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a b s t r a c t

Nonlinear image deblurring procedures based on probabilistic considerations have been
widely investigated in the literature. This approach leads to model the deblurring problem
as a large scale optimization problem,with a nonlinear, convex objective function and non-
negativity constraints on the sign of the variables. The interior point methods have shown
in the last years to be very reliable in nonlinear programs. In this paper we propose an
inexact Newton interior point (IP) algorithm designed for the solution of the deblurring
problem. The numerical experience compares the IP method with another state-of-the-
art method, the Lucy Richardson algorithm, and shows a significant improvement of the
processing time.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In image deblurring problems, image formation is modeled as a first kind Fredholm integral equation which, after
discretization, results in a large-scale system of the form

Ax = b, (1)

where A is an N×N matrix and b ∈ RN is given by the sum of two terms b = g+η: g ∈ RN is the blurred image that would
have been recorded in absence of noise, η ∈ RN is the cumulative effect of the noise processes affecting the acquisition of
the final image [1]. Here and in the following, a two-dimensional image x ∈ Rn×n is represented as a vector x ∈ RN , N = n2
by stacking column by column. The image restoration problem is then to obtain an approximation of x, knowing A and b.
The matrix A represents the physical effect of the instrument and, since the system (1) is given by the discretization of an
ill-posed problem [1], it could be a very ill-conditioned matrix, with singular values decaying to zero, with no significant
gap to estimate the rank. Thus, an iterative approach to the solution of (1) could be preferable.
Several iterative algorithms proposed in the literature are based on the maximization of the maximum likelihood (ML)

function, that expresses the probability p(b|x) [2–6]. Such methods require a hypothesis on the image formation process.
Two noise processes are generally considered: the Gaussian noise, that is independent of the value of the pixels, and the
Poisson noise. Furthermore, a non-negativity constraint on the components xi is imposed, due to the physical meaning of
the variables.
In the Poisson noise case, one of the most popular algorithms is the Lucy–Richardson (LR), or Expectation Maximization

(EM), algorithm [2,3,5]. The LR algorithm has a very simple form, does not require any step-length computation, and it is
convergent to a positive maximum of the ML function [7], but it exhibits a low convergence speed, especially close to the
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optimal solution. This behavior can be explained by observing that the LR algorithm actually is a scaled steepest descent
method [8,9], thus its convergence rate is linear. To get a better convergence rate, an alternative of the gradient direction
should be considered.
Recently, the Newton or quasi-Newton approach has been proposed for the non-negative image restoration problem

[10–14]. However, the computation of the Newton direction could be very costly in terms of time, since it is defined as the
solution of a linear system. Thus, the convenience of a Newton approach is preserved if the cost of the computation of the
direction is balanced by a very fast convergence of the overall algorithm.
In this paper we propose a Newton interior point (IP) algorithm for the maximum likelihood problem that has been

specialized to the image deblurring problem. The main advantage of the proposed method, is that the Newton direction can
be computed inexactly, with an adaptive tolerance which preserves the global convergence.
We provide also the possibility to include an entropy penalization–regularization term. Furthermore, we analyze a

recently-proposed variant of the LR algorithm for the regularized problem.
In our numerical experiments on astronomical test images, we show the rapid convergence of the algorithm compared

to the LR method, on both the regularized and non-regularized cases.
The paper is organized as follows: in Section 2 we explain the statistical model and we describe in detail the nonlinear

programming problem to be solved. Moreover, we describe the main features of the LR method. In Section 3 we present the
interior point algorithm, focusing on the direction determination, the line-search technique and the initialization. Section 4
deals with the regularization techniques that can be applied in the ML problem and we consider a regularized variant of the
LR method. The numerical experience comparing the interior point and the LR method on some astronomical test images,
with and without regularization, is presented in Section 5. Our conclusion and perspectives are given in Section 6.

