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This work is concerned with the cyclic block coordinate descent method, or nonlinear Gauss-Seidel
method, where the solution of an optimization problem is achieved by partitioning the variables in blocks
and successively minimizing with respect to each block. The properties of the objective function that
guarantee the convergence of such alternating scheme have been widely investigated in the literature and
it is well known that, without suitable convexity hypotheses, the method may fail to locate the stationary
points when more than two blocks of variables are employed. In this paper the general constrained
non convex case is considered and three contributions are given. First, a general method allowing an
approximate solution of each block minimization subproblem is devised and the related convergence
analysis is developed, showing that the proposed inexact method has the same convergence properties of
the standard nonlinear Gauss-Seidel method. Then, a cyclic block gradient projection method is analyzed,
proving that it leads to stationary points for every number of blocks. Finally, the cyclic block gradient
method is applied to large scale problems arising from the nonnegative matrix factorization approach.
The results of a numerical experimentation on image recognition problems are also reported.

Keywords: Constrained optimization, alternating algorithms, gradient projection methods, nonnegative
matrix factorization

1. Introduction

This paper deals with the solution of the constrained optimization problem

min f (x)
s.t. x∈Ω = Ω1×Ω2× ...×Ωm⊆ Rn (1.1)

where, for alli = 1, ...,m, Ωi is a convex subset ofRni with n1 + ...+nm = n and any vector inΩ can
be partitioned into vector components as

x = (x1,x2, ...,xm) xi ∈Ωi .

The nonlinear Gauss–Seidel (GS) method, which is also known as nonlinear block coordinate descent
or alternating optimization method, consists in solving (1.1) by successively minimizing the function
f with respect to each block of variables over the corresponding constraints: given an initial point

x(0) ∈Ω , for k = 0,1, ... the iteratex(k+1) = (x(k+1)
1 , ...,x(k+1)

m ) is computed such that fori = 1, ...,m the

block of variablesx(k+1)
i is a solution of the subproblem

min
y∈Ωi

f (x(k+1)
1 , ...,x(k+1)

i−1 ,y,x(k)
i+1, ...,x

(k)
m ). (1.2)
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The limit points of the sequence{x(k)} generated by the GS method are stationary for problem (1.1)
when the minimum problem in (1.2) has an unique solution fori = 1, ...,m [4, 6, 7].
On the other hand, it is well known that, when the functionf is not strictly convex with respect to each
block of variables, the GS method may fail to locate the stationary points. In particular, Powell in [22]
produced an example withm= 3 where the limit points of the sequence generated by the GS method
are not critical.
In [21, 23, 25] the convergence analysis of the GS method is performed devising appropriate convexity
assumptions on the objective function while some variants of the GS method, as the proximal point
modification [4, 14], have been proposed to handle the nonconvex case.
A different approach is proposed for the unconstrained case in [13], where the authors devise a set
of conditions not necessarily related to the convexity of the objective function, which rather involve
the property of the sequence{x(k)}. Furthermore, they define globally convergent line–search based
schemes which allow an approximate solution of the minimization with respect to some components.
The inexact solution of (1.2) has been considered for the casem = 2 also in [5], where the authors
show the local convergence of an alternating algorithm where the exact minimization with respect to
one component is replaced by a single Newton’s iteration.
Several variants of the gradient descent method have also been proposed in the literature in the alternat-
ing optimization framework. In particular, for the constrained case, we mention the gradient projection
method with fixed stepsize proposed in [24] and the analysis given in [10] from the point of view of the
decomposition techniques, where the convergence results are based on a line–search condition and on
the projected gradient properties.
For the general GS method in the nonconvex, constrained case, the more remarkable result can be found
in [14], where the authors prove that whenm= 2 every limit point of{x(k)} is a critical point of (1.1).
This convergence result has a special interest in the framework of the nonnegative matrix factoriza-
tion (NMF) [18], a matrix decomposition technique with a variety of applications ranging from signal
and image processing to document classification, to bioinformatics. This approach leads to optimization
problems where the variables are naturally partitioned in two blocks and the objective function restricted
to each block is not strictly convex.
Many NMF algorithms are based on the GS method where the solution of (1.2) is approximated by
applying an iterative optimization method and stopping the procedure when some heuristic criterion is
satisfied [3, 16, 19, 29].
In general, the features of many real life problems (e.g., the large number of variables or the nonlinearity
of the objective function) could make the exact solution of (1.2) impractical. Moreover, dealing with
applications, the hypotheses needed to prove the stronger convergence results may not be verified.
These observations motivated us to focus our analysis on the algorithmic features rather than on the the-
oretical properties of the objective function that guarantee the convergence of the alternating scheme.
Thus, we deal with the general nonconvex case, revisiting the approaches in [13, 14] by means of the
projected gradient properties and, in particular, we are interested on the effect of an approximate solu-
tion of (1.2).
To this end, we introduce two inexact alternating schemes where subproblem (1.2) is solved approxi-
mately.
The first one is a generalization of the GS method defined by means of a set of practical conditions
that express the sufficient accuracy level of an approximate solution of (1.2) in terms of decrease of the
objective function and improvement of the optimality.
Based on these conditions, we introduce a general inexact Gauss Seidel scheme allowing an inexact
solution with respect to all components and we develop its convergence analysis without convexity hy-
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potheses. Indeed, we prove that our inexact scheme has the same convergence properties established in
[14] for the GS method and, in particular, whenm= 2 every limit point is stationary for (1.1). The con-
ditions that we propose here have practical interest, since they can provide robust stopping criterion to
every two block alternating method, as the NMF algorithms mentioned above, which solves subproblem
(1.2) with an iterative optimization procedure.
Then, we propose an inexact alternating algorithm where the approximate solution of (1.2) is computed
by a finite number of gradient projection steps based on an Armijo line–search along the feasible direc-
tion with variable stepsize. We develop the related convergence analysis and our main result is the proof
that the limit points of the generated sequence are critical for problem (1.1), for everym> 1.
The numerical experimentation is performed on the Powell counterexample and on some large scale
NMF problems arising from image recognition problems. Furthermore, in order to better evaluate its
practical performances, we compare the proposed method also with other recent NMF algorithms.
The paper is organized as follows: in Section 2 we present some preliminary results related to the Armijo
condition and to the projected gradient direction, which are the basis of the convergence analysis; in Sec-
tion 3 we present a general inexact Gauss-Seidel scheme and we discuss its convergence properties; the
cyclic block gradient projection method is introduced in Section 4, where the Powell counterexample is
also discussed; in Section 5 we present the numerical results of the proposed algorithm applied to the
NMF problem, while our conclusions are offered in Section 6.

