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Abstract. This paper is concerned with the uniqueness of the solution of a nonlinear
equation, named discrepancy equation. For the restoration problem of data corrupted
by Poisson noise, we have to minimize an objective function that combines a
data-fidelity function, given by the generalized Kullback–Leibler divergence, and a
regularization penalty function. Bertero et al. recently proposed to use the solution
of the discrepancy equation as a convenient value for the regularization parameter.
Furthermore they devised suitable conditions to assure the uniqueness of this solution
for several regularization functions in 1D denoising and deblurring problems.
The aim of this paper is to generalize this uniqueness result to 2D and 3D problems
for several penalty functions, such as an edge preserving functional, a simple case of
the class of Markov Random Field (MRF) regularization functionals and the classical
Tikhonov regularization.

1. Introduction

The maximum likelihood approach to image reconstruction from data corrupted by

Poisson noise [9] leads to the minimization of a data–fidelity function, given by the

generalized Kullback–Leibler (KL) divergence [1], both for denoising and deblurring

problems. In the framework of the Bayesian paradigm [6], the a–priori information on

the solution can be used to regularize this ill-conditioned problem by a suitable penalty

function. The final problem can be formulated as the following constrained minimization

problem

min fβ(x) = f0(x) + βf1(x) (1)

subject to x ∈ Ω

where f0(x) is the KL data–fidelity function detailed in Section 2, f1(x) is the penalty

function and the regularization parameter β is a positive scalar. Here Ω ⊂ RN is a

closed and convex nonempty subset of the nonnegative orthant which depends on the

domain of fβ(x) and on the features of the application that we have to solve.

In [2] the authors propose a criterion to select a convenient value for β in both denoising
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and deblurring problems, that consists in determining the solution of the following

nonlinear equation, named discrepancy equation:

Dy(β) =
2

M
f0(xβ

∗) = 1 (2)

where y ∈ RM is the vector of the input data of the restoration problem and xβ
∗ is the

solution of the problem (1). The uniqueness of the solution xβ
∗ of (1) is crucial for the

well–posedness of this discrepancy principle.

As discussed in Section 2, the generalized KL divergence f0(x) is a coercive function on

the domain Ω (see [2]). Furthermore, when the data are positive (yi > 0, i = 1, ..., M)

and the null space of the blurring operator is trivial, f0(x) is strictly convex on Ω and,

consequently, equation (2) has a unique solution. In this note we focus our interest on

the general case, i.e. some of the yi can be zero and, for deblurring problem, the blur

matrix may have a nontrivial null space. In [2] suitable conditions are devised to assure

that the proposed criterion provides a unique value of the regularization parameter for

several regularization functions in 1D denoising and deblurring problems.

The aim of this note is to generalize this uniqueness result to 2D and 3D problems for

several penalty functions. In particular, we consider:

• a regularization function from the class of edge preserving potentials [4] whose

analytic form for 2D images is

f1(x) =
∑
i,j

√
(xi+1j − xij)2 + (xij+1 − xij)2 + δ2 δ 6= 0

which, for small values of δ, provides an approximation of the Total Variation (TV)

functional [10];

• a simple case of the class of Markov Random Field (MRF) regularization functionals

[7], given by

f1(x) =
∑
i,j

∑

k,l∈Nij

√(
xij − xkl

wkl

)2

+ δ2 δ 6= 0

where Nij denotes the set of the indices of the first 8 neighbors of the pixel ij and

wkl are positive weights;

• the classical Tikhonov regularization, which, for 2D images, is given by

f1(x) =
1

2

∑
i,j

(xi+1j − xij)
2 + (xij+1 − xij)

2

For these penalty functions – nonnegative, differentiable and convex – we provide an

explicit expression for the gradient vector and the Hessian matrix and we prove the

following properties:

(P1) the null space of the Hessian of the penalty function f1(x) is given by {αeN : α ∈
R}, where eN is the constant vector in RN with all entries equal to 1;

(P2) the sum of the entries of the gradient of f1(x) is zero.
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Property (P1) is crucial to prove the strict convexity of the function fβ(x) over the

domain Ω. Indeed, the generalized KL divergence f0(x) is a convex function; then, for

any convex function f1(x), fβ(x) is strictly convex if the intersection between the null

spaces of the Hessians of f0(x) and f1(x) is trivial. If (P1) holds, this is equivalent to

saying that fβ(x) is strictly convex if the constant vector eN does not belong to the null

space of f0(x). As a consequence, the solution of the problem (1) is unique for fixed β

and the hypotheses of the Lemma 2 in [2] hold.