2. The maximum likelihood problem

In a probabilistic framework, the element bi of the observed image b can be interpreted as the realization of a Poisson
distribution with mean (Ax)i =

∑
j Aijxj. Accordingly,

p(bi|x) =

e
−
∑
j
Aijxj

(∑
j
Aijxj

)bi
bi!

.

Moreover, each component (pixel) of the observed image b is subject to an independent Poisson process. The global
likelihood of the observed image is therefore

p(b|x) =
∏
i

e
−
∑
j
Aijxj

(∑
j
Aijxj

)bi
bi!

.

Thus, the maximum likelihood criterion leads to seeking for an approximate solution of the problem (1) that maximizes
p(b|x), or, equivalently, that minimizes

− log(p(b|x)) =
∑
i

(∑
j

Aijxj − bi log

(∑
j

Aijxj

)
+ log(bi!)

)
.

By using the Stirling formula log(bi!) = −bi + bi log bi we obtain the Csiszär divergence [15], that is a generalized form of
the Kullback–Leibler measure of the distance between the blurred image Ax and the observed image b:

KL(Ax, b) =
∑
i


∑
j

Aijxj − bi − bi log

(∑
j
Aijxj

)
bi

 .
As in [16,17], we consider a slight modification of the Csiszär divergence, adding a constant background term bg . In a more
compact notation, the functional can be written as

J(x) =
∑
i

(Ax)i + bg − bi − bi log
(Ax)i + bg

bi
. (2)

Taking into account of the physical meaning of the variables xi, we impose a non-negativity constraint: therefore, the
maximum likelihood problem becomes

min J(x).
x ≥ 0 (3)
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The gradient and hessian of the objective function J are

∇J(x) = ATe− ATY−1b (4)

∇
2J(x) = ATBY−2A, (5)

where e is a vector whose N components are all equal to one, B = diag(b) and Y = diag((Ax)+ bg).
The matrix A has positive entries and it is generally dense. However, considering the boundary conditions imposed for

the discretization of the Fredholm integral equation, we can devise an important property of the matrix A. In this paper we
will assume that periodic boundary conditions are imposed, so that the matrix A is block-circulant with circulant blocks
BCCB.
This property is crucial in order to perform thematrix–vector products quickly: in fact, the products Ax can be performed

with a O(N logN) complexity, by employing the Fast Fourier Transform (FFT) [18].
Since the components bi of the observed image are non-negatives, the hessian matrix (5) is positive semidefinite in the

feasible region defined by the constraints, thus the problem (3) is convex and any local minimum is also a global minimum.
The Karush–Kuhn–Tucker (KKT) first order optimality conditions for (3) can be stated as follows:

xT∇J(x) = 0 (6)
∇J(x) ≥ 0
x ≥ 0.

If the matrix A is normalized such that ATe = e, the complementarity condition (6) becomes

x = XATY−1b,

where X = diag(x). The Lucy–Richardson (LR) method [2,3,5] is based on the previous fixed point formulation, and its
iteration is defined as

xk+1 = XkATY−1k b. (7)

Starting from a positive initial point, the non-negativity of A and b guarantees that all the successive iterates remain feasible
and, furthermore, the convergence to a solution of (3) can be proved [7].
The LRmethod is attractive because of its convergence properties and its low computational cost, consisting inO(N logN)

operations (needed to perform the matrix vector product ATYb) per iteration. These nice features made the method one of
the most popular for astronomical and medical image restoration problems. However, the main drawback of the method is
a very slow convergence, that, in many cases, leads to hundreds or thousands of iterations to obtain an approximation of
the solution of the desired quality. In fact, since the iteration (7) can be written as

xk+1 = xk − Xk∇J(xk)

the LR method can be interpreted as a scaled steepest descent method, with the scaling matrix given by Xk, therefore its
convergence rate is linear. On the other hand, the fixed point iteration (7) implies that the convergence rate of the LRmethod
is governed by the spectral radius of the operator G(x) = XATY−1b in the solution. If the spectral radius is close to the unit,
a very low convergence has to be expected.
This drawback of the LR method motivated us to propose an interior point method, which exploits the Newton direction

instead of the gradient direction, for the problem (3).