2. Definitions and preliminary results

Denote by∇i f (x) the partial gradient off with respect to thei–th block of variables at the pointx. Let
us define theprojected gradientof the functionf with respect to thei-th block of variables at the point
x as

∇P
i f (x) = PΩi (xi −∇i f (x))−xi (2.1)

wherePΩi is the projection operator on the convex setΩi , that isPΩi (x) = miny∈Ωi ‖x−y‖ (here and in
the following‖ · ‖ indicates the euclidean norm). Then, a pointx∗ is stationary for problem (1.1) if and
only if for all i = 1, ...,mwe have

∇P
i f (x∗) = 0. (2.2)

Thus, the quantity‖∇P
i f (x)‖ can be considered as a measure of the optimality of the pointx.

An alternating scheme that generates a sequence of pointsx(k) implicitly defines alsomother sequences
of thepartial updates, that are

z(k,0) = x(k)

z(k, i) = (x(k+1)
1 , ...,x(k+1)

i ,x(k)
i+1, ...,x

(k)
m ) i = 1, ...,m−1

z(k,m) = x(k+1)

For convenience we set alsoz(k,m+1) = z(k+1,1).
Given a sequencez(k) we define theArmijo line–search procedurewith respect to thei–th component as
in the Algorithm LS.

For the Armijo rule we recall the following basic result.

PROPOSITION2.1 Let {z(k)} be a sequence of points inΩ . Assume thatz(k) converges to somēz and

for i ∈ {1, ...,m} let {d(k)
i } be a sequence of feasible directions such that
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Algorithm LS Line–Search Algorithm

Let {z(k)} be a sequence of points inΩ and{d(k)
i } a sequence of descent directions, for a giveni ∈

{1, ...,m}. Fix δi ,β ∈ (0,1) and computeλ (k)
i as follows:

1. Setλ (k)
i = 1;

2. IF

f (z(k)
1 , ...,z(k)

i +λ (k)
i d(k)

i , ...,z(k)
m ) 6 f (z(k))+βλ (k)

i ∇i f (z(k))Td(k)
i (2.3)

THEN go to step 3.

ELSE setλ (k)
i = δiλ

(k)
i and go to step 2.

3. END

(A1) there exists a numberM > 0 such that‖d(k)
i ‖6 M for all k;

(A2) we have∇i f (z(k))Td(k)
i < 0 for all k;

(A3) we havelim
k→∞

f (z(k))− f (z(k)
1 , ...,z(k)

i + λ (k)
i d(k)

i , ...,z(k)
m ) = 0, whereλ (k)

i is computed with the al-

gorithm LS.

Then, for eachk the LS procedure terminates in a finite number of steps and, furthermore,limk ∇i f (z(k))Td(k)
i =

0.

Proposition 2.1 can be derived from known results (see [4, 14]), thus we omit the proof. It is worth

stressing that the previous proposition applies to every sequences{z(k)} and{d(k)
i } satisfying the as-

sumptions (A1)–(A3), not necessarily defined asz(k+1)
i = z(k)

i +λ (k)
i d(k)

i .
Consider now the projected gradient as feasible direction: then the following proposition holds (the
proof can be found for example in [9, Lemmas 2.3,2.4]).

PROPOSITION2.2 Setd(k)
i = ∇P

i f (z(k)).We have that

(i) if ‖d(k)
i ‖= ε > 0, then∇i f (z(k))Td(k)

i 6−ε2;

(ii) if z(k) is bounded,d(k)
i is also bounded.

This means that the projected gradient computed in a non stationary pointz(k) is a descent direction for
the i–th subproblem (1.2).

3. An inexact Gauss-Seidel scheme

The convergence of many optimization algorithms is ensured by a sufficient decrease of the objective
function value over two successive iterates, by means of the Armijo condition.
In this section we introduce the concept of sufficient decrease in the GS method: in particular, we

assume that each block of variablesx(k+1)
i for i = 1, ...,m just satisfies an Armijo condition instead of

exactly solving problem (1.2). Based on this condition, we prove a first key property of a more general
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Gauss-Seidel scheme.
To this end, we consider as descent direction for the Armijo rule the projected gradient at the point

z(k, i−1) = (x(k+1)
1 , ...,x(k+1)

i−1 ,x(k)
i ,x(k)

i+1, ...,x
(k)
m ), that is

d(k)
i = ∇P

i f (z(k, i−1)).

More precisely, we consider any sequence{x(k)} where, at each block update, the value off decreases
at least as it would decrease by performing an Armijo line–search along the projected gradient direction.
Thus, the sufficient decrease can be expressed as

f (x(k+1)
1 , ...,x(k+1)

i , ...,x(k)
m ) 6 f (x(k+1)

1 , ...,x(k)
i +λ (k)

i d(k)
i , ...,x(k)

m ) (3.1)

whereλ (k)
i is computed with the algorithm LS such that

f (x(k+1)
1 , ...,x(k)

i +λ (k)
i d(k)

i , ...,x(k)
m ) 6 f (z(k, i−1))+βλk∇i f (z(k, i−1))Td(k)

i

(see also [13, Algorithm 1]). A direct consequence of the condition (3.1) is the monotone decrease of
the sequence{ f (z(k, i))}k,i ; indeed, using the same arguments as in [14, Proposition 2], we can state the
following result.

PROPOSITION3.1 Let{x(k)} be any sequence such that (3.1) holds. Suppose that for somei ∈ {0, ...,m}
the sequence{z(k, i)} admits a limit point̄z. Then, for everyj ∈ {0, ...,m} we have

lim
k→∞

f (z(k, j)) = f (z̄)

We point out that condition (3.1) does not necessarily require thatx(k+1)
i is defined asx(k)

i + λ (k)
i d(k)

i ,
thus any solution of (1.2) also satisfies (3.1).
However, condition (3.1) alone guarantees the stationarity of the limit points of the partial updates
sequence{z(k, i)} with respect to the block variablexi+1 if i < m, with respect tox1 if i = m. This result
can be proved by means of Propositions 2.1 and 2.2, and by employing similar arguments as in [14,
Proposition 3].

PROPOSITION3.2 Let {x(k)} be any sequence satisfying (3.1). Suppose that for somei ∈ {1, ...,m} the
sequence{z(k, i)} admits a limit point̄z. Then,∇P

i+1 f (z̄) = 0 if i < m, ∇P
1 f (z̄) = 0 if i = m.