Moreover, property (P2) is exploited in the proofs of the lemmas used in [2] to prove the

theorems on the conditions that assure the existence of the solution of the discrepancy

equation.

This paper concerns only discrete problems. Indeed, the main contribution of this note

is to prove that the discrepancy principle can be applied to the discrete models for 2D

and 3D image reconstruction problems.

The paper is organized as follows. In section 2 we introduce some notations and we

recall some basic results on the generalized KL divergence and on the conditions for the

strict convexity of the function fβ(x). Furthermore, we state some preliminary results

on the null space of the Hessian of special functions. In section 3 we show that (P1) and

(P2) hold for an edge preserving regularization function in the 1D, 2D and 3D cases;

analogous results are proved in section 4 and 5 for the MRF and Tikhonov regularization

respectively. In section 6 we conclude that such results allow us to apply the analysis

performed in [2] to the 2D and 3D cases, generalizing the conditions for the existence

and uniqueness of the solution of the discrepancy equation (2).

2. Notation and preliminary results

We denote the `2 norm of a vector x ∈ RN as ‖x‖ and the null space of a matrix S by

N [S]. In the restoration problems, we indicate the entries of the unknown object x ∈ RN

as xk, k = 1, ..., N where, in the 2D and 3D cases, k corresponds to a multi-index. In

particular for a 2D image x ∈ Rn×m we have N = nm and, assuming a column–wise

ordering, the following correspondence holds

xk ≡ xij (3)

with k = (j − 1)n + i; similarly, for a 3D image x ∈ Rn×m×r (N = nmr) we have the

equivalence

xk ≡ xijh (4)

with k = (h− 1)nm + (j − 1)n + i.

In the following we employ both notations, with a single index or a multi-index, taking

into account the previous equivalences.

We consider two kind of boundary conditions:

P) periodic boundary conditions; for example, in the 2D case, we have: xn+1j = x1j,

x0j = xnj, j = 1, ...,m and xim+1 = xi1, xi0 = xim, i = 1, ..., n; we define also

x00 = xnm, xn+1m+1 = x11, xn+10 = x1m and x0m+1 = xn1;
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R) reflexive (or Neumann) boundary conditions; this means, in the 2D case, that

we assume xn+1j = xnj, x0j = x1j, xin+1 = xin and xi0 = xi1, for i = 1, ..., n,

j = 1, ...,m; we define also x00 = x11, xn+1m+1 = xnm, xn+10 = xn1 and

x0m+1 = x1m.

We recall the definition of the generalized Kullback–Leibler divergence. Let y ∈ RM be

a vector of data. We assume y 6= 0, with nonnegative entries. Given the set of indices

I = {1, ..., M}, we define the following two disjoint subsets I1 and I2

I1 = {k ∈ I, yk > 0} (5)

I2 = {k ∈ I, yk = 0} (6)

Then the generalized KL divergence is defined as

f0(x) =
∑

k∈I1

{
yk ln

yk

(Hx + b)k

+ (Hx + b)k − yk

}
+

∑

k∈I2

(Hx + b)k (7)

where b = γeM represents a positive constant background term and H ∈ RM×N is the

blurring operator, with nonnegative entries which satisfies

N∑

k=1

Hlk > 0 l = 1, ..., M (8)

and normalized so that HT eM = eN . A special case is image deconvolution, when we

can take M = N and the blurring operator is frequently approximated by a cyclic

convolution of the object with a point spread function. In this case we also have

HeN = eN . When we consider a deblurring problem, the set Ω in (1) is defined as

the nonnegative orthant of RN :

Ω = {x ∈ RN , x ≥ 0} (9)

In the denoising case, the relationship between the data vector y and the object vector x

is more simple. Indeed in (7) we have N = M , H = I, b = 0. Furthermore the domain

Ω is given by

Ω = {x ∈ RN , xk ≥ η k ∈ I1, xk ≥ 0 k ∈ I2} (10)

where η is a positive small constant that must satisfy η < min
{

1
M

∑
k yk, mink∈I1 yk

}
.