3. A primal–dual approach

The method proposed in this section applies to every constrained nonlinear programming problem of the form

min f (x).
x ≥ 0 (8)

In spite of what is usual in the interior point framework, we do not introduce slackness on the positivity constraint. Indeed,
taking into account of the physical meaning of the variables and of the domain of the objective function (2), we design a
feasible method, i.e. a method which generates a sequence {xk} such that xk > 0 for any k. The iterate xk+1 is computed
along the Newton direction bymeans of a line-search procedure, and the step length has to guarantee the positivity and the
sufficient decrease of a merit function.
Themain feature of this algorithm is that the Newton direction is computed inexactly bymeans of an iterative procedure

associated with a termination rule guaranteeing the global convergence of the algorithm.
The Karush–Kuhn–Tucker (KKT) first-order optimality conditions of the problem (8) can be stated by introducing the

Lagrange multiplierw for the constraints as follows:

∇f (x)−w = 0 (9)
wixi = 0 i = i, . . . ,N (10)
x,w ≥ 0. (11)
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The variables xi are the primal variables, while the Lagrange multipliers wi are called dual variables. In a primal–dual
approach, x andw represents the unknowns of the nonlinear system (9)–(10), subject to the non-negativity constraint (11).
The interior point methods basic idea consists in solving the nonlinear system (9)–(10) generating a sequence of iterates
{(xk,wk)}which approximately solve the subproblems

(Pk)
∇f (x)−w = 0
wixi = ρk i = i, . . . ,N
x,w > 0

(12)

where ρk = µkσk, is the product of two positive parameters. The parameter µk > 0 is a perturbation parameter and
σk ≤ σmax < 1 is a positive forcing term. Given the point (xk,wk) and the perturbation parameter ρk, the Newton direction
is defined as the vector dkT = (1xkT,1wkT)T which solves the linear system(

∇
2f (xk) −I
Wk Xk

)(
1xk

1wk

)
= −

(
∇f (xk)−wk
WkXke− ρke

)
(13)

where Xk andWk are diagonal matrices whose entries are the components of the vectors xk andwk.
By eliminating the second block of equations, we get the condensed system

Mk1xk = −∇f (xk)+ ρkX−1k e (14)

1wk = −wk − X−1k Wk1xk + ρkX−1k e, (15)

whereMk = ∇2f (xk)+ X−1k Wk. The new point is computed as

xk+1 = xk + αk1xk

wk+1 = wk + αk1wk
(16)

where the step length along the direction dkT is given by the damping parameter αk ∈ (0, 1], which has to ensure the
positivity of the new point, i.e. (xk+1,wk+1) > 0. To this end, the step length is reduced as

α = C · min
1xi<0,1wi<0

(1,−xi/1xi,−wi/1wi), (17)

where C is a parameter less than one.
Furthermore, the step length may be reduced in order to satisfy the two following centrality conditions (see [19]), which

require that the new point satisfies

min
i
(xki + αk1x

k
i )(w

k
i + αk1w

k
i ) ≥ (τ1/n)(x

k
+ αk1xk)(wk + αk1wk) (18)

(xk + αk1xk)(wk + αk1wk) ≥ τ2‖∇f (xk)−wk‖. (19)

for some positive constants τ1 and τ2. The meaning of (18) and (19) can be explained by recalling that the k-th iterate of an
interior point method is an approximate solution of the nonlinear system (12). Then, instead of performing several Newton
steps to solve (12), we can improve the accuracy of such approximation moving along the Newton direction (13). It can be
proved [20] that there exists a value αk such that (18) and (19) are satisfied.
Finally, the damping parameter has to guarantee a sufficient decrease of the merit function

ϕ(x,w) =
√
‖∇f (x)−w‖2 + ‖WXe‖2. (20)