Proof. Suppose first for simplicity thati < m and assume by contradiction that‖∇P
i+1 f (z̄)‖ = 2ε > 0.

Indicating byK the set of indices such that{z(k, i)}k∈K converges tōz, thanks to the continuity of the
projected gradient, fork∈ K sufficiently large we have that

‖∇P
i+1 f (z(k, i))‖> ε.

Then, the vectord(k)
i+1 = ∇P

i+1 f (z(k, i)) satisfies

∇i+1 f (z(k, i))Td(k)
i+1 6−ε2 < 0. (3.2)

Moreover, since{z(k, i)}k∈K is a convergent sequence, it is also bounded, thus the sequenced(k)
i+1 is

bounded and Proposition 2.1 holds. From (3.1) we have

f (z(k, i +1)) 6 f (x(k+1)
1 , ...,x(k+1)

i ,x(k)
i+1 +λ (k)

i+1d(k)
i+1, ...,x

(k)
m )

6 f (z(k, i)).



6 of 23 S. BONETTINI

Therefore, since the sequences{ f (z(k, i + 1))} and{ f (z(k, i))} have the same limit (see Proposition
3.1), we obtain that

lim
k→∞,k∈K

f (z(k, i))− f (x(k+1)
1 , ...,x(k+1)

i ,x(k)
i+1 +λ (k)

i+1d(k)
i+1, ...,x

(k+1)
m ) = 0.

Sincex(k)
i+1 converges tōzi+1, and{d(k)

i+1}k∈K is bounded, Proposition 2.1 implies that

lim
k→∞,k∈K

∇i+1 f (z(k, i))Td(k)
i+1 = 0

which contradicts (3.2).
The same arguments can be applied also wheni = m, sincez(k,m+1) = z(k+1,1). ¤

Remark 1 The conclusions of Proposition 3.2 are unaffected also if instead of the projected gradient
(2.1) we choose the search direction as

d(k)
i = P

Ωi ,(D
(k)
i )−1(x

(k)
i −α(k)

i D(k)
i ∇i f (z(k, i− i)))−x(k)

i ,

whereα(k)
i is a positive parameter chosen in a bounded interval[αmin,αmax], with αmin > 0, andD(k)

i is
a symmetric positive definite matrix whose eigenvalues are bounded above and below by two constants
independent fromk. Furthermore,P

Ωi ,(D
(k)
i )−1 is the projection operator in the norm induced by the

inverse of the matrixD(k)
i , i.e.,

P
Ωi ,(D

(k)
i )−1(z) = min

y∈Ωi
(z−y)T(D(k)

i )−1(z−y).

Indeed, Proposition 2.2 holds also for this scaled version of the projected gradient (see [8, 9]) and the
proof of Proposition 3.2 can be obtained using the same arguments as before. More in general, every

descent directiond(k)
i+1 is allowed provided that (3.2) holds whenz(k, i) converges to a non stationary

point (see also [13, Assumption 1]).

The decrease of the objective function required by the condition (3.1) implies only∇P
i+1 f (z̄) = 0, when

z̄ is a limit point of {z(k, i)}. Stronger convergence results can be obtained, without convexity as-
sumptions, by adding appropriate hypothesis on the sequence generated by the alternating algorithm, as
proposed in [13] for the unconstrained case.
In the following section we consider two different strategies. First, we define a general inexact frame-
work by means of a set of conditions related to the optimality of each iterate. Such scheme is a gen-
eralization of the standard GS method, which allows an approximate minimization with respect to all
components and which is independent from the algorithm employed to compute an approximate solu-
tion of (1.2). Indeed, we prove in the inexact case the same properties established in [14] for the GS
method.
A different kind of conditions is considered in section 3.2 and, even if they can be stated in a general
form, they are more related to the algorithm employed to approximately solve (1.2). The inexact frame-
work associated to these conditions can not be considered a generalization of the GS method, but, on
the other hand, it has stronger convergence properties, as we will show in section 3.2.
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3.1 The optimality residual conditions

The aim of this section is to show that the properties of the GS method can be achieved also when the
subproblem (1.2) is inexactly solved for alli = 1, ...,m. We define a conceptual scheme by means of a
set of conditions on the iterates that can be easily implemented and that guarantee the stationarity of the
limit points with respect to two consecutive block coordinates.
In particular, besides the sufficient decrease of the objective function expressed by the line–search con-
dition (3.1), we require also an improvement of the optimality at each iterate. As a measure of the
optimality of a point with respect to the constrained problem (1.2) we adopt the norm of the projected
gradient (2.1). Indeed, through the following conditions we require a sufficient decrease of the projected
gradient norm over two successive partial updates:

‖∇P
i f (z(k, i))‖ 6 η‖∇P

i f (z(k, i−1))‖ i = 1, ...,m

‖∇P
i f (z(k, i))‖ 6 η‖∇P

i−1 f (z(k, i−1))‖ i = 2, ...,m

‖∇P
1 f (z(k+1,1))‖ 6 1

ηm−1‖∇P
m f (z(k,m))‖

(3.3)

whereη ∈ [0,1) is a forcing parameter.
We define the IGS method as every method that generates a sequence such that (3.1) and (3.3) hold. It
is straightforward to see that the GS method is a special case of the IGS method.
A practical IGS algorithm can be realized by computing the iteratesx(k+1) by means of any iterative
optimization algorithm to the subproblem (1.2), stopping the inner iterations when the conditions (3.3)
and (3.1) are satisfied.
The following theorem states a basic property of the IGS method.

Algorithm IGS Inexact Gauss–Seidel Method

Choosex(0) ∈Ω ;
FOR k = 0,1,2, ...

1 Setz(k,0) = x(k);

2 FOR i = 1, ...,m

2.1 Computex(k+1)
i such that the conditions (3.1) and (3.3) are satisfied

2.2 Setz(k, i) = (x(k+1)
1 , ...,x(k+1)

i ,x(k)
i+1, ...,x

(k)
m )

3 Setx(k+1) = z(k,m)

THEOREM 3.1 Let {x(k)} be any sequence satisfying (3.1) and (3.3) and suppose that for somei ∈
{1, ...,m} the sequence{z(k, i)} admits a limit point̄z. Then, we have

(i) ∇P
i+1 f (z̄) = 0 if i < m, ∇P

1 f (z̄) = 0 if i = m;

(ii) ∇P
i f (z̄) = 0.