In both cases, it is well known that f0(x) is a nonnegative, differentiable, coercive and

convex function [2].

The gradient and the Hessian of (7) are given by

∇f0(x) = eN −HT Z−1y

∇2f0(x) = HT Y Z−2H

where Z and Y are diagonal matrix of order M , such that (Z)kk = (Hx + b)k, k ∈ I1,

and (Z)kk = 1, k ∈ I2 and (Y )kk = yk, k = 1, ..., M . Thus, the null space of ∇2f0(x) is

N [∇2f0(x)] = {u ∈ RN : (Hu)k = 0 if k ∈ I1}
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and it contains the null space of H.

Remark. When y has only positive entries and, in the case of the deblurring problem,

the matrix H has full column rank, N [∇2f0(x)] = {0} and, consequently, f0(x) and

fβ(x) are strictly convex functions. In this note, we focus our interest in the nontrivial

case.

To obtain the null space of ∇2fβ(x), we can invoke the following results.

Lemma 2.1 Let A and B be two symmetric positive semidefinite matrices of order N .

Then

N [A + B] = N [A] ∩N [B]

The proof of the previous Lemma can be easily obtained recalling that if a matrix S is

positive semidefinite, we have Sv = 0 if and only if vT Sv = 0 (see [8, p.400]).

We remark that for a denoising problem, since H = I, the null space of ∇2f0(x) cannot

contain the constant vector eN ; for a deblurring problem, the assumption (8) implies

that eN 6∈ N [∇2f0(x)]. As a consequence, if property (P1) holds for the penalty function

f1(x), from the previous Lemma we have

N [∇2fβ(x)] = N [∇2f0(x)] ∩N [∇2f1(x)] = {0}

We can summarize the previous remarks as follows.

Lemma 2.2 When f1(x) is convex over Ω and (P1) holds, the Hessian of fβ(x) in (1)

is a positive definite matrix for all x ∈ Ω and, thus, fβ(x) is strictly convex over Ω.

In the following sections we will show that (P1) holds for several kinds of convex penalty

functions in the 1D, 2D and 3D cases and, in addition, we will prove also property (P2).

3. Hypersurface (HS) regularization and Total variation (TV)

This section is focused on the edge preserving regularization. In particular, we consider

a penalty function having the following form

f1(x) =

N1∑

k=1

√
Dk (11)

where in the 1-D case

Dk = (xk+1 − xk)
2 + δ2, (12)

while in 2D

Dk ≡ Dij = (xi+1j − xij)
2 + (xij+1 − xij)

2 + δ2 (13)
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and in 3D

Dk ≡ Dijh = (xi+1jh−xijh)
2 +(xij+1h−xijh)

2 +(xijh+1−xijh)
2 + δ2 (14)

Here δ is a nonzero scalar parameter while N1 = N for periodic boundary conditions

and N1 = n− 1, N1 = nm− 1 or N1 = (nm− 1)r for reflexive boundary conditions in

the 1D, 2D and 3D case respectively.

The model function in (11) is related to the class of edge preserving potentials considered

in [12] and, for small values of δ, it can be considered as a discrete approximation

of the TV functional [10]. Moreover, the expression (11) formally describes also the

hypersurface potential proposed in [4].

Following [3], we observe that Dk can be written also as

Dk = ‖Akx‖2 + δ2 (15)

where Ak, k = 1, ..., N1, is a matrix with N columns and 1, 2 or 3 rows, depending on

the dimension of the object x and on the assumed boundary conditions.