Here and in the following ‖ · ‖ indicates the euclidean norm, hence our merit function is a measure of the violation of the
KKT conditions (9)–(10). We adopt the following line-search rule, associated with the merit function (20),

ϕ(xk + αk1xk,wk + αk1wk) ≤ (1− β(1− δk − σk))Lk, (21)

where β < 1 is a positive parameter and Lk is a reference value defined as follows

Lk = max
k̄≤i≤k

ϕ(xi,w i), k̄ = max(0, k−M). (22)

The criterion (22) (see [21]) allows a non-monotone descent of the merit function. The monotonicity degree is set by the
parameterM; forM = 0 we found the line-search rule proposed in [22], where the authors show that it includes the Armijo
rule. As pointed out in [21,23], the non-monotone techniques can be useful in the step length computation, avoiding too
strict requirements on the descent of the merit function. Indeed, every backtracking step requires a gradient evaluation,
thus a good choice is a line-search rule that requires as few reductions as possible.
After computing the new point with the updating rule (16), the perturbation parameter is updated such that

µk+1 ∈ [µ
(1)
k+1, µ

(2)
k+1] (23)
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where

µ
(1)
k+1 =

(wk+1)Txk+1

N
and µ

(2)
k+1 =

ϕ(xk+1,wk+1)
√
N

. (24)

The choice µ(1) for the perturbation parameter is typical of the interior point methods and plays an important role in the
convergence analysis. The choice µ(2) is related to the inexact Newton method [22,24]. More precisely, with the choice
(23)–(24), the algorithm presented in this section can be considered an inexact Newton method with forcing term σk, and
the convergence proof can be derived as a special case from the proofs in [20,21,25], where the local superlinear rate is also
proved.
Thuswemay say that the convergence property of the proposed algorithm is based on its inexact feature. In the following

section we explain the practical meaning of it.

3.1. Computing the direction

We propose an algorithm in which the solution of the Newton system (13) can be computed in an inexact way. In
order to preserve the global convergence properties of the whole algorithm, the tolerance of such approximation has to
be carefully determined. In particular, by defining rk the residual vector of the Newton system in condensed form (14)–(15),
i.e. rk = −∇f (xk)+ ρkX−1k e−Mk1xk, we compute an approximation of the Newton direction such that

‖rk‖ ≤ δkϕ(xk,wk), (25)

where 0 < δk ≤ δmax < 1. The previous condition, together with (23)–(24), allows us to include our algorithm in the inexact
Newton framework (see [20,24,21]). The condition (25) is crucial from a theoretical point of view, since it guarantees the
global convergence of the algorithm, but it has also an important practical meaning. Indeed, it can represent the stopping
criterion for an iterative solver applied to the system (14).
We point out that the stopping rule (25) is adaptive in the sense that it requires a coarser approximation of the Newton

direction in the first interior point iterations, with a decreasing of the tolerance while the solution is approached. The main
computational effort of the interior point methods is the solution of the Newton system in order to compute the direction.
Most of the existing interior point codes are based on the direct factorization of the coefficient matrix. In the other cases,
when an iterative strategy is applied, the fast convergence of the inner solver is due to a suitable preconditioner. But also in
this case, the available codes provide the direct factorization of the preconditioner.
The image deblurring problems involve very large and densematrices, which are often available only as an operator, thus

the direct factorization of the matrixMk can not be considered.
For the reasons above, we consider an iterative solver which requires onlymatrix–vector products, as the Preconditioned