Proof. The part (i) follows directly from Proposition 3.2. Let us prove thatz̄ is stationary with respect
to thei-th block of variables.
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For anyk, from conditions (3.3) it follows that

‖∇P
i+1 f (z(k, i +1))‖ > 1

η ‖∇P
i+2 f (z(k, i +2))‖

> 1
ηm−i−1‖∇P

m f (z(k,m))‖
> η i‖∇P

1 f (z(k+1,1))‖
> η‖∇P

i f (z(k+1, i))‖

from which we obtain

‖∇P
i+1 f (z(k, i +1))‖> η‖∇P

i f (z(k+1, i))‖> ‖∇P
i+1 f (z(k+1, i +1))‖.

By repeatedly applying the previous inequality, we get that

‖∇P
i+1 f (z(k, i +1))‖> η‖∇P

i f (z(k+ `, i))‖ (3.4)

for any` = 1,2, .... Let now{z(k j , i)} j be a subsequence converging toz̄and let` j be a positive integer
such thatk j+1 = k j + ` j . Recalling (3.3) and (3.4) we have that

‖∇P
i+1 f (z(k j , i))‖> 1

η
‖∇P

i+1 f (z(k j , i +1))‖> ‖∇P
i f (z(k j + ` j , i)‖= η‖∇P

i f (z(k j+1, i)‖

Since from Proposition 2.1‖∇P
i+1 f (z(k j , i))‖ goes to zero asj →∞, then also the sequence{‖∇P

i f (z(k j , i)‖}
converges to zero and, by continuity,∇P

i f (z̄) = 0. ¤

Therefore, the limit points of the partial updates generated by the inexact method are critical at least with
respect to two consecutive components. Then, the IGS method (3.1)-(3.3) which allows an approximate
solution with respect to all the components, has the same property established in [14, Proposition 3] for
the exact GS method.
Whenm= 2 the conditions (3.3) can be simplified as follows:

‖∇P
1 f (x(k+1)

1 ,x(k)
2 )‖ 6 1

η min
(
‖∇P

1 f (x(k)
1 ,x(k)

2 )‖,‖∇P
2 f (x(k)

1 ,x(k)
2 )‖

)

‖∇P
2 f (x(k+1)

1 ,x(k+1)
2 )‖ 6 η‖∇P

1 f (x(k+1)
1 ,x(k)

2 )‖,
(3.5)

We call any algorithm that generates a sequence satisfying (3.5) and (3.1) a 2–Blocks Inexact Gauss–
Seidel method and the following theorem states our main convergence result, which can be proved
employing similar arguments as in the proof of Theorem 3.1.

THEOREM 3.2 Let m= 2, and let{x(k)} be a sequence such that (3.1) and (3.5) hold. Then, any limit
point z̄of {x(k)} is a stationary point for problem (1.1).

The previous results are in some sense optimal for the IGS method, since it includes the GS algorithm
as special case forη = 0. Indeed, recalling the Powell counterexample [22], form > 2, we can not
guarantee that the limit points of{x(k)} are critical for the problem (1.1). The difficulty is that the partial
updatesz(k, i) may not have the same limit points for alli = 1, ...,m. In the following section we devise
a class of algorithms which overcome this difficulty and which are able to detect critical points of (1.1)
for anym> 1.
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3.2 Global convergence conditions

A sufficient condition such that āz= limk→∞,k∈K z(k, i) is a limit point also for the sequence{z(k, i−1)}
(and viceversa) is

lim
k→∞,k∈K

‖x(k+1)
i −x(k)

i ‖= 0. (3.6)

Indeed, by definition of the partial updates, we have

‖z(k, i)−z(k, i−1)‖= ‖x(k+1)
i −x(k)

i ‖.

We observe that, in general, if we definex(k+1)
i as a solution of (1.2), property (3.6) is not satisfied.

On the other side, (3.6) can be fulfilled by designing inexact algorithms where the new iterate is com-
puted along a suitable direction. The following proposition states the convergence of such a class of
algorithms, without restrictions on the numbermof blocks.

PROPOSITION3.3 Let {x(k)} a sequence and let∆x(k)
i the difference between thei–th coordinate block

at two successive iterations, so thatx(k+1)
i = x(k)

i +∆x(k)
i , i = 1, ...,m. Assume that

(i) the Armijo condition (3.1) is satisfied for allk and alli;

(ii) if for a given subsetK of indiceslimk→∞,k∈K ∇P
i f (z(k, i−1)) = 0, thenlimk→∞,k∈K ∆x(k)

i = 0 for
all i = 1, ...,m.

Then, every limit point̄x of {x(k)} is a limit point also for the sequences{z(k, i)} for all i = 1, ...,m and
it is stationary for problem (1.1).

Proof. Since (3.1) holds and̄x is a limit point of the sequence{z(k,0) = x(k)}, Proposition 3.2 en-
sures that∇P

1 f (x̄) = 0. Denoting byK the subset of indices such that{x(k)}k∈K converges tōx, by

hypothesis (ii) and by continuity of the projected gradient we havelimk→∞,k∈K ∆x(k)
1 = 0. Then,x̄ is a

limit point also for the sequence{z(k,1)}. Invoking again Proposition 3.2, we have∇P
2 f (x̄) = 0 and,

as a consequence,limk→∞,k∈K ∆x(k)
2 = 0. By applying the same arguments, we prove by induction that

limk→∞,k∈K z(k, i) = x̄ for all i and∇P
i f (x̄) = 0 for all i = 1, ...,m, i.e. x̄ is stationary for problem (1.1).

¤

The class of algorithms satisfying the hypotheses of Proposition 3.3 can be considered a generalization
of the globally convergent line–search–based algorithms presented in [13, Section 7]. In the following

section we present a special case of such class where the direction∆x(k)
i is the combination of a finite

number of gradient projection steps.

4. A cyclic block coordinate gradient projection algorithm

The cyclic block coordinate gradient projection algorithm (CBGP) that is introduced in this section is
related to the coordinate descent [21], gradient descent [27] and line–search based methods [13].
The algorithm CBGP is an inexact alternating method where an approximate solution of thei-th sub-
problem (1.2) is computed by a finite number of gradient projection steps. In the following we prove
the convergence result by employing similar arguments as in the proof of Proposition 3.3.
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Algorithm CBGP Cyclic Block Coordinate Gradient Projection Algorithm

Givenδi ,β ∈ (0,1), L1, ...,Lm finite positive integers. Choosex(0) ∈Ω ;
FOR k = 0,1,2, ...