In particular, under periodic boundary conditions, Ak is a d×N matrix, where d = 1, 2, 3

is the dimension of the object x; for d = 1 (N = n), we define Ak as the 1 × n vector

with all zero components except the following two entries:

(Ak)k = −1 (Ak)mod(k,n)+1 = 1 k = 1, ..., n (16)

Similarly, for the 2D case (N = nm), we define Ak ≡ Aij for i = 1, ..., n, j = 1, ..., m as

the 2×N matrix with all zero entries except for the following four elements:

(Ak)1 (j−1)n+i = −1 (Ak)1 (j−1)n+mod(i,n)+1 = 1

(Ak)2 (j−1)n+i = −1 (Ak)2 mod(j,m)n+i = 1
(17)

Finally, in the 3D case (N = nmr) for i = 1, ..., n, j = 1, ...,m and h = 1, ..., r, we define

Ak ∈ R3×N as

(Ak)1 (h−1)nm+(j−1)n+i = −1 (Ak)1 (h−1)nm+(j−1)n+mod(i,n)+1 = 1

(Ak)2 (h−1)nm+(j−1)n+i = −1 (Ak)2 (h−1)nm+mod(j,m)n+i = 1

(Ak)3 (h−1)nm+(j−1)n+i = −1 (Ak)3 mod(h,r)nm+(j−1)m+i = 1

(18)

and zero otherwise.

When reflexive boundary conditions are assumed, we define the difference matrices as

follows. For d = 1, we define the n − 1 vectors Ak as in (16), for k = 1, ..., n − 1. In

the 2D case, for i = 1, ..., n − 1, j = 1, ..., m − 1 we define Ak as in (17), while, for

the remaining cases, we have that Ak ≡ Anj and Ak ≡ Aim are 1×N vectors with the

following nonzero elements:

(Ak)jn = −1 (Ak)jn+n = 1 i = n, j = 1, ...,m− 1

(Ak)(m−1)n+i = −1 (Ak)(m−1)n+i+1 = 1 i = 1, ..., n− 1, j = m

In the 3D case (N = nmr) we define Ak ∈ R3×N as in (18) for i = 1, ..., n − 1,

j = 1, ..., m − 1 and h = 1, ..., r − 1. Furthermore, we define the nonzero entries of

Ak ≡ Aimh ∈ R2×N as

(Ak)1 (h−1)nm+(m−1)n+i = −1 (Ak)1 (h−1)nm+(m−1)n+i+1 = 1

(Ak)2 (h−1)nm+(m−1)n+i = −1 (Ak)2 hnm+(m−1)n+i = 1
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for i = 1, ..., n− 1 and h = 1, ..., r − 1 and those of Ak ≡ Anjh ∈ R2×N as

(Ak)1 (h−1)nm+(j−1)n+n = −1 (Ak)1 (h−1)nm+jn+n = 1

(Ak)2 (h−1)nm+(j−1)n+n = −1 (Ak)2 hnm+(j−1)n+n = 1

for j = 1, ..., m−1 and h = 1, ..., r−1, while Ak ≡ Aijr for i = 1, ..., n−1, j = 1, ..., m−1

have the following nonzero entries:

(Ak)1 (r−1)nm+(j−1)n+i = −1 (Ak)1 (r−1)nm+(j−1)n+i+1 = 1

(Ak)2 (r−1)nm+(j−1)n+i = −1 (Ak)2 (r−1)nm+jn+i = 1

Finally, we define the nonzero entries of Ak ≡ Anjr ∈ R1×N

(Ak)(r−1)nm+(j−1)n+n = −1 (Ak)(r−1)nm+(j−1)n+n+1 = 1

for j = 1, ..., m− 1, those of Ak ≡ Aimr ∈ R1×N

(Ak)(r−1)nm+(m−1)n+i = −1 (Ak)(r−1)nm+(m−1)n+i+1 = 1

for i = 1, ..., n− 1 and those of Ak ≡ Anmh ∈ R1×N

(Ak)(h−1)nm+mn = −1 (Ak)hnm+mn = 1

for h = 1, ..., r − 1.

With these settings, formula (11) can be written also as

f1(x) =

N1∑

k=1

√
‖Akx‖2 + δ2 (19)

which is the sum of the `2 norm of the vectors vk =

(
Akx

δ

)
, k = 1, ..., N1. Since

δ 6= 0, f1(x) is a C2 differentiable function.

The convexity of the norm operator implies that the penalty function (19) is convex in

RN . Then the Hessian matrix is positive semidefinite for any x ∈ RN .