Conjugate Gradient (PCG).
This choice ismotivated by observing that the system (14) has a symmetric positive definitematrix, thus the PCGmethod

finds a solution in at most N steps. It is well-known that the preconditioning techniques can significantly improve the
performances of the PCG method: in particular, a good preconditioner choice would be a matrix Pk such that P−1k Mk has
clustered eigenvalues.
Preconditioning the CG method in the image reconstruction frame is a very challenging issue and many approaches

have been proposed in the literature: we mention for example the FFT-based preconditioners [26,27], the constraint
preconditioners [28,29] and the FSIP (Factorized Sparse Inverse Preconditioners) approach [13].
The preconditioning technique implies an additional computational complexity to the conjugate gradient iteration that

should be balanced by a very fast convergence of the iterative linear solver. Moreover, every preconditioner choice has to
take into account of the special features of the coefficient matrix. We point out that, for the application we are dealing with,
the matrix A is dense, very ill-conditioned or singular, and the entries of the matrices Fk = BY−2k and Gk = X−1k Wk can
exhibit very large variations.
On the other hand, some of the approaches mentioned above are suited for problems where the blurring operator leads

to a very sparse matrix A, while other techniques may become very expensive or ineffective due to the presence of the
nonconstant diagonal matrices Fk and Gk.
Thus, in order to design a general and relatively cheap linear solver, our choice for the preconditioner is the exact diagonal

ofMk, which can be computed as

(Mk)ii =
∑
j

A2jifi + gi

where fi is the i-th diagonal entry of the matrices Fk and Gk respectively. The choice of the diagonal preconditioner may be
non-optimal, but, with a small computational effort, we found that the number of PCG iterations needed to fulfill the rule
(25) is relatively small, depending on the outer iterations. Indeed, at the first interior point iterations, often one or two PCG
iterations are performed, while in proximity of the solution, up to an hundred PCG iterations are required.We recall that one
CG inner iteration has anO(N logN) computational complexity, due to the four FFTs needed to compute the hessian–vector
product. The additional cost of the diagonal preconditioner consists in two further FFTs to compute the diagonal of Mk at
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each outer interior point iteration and in N quotients at each CG iteration for solving the diagonal system. The leading cost
of one interior point iteration is then O(N logN).

3.2. The starting point

The choice of the starting point for the dual variables w0, given an initial guess x0, is a well known problem in the
interior point methods [30,31]. The Newton direction can be drastically shortened by the positivity requirement w > 0
and produce poor progress toward the solution. This behavior can be sustained for many iterations, making the solution
process inefficient. In this section we present a heuristic that can produce a good dual starting point. We assume that an
initial guess x0 is assigned to the primal variable and that a preliminary value ρ̃ is provided. We propose to set the initial
dual variablew0 as

argmin ‖∇f (x0)−w‖2 + ‖X0w − ρ̃e‖2,
w > ε

(26)

where ε is a positive tolerance. The solution of the quadratic programming problem (26) is the vector w0 that minimizes
the KKT conditions of the problem (12), for x = x0. The multiplier w0 can be obtained by projecting the vector (I +
X20 )
−1(∇f (x0)+ ρ̃e) on the constraintw > ε.
However, the requirement (26) could be too strict, since it produces a multiplier that fits very well the initial guess x0.

Thus, accordingly with the inexact nature of the algorithm, we introduce a residual t , and we choose

w0 = argmin ‖∇f (x0)−w + t‖2 + ‖X0w − ρ̃e‖2.
w > ε

(27)

In this case, the solutionw0 is given by the projection of (I + X20 )
−1(∇f (x0)+ ρ̃e+ t) on the constraintw > ε.

4. Regularization techniques

Since the problem (1) is an ill-posed problem, the solution of (3) can exhibit large instabilities corresponding to noise
amplification, visible in the restored solution as a checkerboard effect. Thus, the solution of (3) may not be a reliable
approximation of the solution of the restoration problem. Furthermore, we point out that any optimization method applied
to (3), by definition, will tend to produce the noise-dependent solution of (3).
A widely used technique to preserve the restored image from the noise amplification consists of an early stopping of the

iterations of the methods.
As an alternative, a regularized model is introduced, imposing some smoothness on the solution by penalizing the

objective function in (3). A general form of the penalized–regularized problem is

min J(x)+ γ R(x),
x ≥ 0 (28)

where γ is a regularization parameter and R(x) is a regularizing functional.
Depending on the relative weight of the penalty versus the log-likelihood functional, expressed by the regularization

parameter, the solution is pulled from the unstable solution of (3) toward the smoother solution of (28).
The regularization techniques can also be introduced from a probabilistic point of view, by giving an a priori probability to

the image x and its measurement b (see [4,32,33,6] and reference therein). The estimate of x is then obtained bymaximizing
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the a posteriori probability

p(x|b) =
p(b|x)p(x)
p(b)