1 Setz(k,0) = x(k);

2 FOR i = 1, ...,m

2.1 x(k,0)
i = x(k)

i ;

2.2 ChooseL(k)
i such that1 6 L(k)

i 6 L1;

2.3 FOR ` = 0, ...,L(k)
i

2.3.1 Computed(k,`)
i = ∇P

i f (x(k+1)
1 , ...,x(k,`)

i , ...,x(k)
m );

2.3.2 Computeλ (k,`)
i with the algorithm LS

2.3.3 Setx(k,`+1)
i = x(k,`)

i +λ (k,`)
i d(k,`)

i

2.4 Setx(k+1)
i = x(k,Li)

i

2.5 Setz(k, i) = (x(k+1)
1 , ...,x(k+1)

i ,x(k)
i+1, ...,x

(k)
m )

3 Setx(k+1) = z(k,m)

THEOREM4.1 Let {x(k)} be the sequence generated by the CBGP algorithm and assume thatx̄ is a limit
point of{x(k)}. Then,x̄ is a limit point also for the sequences{z(k, i)} for any i = 1, ...,m−1 and it is a
stationary point for problem (1.1).

Proof. The proof can be obtained by induction on` and i. Clearly, the sequence generated by the
algorithm CBGP satisfies (3.1); then, sincex̄ is a limit point for{x(k) = z(k,0)}, from Proposition 3.2
it follows that ∇P

1 f (x̄) = 0. Denoting byK a set of indices such that{x(k)}k∈K converges tōx, we

havelimk→∞,k∈K ‖d(k,0)
1 ‖= 0. By step 2.3.3 of the CBGP algorithm, it follows thatlimk→∞,k∈K ‖x(k,1)−

x(k)‖ = 0, i.e., x̄1 is a limit point also for the sequencex(k,1)
1 . From the continuity of the projected

gradient we obtain that

lim
k→∞,k∈K

d(k,1)
1 = lim

k→∞,k∈K
PΩi (x

(k,1)
1 −∇1 f (x(k,1)

1 ,x(k)
2 , ...,x(k)

m ))−x(k,1)
1 = ∇P

1 f (x̄) = 0.

Using the same arguments, by induction on` we can conclude that, for each`= 1, ...,L1, limk→∞,k∈K d(k,`)
1 =

0, that yields

‖∆x(k)
1 ‖= ‖x(k+1)

1 −x(k)
1 ‖6

L(k)
1

∑̀
=0

λ (k,`)
1 ‖d(k,`)

1 ‖6
L1

∑̀
=0

λ (k,`)
1 ‖d(k,`)

1 ‖ k→∞,k∈K−−−−−→ 0

where the vectorsd(k,`)
1 and the parametersλ (k,`)

1 for ` = L(k)
1 +1, ...,L1 are defined in the same way as in

the step 2.3 (see also [9, Lemma 2.6]). Thus, also the sequencez(k,1) = (x(k+1)
1 ,x(k)

2 , ...,x(k)
m ) converges
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to x̄ for k∈ K and by Proposition 3.2 it follows∇P
2 f (x̄) = 0 .

Proceeding by induction oni and employing the same arguments used fori = 1, we prove that̄x is a limit
point of the sequences{z(k, i)} for any i = 1, ...,m−1. As a result of this, invoking again Proposition
3.2, we can conclude that̄x is a stationary point of (1.1). ¤

Recalling Remark 1, we point out that the previous result still holds if in step 2.3.1 the search direction
is a scaled version of the projected gradient

d(k,`)
i = P

Ωi ,(D
(k,`)
i )−1(x

(k,`)
i −α(k,`)

i D(k,`)
i ∇i f (x(k,`)

1 , ...,x(k,`)
i , ...,x(k)

m ))−x(k,`)
i , (4.1)

provided that the bounds for both the steplength parameterα(k,`)
i and the minimum and maximum eigen-

values of the positive definite scaling matrixD(k,`)
i are independent from̀andk.

Remark 2 In order to show the differences between the Gauss-Seidel method and the inexact IGS and
CBGP methods, we consider the following constrained version of the original Powell counterexample
(see also [14]):

min f (x) =−x1x2−x2x3−x1x3 +∑3
i=1{(xi −1)2

+ +(−xi −1)2
+}

−106 xi 6 10
i = 1,2,3

(4.2)

where(t− c)+ is defined as(t− c) if t > c and0 otherwise. It is known that, starting from the point
(−1− ε,1+ ε/2,−1− ε/4), the GS method generates a sequence whose limit points are not stationary
for f .
In Tables 1 and 2 we report the first 10 iterations of the GS, IGS algorithms with different values of the
forcing term and of the CBGP method with different numbers of inner iterations, applied to (4.2). The

iteratesx(k+1)
i of the GS and IGS methods have been computed by applying a bisection method to the

equation∇P
i f (x(k+1)

1 , ...,x(k+1)
i ,x,x(k)

i+1, ...,x
(k)
m ) = 0 with respect to thei–th variable. In the inexact case

the bisection procedure has been terminated when conditions (3.1) and (3.3) were satisfied. We observe

that both the algorithms IGS withη = 10−1,10−3 and CBGP withL(k)
i = Li = 1,5,5000converge to a

stationary point of the constrained problem.

5. Application to the nonnegative matrix factorization

In order to better evaluate the effects of inexact solution of subproblem (1.2), we consider large scale
problems arising from the nonnegative matrix factorization technique [18], which leads to problems of
the following form:

min
W,H>0

f (W,H)≡ 1
2
‖WH−V‖2

F (5.1)

whereV ∈ Rn×p with V > 0, W ∈ Rn×r , H ∈ Rr×p and‖ · ‖F denotes the Frobenius norm. The NMF
determines a lower rank approximation of the matrixV and provides an approximate representation of
the columns ofV as combination of non negative basis vectors (the columns ofW) with non negative
coefficients (the rows ofH). This factorization is a useful tool for several applications in data analysis.
There exists several variants of the NMF approach; for example, a different metric evaluating the dis-
tance betweenV andWH can be adopted and regularization terms or sparsity constraints can be included
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Table 1. Behaviour of the GS and IGS algorithms on the constrained Powell counterexample (4.2).