Now, exploiting the definition (19), we can derive a matrix expression for the gradient

of the edge preserving function (11), which is formally independent of the dimension d

and on the boundary conditions.

Indeed, each l–th element of the gradient of (19) is given by

∂f1(x)

∂xl

=

N1∑

k=1

Ak
T Akx

D
1/2
k

l = 1, ..., N (20)

Moreover, we define the block matrix A stacking the difference matrices Ak by rows

A =




A1

A2

...

AN1


 (21)
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The matrix A is a q × N matrix: for periodic boundary conditions q = dN , where

d is the dimension of x, while for reflexive boundary conditions q = n − 1, q =

2(n − 1)(m − 1) + n + m − 2 or q = 3(n − 1)(m − 1)(r − 1) + 2(n − 1)(m − 1) +

2(r−1)(n−1)+2(r−1)(m−1)+n+m+r−3 for the 1D, 2D and 3D case respectively.

We define also a block diagonal matrix E(x) ∈ Rq×q as follows

E(x) = diag(D
1/2
k Id)k=1,...,N1 (22)

where the dimension d of the k–th diagonal block is the number of rows of the

corresponding block Ak in the matrix A. Then, the gradient can be written as

∇f1(x) = AT E(x)−1Ax (23)

(see also [5], [13] and references therein). We remark that A in (21) has constant entries,

while the diagonal entries of E(x) are dependent on the variable x. Furthermore the

gradient of f1(x) has the special form

∇f1(x) = L(x)x

with L(x) = AT E(x)−1A. Since the diagonal entries of E(x) are positive for all x ∈ RN ,

E(x) and E(x)−1 are positive definite matrices. Then the rank of L(x) and its null space

are equal to those of constant matrix A.

Now, from (20)–(23) we derive the Hessian matrix of the function (11) (see also [3]):

∇2f1(x) =

N1∑

k=1

(
1

D
1/2
k

Ak
T Ak − 1

D
3/2
k

Ak
T AkxxT Ak

T Ak

)
= (24)

=

N1∑

k=1

(
1

D
1/2
k

Ak
T (Id − 1

Dk

AkxxT Ak
T )Ak

)

Then

∇2f1(x) = AT E(x)−1F (x)A (25)

where A and E(x) are given in (21) and F (x) is the following square block diagonal

matrix of order q

F (x) = diag

(
Id − 1

Dk

AkxxT Ak
T

)

k=1,...,N1

where the dimension d of the k–th diagonal block is the number of rows of the matrix

Ak.

In particular, we remark that each block of F (x) is nonsingular and, consequently, F (x)

is nonsingular for all x ∈ RN . Indeed, the k–th diagonal block of F (x) is the difference

between the identity matrix and a dyadic product; from formula (15), we have that

1

Dk

xT Ak
T Akx =

‖Akx‖2

Dk

< 1

Consequently, from the Sherman-Morrison theorem (see for example [8, p.19]), it follows

that each diagonal block of F (x) is nonsingular.
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Figure 1. Structure of the Hessian matrix of the function (11) with periodic boundary
conditions for n = m = r = 4: (a) d = 1; (b) d = 2; (c) d = 3.

Figure 1 shows the sparsity pattern of the Hessian matrix of f1(x) in (11) with periodic

boundary conditions in the 1D, 2D and 3D cases. We observe that, for each row, we

have three, seven and thirteen nonzero entries for d = 1, d = 2 and d = 3 respectively.

The explicit expression of the nonzero entries of the 2D Hessian is given in Appendix

A.

Theorem 3.1 The null space of the Hessian matrix ∇2f(x) is given by the set of the

minimum points of f1(x).

Proof. We observe that, since E(x)−1F (x) is a symmetric positive definite matrix for

all x ∈ RN , we have that

N [∇2f1(x)] = N [A]

On the other hand, the minimum points of the convex function f1(x) satisfy the

stationarity condition ∇f1(x) = 0, that is

AT E(x)−1Ax = 0.