,

or a modification of it. Taking the − log of the previous expression, introducing a multiplier γ and ignoring the constant
term, we can define the following functional [33,6]

f (x, γ ) = −log(p(b|x))− γ log p(x), (29)

which is related to the maximum a posteriori probability problem. If we assume that the original image is the realization of
independent Poisson processes at each pixel, with a known mean p, then we have

p(x) =
∏
i

e−pi(pi)xi

xi!

and

R(x) ≡ − log(p(x)) =
∑
i

pi − xi log pi + log(xi!)

=

∑
i

xi log
(
xi
pi

)
− (xi − pi). (30)

Hence, an a priori information about the solution x of the problem (1), the vector p, is incorporated in the restoration model
(28) (see [33,4]).
The functional (30) is also known as an entropy term and its gradient and hessian are given by

∇R(x) = log(x)− log(p)
∇
2R(x) = X−1.

Hence, R(x) is convex in its domain. Actually, it represents the Kullback–Leibler distance between the solution x and its
a priori estimate p, denoted by KL(x, p). Since this measure of the distance is not symmetric, we could consider also
KL(p, x) =

∑
pi log(pi/xi)+ xi − pi [34], or a combination of the two distances, βKL(x, p)+ (1− β)KL(p, x) [32].

Other choices for R(x) are considered for example in [32,35] and reference therein. For sake of completeness, wemention
the well-known Tikhonov regularization term R(x) = 1

2‖Dx− p‖2, where D is a matrix.
In our study, we apply the interior point method to the problem (28) where R(x) is given by (30), but the general form

of the method would allow to consider other choices for the regularization and also for the objective functional, depending
on the noise process assumed.
In the following section, we consider a variant of the LR algorithm which applies to the regularized problem.

4.1. Some gradient methods for the regularized problem

Simple gradient methods have been proposed also for the regularized case (28) [32,35]. The general form of these
algorithms is related to the scaled steepest descent method

xk+1 = xk − αkXkS−1k ∇f (xk; γ ) (31)

with different choices of the scaling matrix Sk. In [32], the authors propose the following scaling matrix

Sk = diag(ATUkAxk + [HTUkb]− − γ log p), (32)

where Uk is a weighting matrix. Here and in the following [·]− indicates the negative part of a real number, i.e. [z]− = −z
if z < 0 and [z]− = 0 if z ≥ 0. Analogously, we denote by [·]+ the positive part, so that, for any real number z we have
z = [z]+ − [z]−.
Starting from a positive initial guess, if Uk = Y−1k , then the unitary step size guarantees the feasibility of the iterates, as

shown in [32]. If we provide a line search rule, as for example the Armijo one, for determining the step length αk, the scaled
steepest-descent method converges to a non-negative solution of (28) [9].
Assuming that Ab has positive entries and that the normalization ATe = e holds, then the scaling (32) consists in

Sk = 1− γ log p. Thus, the method (31) with unitary stepsize reduces to the LR method (7) when γ = 0.
For other choices of the weighting matrix, as for example the choice Uk = I proposed in [32, Section 6.1.1], the feasibility

of the iterate (31) is not guaranteed in general: thus, some technique should be applied in order to preserve the positivity.
We observe that, if a projection is performed and the new iterate is computed as follows

xk+1 = xk + αk[xk − XkS−1k ∇f (xk; γ )]
+, (33)
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Fig. 1. Original images.