GS IGS
η = 10−1 η = 10−3

k x(k)
1 x(k)

2 x(k)
3 x(k)

1 x(k)
2 x(k)

3 x(k)
1 x(k)

2 x(k)
3

0 -2 1.5 -1.25 -2 1.5 -1.25 -2 1.5 -1.25
1 1.13 -1.06 1.03 1.09 -1.08 1.01 1.13 -1.06 1.03
2 -1.02 1.01 -1 -1.04 -1.01 -2.02 -1.02 1.01 -1
3 1 -1 1 -2.52 -3.27 -3.9 1 -1 1
4 -1 1 -1 -4.58 -5.24 -5.91 1 2 2.5
5 1 -1 1 -6.58 -7.24 -7.91 3.25 3.88 4.56
6 -1 1 -1 -8.58 -9.24 -9.91 5.22 5.89 6.56
7 1 -1 1 -10 -10 -10 7.22 7.89 8.56
8 -1 1 -1 -10 -10 -10 9.22 9.89 10
9 1 -1 1 -10 -10 -10 10 10 10

10 -1 1 -1 -10 -10 -10 10 10 10

[15, 17]. We will focus our numerical experience on the NMF problem written as in (5.1), but in princi-
ple also the variants mentioned above can be handled by the methods introduced in this paper.
Problem (5.1) is nonlinear and it has a natural structure of a two block problem. Many algorithms
that have been recently proposed for solving the NMF problem consist in alternating methods which
sequentially solve the two subproblems

W(k+1) ← min
W>0

f (W,H(k)) (5.2)

H(k+1) ← min
H>0

f (W(k+1),H) (5.3)

Problems (5.2)–(5.3) consist in nonnegativity constrained least squares problems with multiple right
hand side and are convex but, in general, not strictly convex, thus their solution may be not unique. The
partial gradients of (5.1) are

∇W f (W,H) = W(HHT)−VHT (5.4)

∇H f (W,H) = (WTW)H−WTV. (5.5)

5.1 Description of the algorithm

For the solution of the NMF problem we propose the algorithm CBGP, where the search direction in step
2.3.1 is the projected gradient with a variable stepsize parameter along the negative gradient direction
(see formula (4.1) withDi = I ). More precisely, for problem (5.2), the projected gradient direction at
the inner iteratioǹ is computed as

d(k,`)
W = P(W(k,`)−α`∇W f (W(k,`),H(k)))−W(k,`)

whereP indicates the projection on the non negative orthant.
Furthermore, the steplength parameterα` is computed by an adaptive alternation of the Barzilai–Borwein
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Table 2. Behaviour of the CBGP algorithm on the constrained Powell counterexample (4.2).

CBGP
Li = 1 Li = 5 Li = 5000

k x(k)
1 x(k)

2 x(k)
3 x(k)

1 x(k)
2 x(k)

3 x(k)
1 x(k)

2 x(k)
3

0 -2 1.5 -1.25 -2 1.5 -1.25 -2 1.5 -1.25
1 0.25 -0.5 -1.15 1.1 -0.25 1.44 1.13 -1.06 1.03
2 -1.4 -3.05 -2.81 1.59 2.52 3.06 -1.02 1.01 -1
3 -3.42 -3.9 -4.29 3.79 4.42 5.1 1 -1 1
4 -4.76 -5.2 -5.65 5.76 6.43 7.1 -1 0.221 -1.39
5 -6.09 -6.54 -6.98 7.76 8.43 9.1 -1.58 -2.49 -3.04
6 -7.42 -7.87 -10 9.77 10 10 -3.76 -4.4 -5.08
7 -10 -10 -10 10 10 10 -5.74 -6.41 -7.07
8 -10 -10 -10 10 10 10 -7.74 -8.41 -9.07
9 -10 -10 -10 10 10 10 -9.74 -10 -10

10 -10 -10 -10 10 10 10 -10 -10 -10

(BB) rules [1], whose explicit expressions are

α(1)
` =

s(`−1)T
s(`−1)

s(`−1)T
y(`−1)

, α(2)
` =

s(`−1)T
y(`−1)

y(`−1)T
y(`−1)

,

where
s(`−1) = vec(W(k,`)−W(k,`−1)),

y(`−1) = vec(∇W f (W(k,`),H(k))−∇W f (W(k,`−1),H(k)))

and vec(·) denotes the vectorization operation. The previous choice of the steplength is motivated by
the quasi-Newton approach where the inverse of the hessian is replaced by a multiple of the identity
matrix B(α) = αI . Then, omitting the iteration number, the two BB formulas are given byα(1) =
argmin‖B(α)s−y‖ andα(2) = argmin‖s−B(α)−1y‖.
The recent literature on the steplength selection in gradient methods suggests to design steplength up-
dating strategies by alternating the two BB rules. Here we will use the adaptive alternation strategy
proposed in [9, 12], that has given remarkable convergence rate improvements in many different appli-
cations. Given an initial valueα0, the steplengthsα` are defined by the following criterion:

IF α(2)
` /α(1)

` 6 τ` THEN

α` = min
{

α(2)
j , j = max{1, `−Mα} , . . . , `

}
; τ`+1 = τ` ∗0.9;

ELSE

α` = α(1)
` ; τ`+1 = τ` ∗1.1;

ENDIF

whereMα is a prefixed non-negative integer andτ1 ∈ (0,1). The same techniques are employed for the
computation ofH(k+1) starting from(W(k+1),H(k)).
From the computational point of view, the main task required by the algorithm is the matrix-vector
product, needed for updating the gradient and the objective function. Following the suggestion in [19],
whenr ¿ p (andr ¿ n), it is convenient to save ther× r matrixWTW (andHHT respectively) at the
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Table 3. Test problems

Problem n p r Problem n p r
cbcl 1 361 2429 49 essex 5 9000 150 40
orl 2 10304 400 25 yale 6 77760 75 15
nat 3 288 10000 72 georgia7 17316 750 50
umist4 10304 300 20

1http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html;
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html;
3http://www.cs.helsinki.fi/u/phoyer/software.html;
4http://www.shef.ac.uk/eee/research/vie/research/face.html;
5http://cswww.essex.ac.uk/mv/allfaces/index.html;
6http://cvc.yale.edu/projects/yalefaces/yalefaces.html;
7http://www.anefian.com/research/facereco.htm.

beginning and use it for all the subsequent updates.
To assess the performance of the algorithm, we consider the image databases described in Table 3. The
columns ofV are formed by stacking the images columnwise and then normalizing the result. This is
the same technique employed in [15], and the Matlab source codes for the generation of the matrixV
related to thecbcl, orl andnat databases are included in thenmfpack package downloadable from
http://www.cs.helsinki.fi/u/phoyer/software.html.
The accuracy of the results is evaluated on both the objective function value and the norm of the pro-
jected gradient

f (W(k),H(k)), ‖∇P f (W(k),H(k))‖.
As we proved in Section 4, the convergence of the CBGP method is ensured for every number of
inner iterations, whose maximum value,LW andLH , is a priori defined. However, we include also
an adaptive stopping condition based on the decrease of the projected gradient norm, with the aim of
avoiding unnecessary computations.
We experienced several stopping criteria, but the more effective rule is similar to the one suggested in
[19] and consists, for the problem (5.2) in

‖∇P
W f (W(k,`),H(k))‖6 η(k)

W

where the adaptive toleranceτ(k)
W is initialized asη(0)

W = 10−3‖∇P f (W(0),H(0))‖ and

η(k)
W =

{
0.1·η(k−1)

W if η(k−1)
W > min(‖∇P f (W(k),H(k))‖,‖∇P

W f (W(k),H(k))‖)
η(k−1)

W otherwise
(5.6)

The same condition is introduced also for problem (5.3).