Then, the set of the minimum points of f1(x) is the subspace N [A]. ¤

Since the minimum points of the functional (11) in both cases of periodic or reflexive

boundary conditions are all the points x ∈ RN such that x1 = x2 = ... = xN , the

previous theorem implies that the null space of the Hessian matrix is spanned by the

vector eN ∈ RN with all entries equal to 1, that is

N [∇2f1(x)] = {αeN : α ∈ R} for all x ∈ RN .

Thus, properties (P1) and (P2) hold for the edge preserving functional (11) with both

periodic and reflexive boundary conditions, in the 1D, 2D and 3D cases.
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4. Markov Random Field (MRF) regularization

For the 2D edge preserving image reconstruction, we can consider the following penalty

function [7]

f1(x) =
n∑

i=1

m∑
j=1

∑

`∈Nij

√√√√
(

xij − x
(`)
ij

w
(`)
ij

)2

+ δ2 (26)

where x
(`)
ij , ` ∈ Nij ⊆ {1, ..., 8} denote the eight first neighbors of the pixel ij, while

w
(`)
ij are positive weights (typically, w

(`)
ij = 1 for the vertical and horizontal neighbors

and w
(`)
ij =

√
2 for the diagonal neighbors). The function (26) is a simple example of

the Markov random field regularization [6], where f1(x) represents a sum of potentials

involving only the ”nearest neighbor” interactions between the components of x.

When we assume periodic boundary conditions, Nij = {1, ..., 8} for all i = 1, ..., n,

j = 1, ..., m. Then for any k = 1, ..., nm we can consider eight 1×nm vectors A
(1)
k ,...,A

(8)
k ,

with all components equal to zero except for the following entries

[A
(1)
k ]k = 1 [A

(1)
k ]k−1 = −1; [A

(2)
k ]k = 1 [A

(2)
k ]k+1 = −1

[A
(3)
k ]k = 1 [A

(3)
k ]k−n = −1; [A

(4)
k ]k = 1 [A

(4)
k ]k+n = −1

[A
(5)
k ]k = 1√

2
[A

(5)
k ]k+n−1 = − 1√

2
; [A

(6)
k ]k = 1√

2
[A

(6)
k ]k+n+1 = − 1√

2

[A
(7)
k ]k = 1√

2
[A

(7)
k ]k−n−1 = − 1√

2
; [A

(8)
k ]k = 1√

2
[A

(8)
k ]k−n+1 = − 1√

2

With these settings, the functional f1(x) can be written as

f1(x) =
nm∑

k=1

8∑

`=1

√
‖A(`)

k x‖2 + δ2 =
nm∑

k=1

8∑

`=1

D
(`)
k

1
2

where D
(`)
k ≡ D

(`)
ij = ((xij − x

(`)
ij )/w

(`)
ij )2 + δ2. Also in this case, if δ 6= 0, f1(x) is a C2

differentiable convex function and its Hessian is a positive semidefinite matrix for any

x ∈ Rnm. From the previous expression we derive the gradient as

∇f1(x) =
nm∑

k=1

8∑

`=1

A
(`)T
k A

(`)
k x

D
(`)
k

1
2

(27)

We now define the following square matrices of order nm

A(`) =




A
(`)
1
...

A
(`)
nm


 E(x)(`) = diag

(
D

(`)
ij

1
2

)
` = 1, ..., 8

When reflexive boundary conditions are assumed, we have that Nij = {1, ..., 8} for

i = 2, ..., n−1, j = 2, ...,m−1, while for the corners ((i, j) = (1, 1), (n, 1), (1,m), (n,m))

Nij contains only 3 indices, and for the remaining boundary pixels,Nij has only 5 indices.

Then, the number N
(`)
1 of rows of the matrices A(`) and E(x)(`) depends on the value of
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`. In any case, with both periodic and reflexive boundary conditions, after exchanging

the two summations in (27), we have

∇f1(x) =

(
8∑

`=1

A(`)T

E(x)(`)−1

A(`)

)
x (28)

The gradient vector has the form ∇f1(x) = L(x)x, where L(x) =∑8
`=1 A(`)T

E(x)(`)−1
A(`). Since A(`)T

E(x)(`)−1
A(`), ` = 1, ..., 8 are symmetric positive

semidefinite matrices, from the Lemma 2.1 we have N [L(x)] =
⋂8

`=1N [A(`)] for all

x ∈ Rnm. Since A(`)eN = 0, ` = 1, ..., 8, we have that property (P2) holds

∇f1(x)T eN = 0 for all x ∈ Rnm

Moreover, the following expression for the Hessian can be derived:

∇2f1(x) =
8∑

`=1

A(`)T

E(x)(`)−1

F (x)(`)A(`) (29)

where F (x)(`) = diag(δ2/D
(`)
k )k=1,...,N1 is a diagonal matrix with positive entries. Thus,

the Hessian of the MRF regularization function can be written as the sum of eight

positive semidefinite matrices M (`) = A(`)T
E(x)(`)−1

F (x)(`)A(`). From Lemma 2.1, we

have N [∇2f1(x)] =
⋂8

`=1N [A(`)] for all x ∈ Rnm. Proceeding as in Theorem 3.1, we

can conclude that the null space of the Hessian matrix is the set of the minimum points

of (26), that is, {αeN : α ∈ R} = N [A(`)] =
⋂8

`=1N [A(`)] = N [∇2f1(x)]. In summary,

we proved properties (P1) and (P2) for the MRF regularization function (26) in the 2D

case; similar conclusions can be extended to 3D case.

5. Tikhonov regularization

We consider the standard Tikhonov regularization, based on the `2 norm of the discrete

gradient of x, which can be expressed as

f1(x) =
1

2

N1∑

k=1

Dk (30)

where Dk and N1 are defined in (12)–(14) with δ = 0. Using the same settings as in

section 3, we have also

f1(x) =
1

2

N1∑

k=1

‖Akx‖2 (31)

The regularization function f1(x) is a convex quadratic function and its gradient is given

by

∇f1(x) =

N1∑

k=1

AT
k Akx = AT Ax (32)

where A is given in (21). The gradient vector of f1(x) has the special form ∇f1(x) =

L(x)x, where L(x) = AT A and L(x) ≡ L is a constant matrix.
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Figure 2. Structure of the Hessian matrix of the function (30), with n = m = r = 4:
(a) d = 1 (b) d = 2 (c) d = 3.

The Hessian of f1(x) is the matrix of order N given by

∇2f1(x) =

N1∑

k=1

AT
k Akx = AT A (33)

Under periodic or reflexive boundary condition, properties (P1) and (P2) hold for the

Tikhonov regularization function (30) for d = 1, 2, 3. Indeed, we have that he sum of

all entries of the gradient vector is equal to 0 (eT
NAT Ax = 0) and eN ∈ N [L] = N [A] =

N [∇2f1(x)]. Following the proof of Theorem 3.1, we can prove that the rank of A is

N − 1 for d = 1, 2, 3, and, consequently, its null space is spanned by the constant vector

eN .

In Figure 2 the sparsity pattern of the Hessian of Tikhonov function (30) for periodic

boundary conditions is reported; for all d = 1, 2, 3 the off–diagonal elements are equal

to −1, while the diagonal entries are equal to 2, 4 and 6 respectively. Furthermore, for

each row, we have three, five and seven nonzero entries for d = 1, d = 2 and d = 3

respectively.

6. Conclusions

The results of the previous sections ensure that, when f0(x) is the generalized Kullback–

Leibler divergence (7) and f1(x) is the TV-HS potential (11) or the MRF function (26)

or the Tikhonov regularization term (30), properties (P1) and (P2) are satisfied. Lemma

2.1 and property (P1) enable us to conclude that the function fβ(x) = f0(x) + βf1(x)

is strictly convex over Ω for every β > 0.

This statement holds in 1D, 2D and 3D denoising and deblurring problems, only

assuming that the nonnegative blurring matrix H is normalized such that HT eM = eN

and (HeN)i > 0 for any i.

As concerns the existence and uniqueness of the solution of the discrepancy equation

(2), properties (P1) and (P2) allow us to apply the analysis proposed in [2] to all the
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penalty functions considered in this paper.