Table 1
Time comparison of the IP and LR algorithm.

SNR (dB) γ IP LR
εr Time Iter εr Time Iter

ngc7027 48 0 0.0509821 33.7 13(399) 0.0512568 677 10000
33 8e−4 0.0735489 33.9 20(378) 0.0711466 70.76 600

ngc6946 48 0 0.205129 39.7 12(475) 0.239292 677 10000
33 8e−4 0.308028 9.9 8(76) 0.30939 70.98 600

ngc891 48 0 0.279646 18.3 8(194) 0.301251 677 10000
33 1e−4 0.327592 8.1 8(78) 0.338653 70.7 600

satellite 48 3e−4 0.259738 59.8 21(714) 0.26838 140.7 1200
33 8e−4 0.289965 25.1 14(279) 0.292606 141.0 1200

then the resulting iteration is a special case of the scaled projection methods presented in [9, Sec. 2.3]. Hence, under the
assumption that

c1‖z‖2 ≤ zTXkS−1k z ≤ c2‖z‖2 ∀z ∈ Rn,

for some positive scalars c1c2, the method (33) converges to a stationary point of the problem (28), if αk is chosen by the
Armijo rule (see Proposition 2.3.4 in [9]). The methods (31) and its projected version (33) can be extended to other choices
of the regularization functionals, as in [32,35].

5. Numerical experiments

The aim of our experimentation is to investigate if themethod explained in Section 3 could be of practical interest for the
image restoration problem and if it is a real improvement compared to a gradient method like the LR one. For this reason
we compare the performance of the interior point algorithm with an existing and widely-used method, the LR method.
More precisely, we consider the two cases, with and without the regularization term described in Section 4: in the second
case, the comparison is between the classical LR method (7), while we choose the method (31)–(32) as a benchmark for the
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Fig. 2. Reconstruction of the test image ncg6946, SNR= 48. (A) blurred and noisy image; (B) IP reconstruction; (C) LR reconstruction.

Fig. 3. Relative error with respect to the execution time: case SNR= 48.

regularized case. By doing so, the two methods applied to the same optimization problem, (3) or (28) respectively, can be
compared.
The IP and LR algorithms, including the regularized versions, have been implemented in the Matlab environment, and

run on an Intel Pentium M715 processor, 1.5 GHz, 512 MB DDR.

5.1. The test problems

We considered the images shown in Fig. 1 whose size is 256 × 256. All the images reported in this paper have been
obtained with the Matlab ‘imshow’ function, thus the scale can vary. Images ngc6946 and ngc891 can be downloaded from
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Fig. 4. Relative error with respect to the execution time: case SNR= 33.

http://medusa.as.arizona.edu/lbto/astronomical.htm. The images were cut and resized to a 256 × 256 array. In particular,
for the image ngc6946 only the green channel has been selected.
The original images were artificially blurred by numerical convolution with a point-spread function which simulates a

telescope [36]. It leads to a n × nmatrix A with circular symmetry with respect its center, and the values along the radius
are computed with

2
[
J1(πθD/λ)
πθD/λ

]2
,

where J1 is the Bessel J function, D is 8.25, λ is 2.2× 10−6, for θ ∈ (0, 16.4]. We approximate the value of the point-spread
function for θ = 0 with 0.5. The matrix obtained has been then normalized so that ATe = e.
The blurred images g are computed by numerical convolution of the true imagewith the point-spread function described

above. They are successively corrupted by Poisson noise by means of the ‘imnoise’ Matlab function, yielding the simulated
observed images b (Fig. 1). For each test image we consider two different noise levels which are listed in Table 1. The
background parameter is bg = 6.76× 10−9.
As index of the quality of the restored image we consider the relative error εr of the reconstructed image x̂with respect

to the exact solution x

εr =
‖x̂− x‖
‖x‖

.

The settings of the methods are listed below.