5.2 Preliminary experiments

In order to show the behaviour of the alternating algorithm, we report the result of an experiment where
we monitor the optimality of each inner iteration not only with respect to the related subproblem, but
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also with respect to the leading problem (5.1) by explicitly computing the norm of the projected gradient
for eachW andH step.
The result in Figure 1 is related to the first3 iterations of CBGP applied to the problemnat with

L(k)
W = L(k)

H = 200 gradient projection iterations. It can be observed that, as one should expect, the
norm of the partial projected gradient improves over the inner iterations (top right panel); on the other
hand, the optimality with respect to the leading problem (5.1) is not improved after the first few tens of
iterations (top left). A similar behaviour is observed on the objective function value.
This suggests that exactly solving subproblems (5.2)–(5.3), which is not needed from a theoretical point
of view, is not convenient in a practical framework either.

FIG. 1. Projected gradient and objective function value over the inner iterations. (a) Plot of the projected gradient norm
‖∇P f (W,H)‖ over the innerW andH iterations; the circles indicates the values at the first three outer iterations. (b) Plot of
the norm of the partial projected gradients∇P

W f (W,H) and∇P
W f (W,H) over the inner iterations (columnsW andH respectively).

(c) Objective function value over the inner iterations. (d) Relative difference of the objective function values over two successive
inner iterations.
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5.3 Benchmark tests

We compare the performances of the CBGP algorithm also with other algorithms recently proposed
for the NMF, which are based on the alternating solution of subproblems (5.2) and (5.3). The first
algorithm [19], denoted by ‘Lin’ in the following, consists in an iterative solution of theW and H
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subproblems by means of a gradient projection method; such method differs from the one presented
in the previous section since it computes the new point along the projection arc instead of the feasi-
ble direction (4.1) (see also [4]). The steplenght is adaptively chosen as the largest one satisfying the
Armijo condition. The inner iterations are stopped when the partial projected gradient is reduced by
some factor with respect to the initial point(W(0),H(0)). We adopt the Matlab implementation given by
the author of the Lin gradient projection algorithm, namednlssubprob, which is downloadable from
http://www.csie.ntu.edu.tw/~cjlin/nmf/nmf.m.
The other algorithm (‘KP’) is based on the exact solution of theW andH subproblems by means of an
active set method using a combinatorial approach (see [17] and references therein). Also in this case,
we adopt the implementation provided by the authors available on their web page.
We consider also the ’GPSR-BB’ method proposed in [29, 11], which is a gradient projection method
based on the first BB formula. In particular, we adopt the implementation given in [29, Algorithm 4],
namednmf_gpsr_bb, to find a solution of both problems (5.2)–(5.3), stopping the gradient iterations
with the same tolerance used for the CBGP method (see also [11, Algorithm 5.3]).
All methods showed to be very efficient on different kinds of test sets and here we evaluate their perfor-
mances on the test problems listed in Table 3.
We initialize the algorithms with the same starting point obtained by generating two nonnegative ran-
dom matricesW̄ andH̄ (we take the absolute value of normally distributed random matrices, as in the
nmfpack codes); then, we perform one step of the multiplicative algorithm proposed in [18], i.e.,

W(0) = W̄.∗ VH̄T

W̄(H̄H̄T)
, H(0) = H̄.∗ W(0)T

V

W(0)T
W(0)H̄

,

where the product.∗ and the quotient are componentwise. The aim of this choice is to produce a more
accurate initial guess: in fact, the projected gradient norm at(W̄, H̄) can be several order of magnitude
larger than the same quantity computed in the point(W(0),H(0)) defined as above.
As stopping condition for the alternating algorithm we consider the following one:

‖∇P f (W(k),H(k))‖6 ε‖∇P f (W(0),H(0))‖ (5.7)

but we include also as safeguard values a maximum number of iterationsNmaxand a limit of the compu-
tational timeTmax. All the experiments have been carried out on an Intel Pentium 4 Dual Core, 3GHz,
with 1.5Gb RAM running Linux operating system equipped with Matlab 7.0.1(R14).
In Figure 2 we report the norm of the projected gradient over the computational time. The algorithms
have been stopped when condition (5.7) was satisfied withε = 10−4, or when the maximum number
of iterationsNmax= 1000or the time limit ofTmax= 14400seconds was reached. In the KP algorithm
the time of the computation of the projected gradient was excluded since such operation is not actually
needed by the algorithm but only performed for benchmark reasons.

From Figure 2 we can observe the oscillating decrease of the projected gradient norm over the itera-
tions of all the considered algorithms. For this reason it could be difficult to compare the results, but
for a small value of the toleranceε in (10−3–10−4) the accuracy of the approximate solution in terms
of the objective function value is comparable. To give a more complete insight on the behaviour of
the algorithms, in Tables 4–5 we report the number of iterations needed to each algorithm to satisfy
the stopping conditions with different values ofε in (5.7); we indicate also the corresponding objective
function value and computational time. Furthermore, for the CBGP, Lin and GPSR-BB algorithms the
total number of inner iterations needed for the solution of theW andH subproblems (‘itW’ and ‘itH’)
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FIG. 2. Projected gradient norm over the computational time in seconds.

0 2000 4000 6000 8000
10

−2

10
0

10
2

10
4

cbcl

time (s.)
0 5000 10000 15000

10
−2

10
0

10
2

10
4

orl

time (s.)

0 2000 4000 6000
10

0

10
2

10
4

10
6

nat

time (s.)
0 5000 10000 15000

10
−2

10
0

10
2

yale

time (s.)

0 5000 10000 15000
10

−2

10
0

10
2

10
4

georgia

time (s.)
0 5000 10000 15000

10
−5

10
0

10
5

essex

time (s.)

0 5000 10000
10

−4

10
−2

10
0

10
2

umist

time (s.)

