Fletcher ed.), Academic Press, London, 1969, 283–
298.

[49] Rheinboldt W.C.; Methods for Solving Systems of Nonlinear Equations,
Second Edition, SIAM, Philadelphia, 1998.

38

[50] Saad Y.; Iterative Methods for Sparse Linear System, PSW Publ. Co.,
Boston, 1996.

[51] Saunders M., Tomlin J. A., Solving regularized linear programs using barrier
methods and KKT systems, Tech. Rep. SOL 96–4, Systems Optimization
Lab., Dept. Oper. Res., Stanford University, Stanford CA, 1996.

[52] Van Loan C.; On the method of weighting for equality–constrained least–
squares problems, SIAM J. Numer. Anal. 22 (1985), 851–864.

[53] Vanderbei R.J.; Symmetric quasidefinite matrices, SIAM J. Optim. 5 (1995)
100–113.

[54] Vanderbei R.J., Shanno D.F.; An interior–point algorithm for nonconvex
nonlinear programming, Comput. Optim. Appl. 13 (1999), 231–252.

[55] Wächter A.; An interior point algorithm for large–scale nonlinear opti-
mization with applications in processes engineering, Ph.D. Thesis, Carnegie
Mellon University, Pittsburgh PA, 2002.

[56] Wächter A., Biegler L.T.; Failure of global convergence for a class of in-
terior point methods for nonlinear programming, Math. Programming 88
(2000), 565–574.

[57] Wang D., Bai Z.Z., Evans D.J.; On the monotone convergence of multisplit-
ting method for a class of systems of weakly nonlinear equations, Intern. J.
Computer Math. 60 (1996), 229–242.

[58] Wright M.; The interior–point revolution in optimization: hystory, recent
developments, and lasting consequences, Bull. Amer. Math. Soc. 42 (2005),
39–56.