5.2. Implementation details

The parameters δmax, σmax, τ1 and τ2 are computed at the first iteration as in [20]. The reduction factor for the backtracking
loop is θ = 0.8 and the parameter β in the line search rule (21) is set to 10−4.
For the experiments, the monotonicity degreeM has been set to 10 and the forcing term δk related to the inner stopping

criterion has been fixed equal to δmax. The other forcing term σk has been chosen as σk = min(0.5, σmax).

http://medusa.as.arizona.edu/lbto/astronomical.htm
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Fig. 5. Test image of a star cluster. (A) Original image in logarithmic scale, (B) noisy blurred in linear scale; (C) noisy blurred in logarithmic scale
(SNR= 52.1979); (D) IP reconstructed in logarithmic scale; (E) LR reconstructed in logarithmic scale.

The stopping criterion of the whole interior point method has been set with the tolerance τ = 5 × 10−3: this is not a
very strict tolerance, but it takes into account of the ill-conditioning of the problem.
Furthermore, we limit the maximum number of PCG iterations to 100. The parameters for the initialization of the

Lagrange multiplier in (27) are ρ̃ = 0.5, t = 10−1 and ε = 10−4.
For the regularized case (28) we consider the variant (31)–(32) of the LR algorithm with Uk = Y−1k . In fact, we observed

that the other choice Uk = I produces a poorly-scaled direction, requiring many step-length reductions for the fulfillment
of the Armijo rule.
The regularization parameter γ has been empirically determined, since it is out of the scope of this paper to find the

optimal one. The a priori information in (30) has been chosen as p = b.

5.3. Numerical results

In Table 1 we report a comparison between the proposed IP and the LR methods, in terms of the relative error, iteration
number and execution time on the test images in Fig. 1. For the IP method we report the number of external iterations and,
in brackets, the total number of PCG iterations. For a visual comparison, we report also the noisy blurred and restored images
for the case ngc6946 in Fig. 2.
After obtaining the IP approximate solution, we performed a number of LR iterations such that the relative error of

the LR reconstruction was about the same, stopping the method anyway after 10000 iterations or when no significant
improvements are observed.
The comparison of the two algorithms is plotted also in Figs. 3 and 4, where the relative error is reported with respect to

the execution time.
We considered also another type of astronomical image, shown in Fig. 5: this image is downloadable from

ftp://ftp.stsci.edu/software/stsdas/testdata/restore/sims/star_cluster/ and it consists in 470 light sources. For this
experiment we stopped the IP iterations when ϕ(xk,wk) < 0.06, achieving the relative residual εr = 0.5897, after 36
outer and 1620 inner iterations, performed in 136 s. On the same test problem the LR algorithm needed 8000 iteration to

ftp://ftp.stsci.edu/software/stsdas/testdata/restore/sims/star_cluster/
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Fig. 6. Star cluster image, row 80:original and reconstructed images.

reach εr = 0.6146 in 482 s. Since the image is very sparse, the relative error may not be a significant index of the reliability
of the reconstruction. Thus, in Fig. 6, we report the row 80 of the original and reconstructed images.
We observe that the IP reconstruction detects better the intensity of the peaks and produces a sharper image. The same

observation can be made also for the other rows. In order to depict the difference of the two reconstructions, we report also
the IP and LR reconstructions in logarithmic scale.

6. Conclusions

We proposed an inexact interior point algorithm for deblurring noisy images. Also a regularized version of the algorithm
is presented, which can be generalized to different kinds of noise processes. We compared our approach with the Lucy
Richardson method, which is a reference method for image deblurring. We framed the analysis of the methods into an
optimization point of view. The results show that the interior point approach can significantly improve the execution times
needed for obtaining the same reconstruction image quality, as the reference method. We also presented some cases where
the IP method was able to obtain a better relative error than the smallest Lucy Richardson’s one.
As a final remark, the paper proved that the superlinear convergence properties of the IP method are a real improvement

over the gradient methods and are of both theoretical and practical interest.
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