In particular, in the settings described in Section 2, the following results can be stated

(see Lemma 3–5, Theorem 2–3 in [2]):

Denoising: equation (2) has an unique solution if and only if the data satisfy the

following condition

1

N

∑

k∈I1

yk ln yk >
1

2
+ ȳ ln ȳ (34)

where ȳ = 1
N

∑N
k=1 yk;

Deblurring: under the assumption that

1

N

N∑
j=1

(HT y)j > γ (35)

equation (2) has an unique solution if and only if the following conditions are satisfied

f0(x
∗) <

M

2
, (36)

f0(c̄eN) >
M

2
(37)

where x∗ is a minimum point of f0(x) such that the minimizer of fβ(x) converges to x∗

as β converges to zero and c̄ is the unique solution of the equation
∑

i∈I1

(HeN )iyi

c̄(HeN )i+bi
= N .

In the case of image deconvolution, since M = N and HeN = eN , the assumption (35)

reduces to ȳ > γ, and condition (37) coincides with (34).

Appendix A

We give the explicit expression of the gradient and of the Hessian matrix for the 2D edge

preserving function (11), assuming periodic boundary conditions. The k-th component

of the gradient is given by

∂f1(x)

∂xij

=
2xij − xi+1j − xij+1

D
1/2
ij

+
(xij − xi−1j)

D
1/2
i−1j

+
(xij − xij−1)

D
1/2
ij−1

where Dij are defined in (13). Then, the nonzero entries of the Hessian are defined as
follows:

∂2f1(x)
∂x2

ij

=
(xi+1j − xij+1)2 + 2δ2

D
3/2
ij

+
(xi+1j−1 − xij−1)2 + δ2

D
3/2
ij−1

+
(xi−1j+1 − xi−1j)2 + δ2

D
3/2
i−1j

∂2f1(x)
∂xij∂xi+1j

=
(xij+1 − xij)(xi+1j − xij+1)− δ2

D
3/2
ij

∂2f1(x)
∂xij∂xij+1

=
(xi+1j − xij)(xij+1 − xi+1j)− δ2

D
3/2
ij

∂2f1(x)
∂xij∂xi−1j

=
(xij − xi−1j+1)(xi−1j+1 − xi−1j)− δ2

D
3/2
i−1j
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∂2f1(x)
∂xij∂xij−1

= −(xij − xi+1j−1)(xi+1j−1 − xij−1)− δ2

D
3/2
ij−1

∂2f1(x)
∂xij∂xi−1j+1

= −(xij − xi−1j)(xi−1j+1 − xi−1j)

D
3/2
i−1j

∂2f1(x)
∂xij∂xi+1j−1

= −(xij − xij−1)(xi+1j−1 − xij−1)

D
3/2
ij−1
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[4] Charbonnier P, Blanc–Féraud L, Aubert G and Barlaud A 1997 Deterministic edge–preserving
regularization in computed imaging IEEE Trans. Image Processing 6 298–311

[5] Chartrand R and Staneva V 2008 Total variation regularisation of images corrupted by non-
Gaussian noise using a quasi-Newton method Image Processing IET 2 295–303

[6] Geman S and Geman D 1984 Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images IEEE Trans. Pattern Anal. Intell. 6 721–741

[7] Geman S, Manbeck K and McClure D E 1993 A comprehensive statistical model for single photon
emission tomography Markov Random Fields: theory and Applications eds. Chellappa R and
Jain A. (Boston: Academic Press) 93–130

[8] Horn R A and Johnson C R 1990 Matrix Analysis (Cambridge: Cambridge University Press)
[9] Shepp L A and Vardi Y 1982 Maximum likelihood reconstruction for emission tomography Trans.

Med. Imaging MI-1 113–122
[10] Vogel C R 2002 Computational Methods for Inverse Problems (Philadelphia: SIAM)
[11] Vogel C R and Oman M. E 1998 Fast, robust total variation–based reconstruction of noisy, blurred

images IEEE Trans. on Image Proc. 7 813–824
[12] Zanella R, Boccacci P, Zanni L and Bertero M 2009 Efficient gradient projection methods for

edge–preserving removal of Poisson noise Inverse Problems 25 045010
[13] Zhu M and Chan T 2008 An Efficient Primal–Dual Hybrid Gradient Algorithm For Total Variation

Image Restoration UCLA CAM Report 08–34 1–29