CBGP
Lin
KP
GPSR−BB



18 of 23 S. BONETTINI

Table 4. Benchmark test on the NMF problem: algorithms CBGP and Lin
CBGP Lin

ε it itW itH f (W,H) time (s) it itW itH f (W,H) time (s)

cbcl
10−1 8 362 70 1003.93 6.8 10 789 239 1005.37 61.8
10−2 87 2512 795 811.70 75.0 97 4781 2358 812.97 590.1
10−3 528 8916 4351 795.43 749.7 * * * * *

orl
10−1 4 160 38 15.30 42.0 5 538 64 15.63 184.0
10−2 28 757 258 13.81 258.2 66 3515 433 13.67 1459.2
10−3 347 4887 3172 13.37 1851.2 420 12305 3878 13.37 5420.9

nat

10−1 11 405 61 3.641e5 70.6 12 905 84 3.611e5 118.9
10−2 53 1623 216 3.443e5 266.9 58 2682 281 3.446e5 398.1
10−3 249 5276 1014 3.428e5 1220.3258 7437 1110 3.432e5 1519.8
10−4 * * * * * 627 9322 3088 3.431e5 3907.4

yale
10−1 6 246 149 20.57 273.8 7 670 731 20.61 958.6
10−2 24 716 321 18.23 919.7 46 2088 1864 17.90 3386.8
10−3 228 2858 3307 16.62 3779.9 * * * * *

georgia
10−1 2 121 15 43.07 64.7 5 1000 145 35.21 1100.2
10−2 25 851 182 30.46 955.8 51 9736 666 29.43 13258.5
10−3 209 4739 1729 28.29 5772.1 * * * * *

essex

10−1 4 191 32 4.23 44.1 17 3005 342 3.53 1051.4
10−2 49 1028 416 3.25 298.6 88 7032 1013 3.26 2524.4
10−3 552 3947 4494 3.09 1212.8 * * * * *
10−4 * * * * * * * * * *

umist

10−1 8 268 105 10.18 62.7 6 873 49 11.15 222.4
10−2 38 862 307 9.43 224.1 51 3788 430 9.49 1106.9
10−3 333 4069 2488 9.18 1144.6 370 11713 2894 9.21 3611.5
10−4 934 7645 7760 9.17 2279.0 * * * * *
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Table 5. Benchmark test on the NMF problem: algorithms KP and GPSR-BB
KP GPSR-BB

ε it f (W,H) time (s) it itW itH f (W,H) time (s)

cbcl
10−1 25 879.34 273.3 8 840 669 1023.44 52.8
10−2 150 798.86 1321.6 73 3490 6236 812.73 773.7
10−3 731 796.26 5777.9 349 11314 20389 795.71 3016.0

orl
10−1 6 14.46 17.2 6 662 829 15.86 233.5
10−2 110 13.45 523.2 46 2680 7209 13.75 1095.7
10−3 906 13.36 4694.0 102 4153 9089 13.67 1713.1

nat

10−1 f f f 14 579 245 3.541e5 279.2
10−2 f f f 49 1201 738 3.441e5 862.1
10−3 f f f 193 3348 2721 3.431e5 3260.2
10−4 f f f * * * * *

yale
10−1 9 19.58 52.3 7 761 345 20.60 1081.4
10−2 119 16.59 590.3 163 4299 6758 16.59 6984.5
10−3 675 16.49 2863.1 * * * * *

georgia
10−1 9 31.10 344.4 5 879 671 41.25 892.0
10−2 75 28.64 4074.1 39 3468 6563 29.80 4855.1
10−3 * * * 88 4911 8226 29.46 6993.0

essex

10−1 13 3.46 53.3 9 1277 1396 3.42 642.4
10−2 180 3.09 538.7 164 7099 28502 2.15 3932.5
10−3 360 3.08 964.0 * * * * *
10−4 559 3.08 1433.8 * * * * *

umist

10−1 10 9.78 24.9 6 596 874 11.54 154.7
10−2 91 9.23 262.5 16 1014 1054 10.99 294.3
10−3 226 9.18 670.3 105 3558 9140 9.45 1105.0
10−4 848 9.17 2526.3 * * * * *
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are reported. The asterisk indicates that the corresponding tolerance was not reached within the prefixed
iterations and time limits, while the symbol ‘f’ indicates a failure of the algorithm KP on the problem
nat (the code exited with an error message).
The best results in terms of computational time are obtained by the CBGP and KP algorithms. In par-
ticular, the CBGP algorithm generally requires a smaller number of inner iterations than the Lin and
GPSR-BB algorithms.

Indeed, CBGP is based on a two parameters gradient projection method, whereλ (k,`)
i guarantees the

sufficient decrease andα(k,`)
i can be any bounded positive parameter. The choice of the steplength pa-

rameter is crucial for the effectiveness of a gradient method, and the alternation of the two BB formulas
can significantly improve the convergence speed.
On the other hand, the Lin algorithm is based on the direction obtained along the projection arc: it
involves only one steplength parameter, which is chosen as the largest value guaranteeing the sufficient
decrease of the objective function [20]. Moreover, in the GPSR-BB method, the benefits of a suitable
alternation between the two BB rules [12, 9] are not exploited, since only the first formula is employed.
To better evaluate the effectiveness of the iterative inner solvers, we compare their performances when
applied to the same nonnegative least square problem.
To this end, we save the intermediate results(W(k),H(k)) and (W(k+1),H(k+1)) obtained withk =
0,100,200iterations of the Lin’s NMF algorithm. Then, we solve theW andH problems

min
W>0

f (W,H(k)) and min
H>0

f (W(k+1),H)

with the three gradient projection methods underlying CBGP, Lin and GPSR-BB algorithms:

• the gradient projection method (GP) described in the step 2.3 of Algorithm CBGP and in section
5.1;

• thenlssubprob routine given in [19];

• thenmf_gpsr_bb function in [29].

For the test problemscbcl, orl andnat, the iterations number and CPU time (in seconds) needed to
reach a fixed toleranceη = 10−4 on the partial projected gradient norm are listed in table 6 (the symbol
’*’ indicates that the prefixed tolerance was not satisfied within 10000 iterations). Figure 3 shows the
decrease of the projected gradient norm over the iterations number for the problemcbcl with k = 100.

We can observe that the best results are obtained by theGP method, which requires a significantly
smaller number of iterations and computational time with respect to the other solvers (see also [2] for a
recent comparison of gradient projection methods for nonnegative least squares problems).
Thus, the good performances of CBGP on the NMF problem with respect to Lin and GPSR-BB can
be motivated by the effectiveness of the inner gradient projection method. Furthermore, comparing the
results of CBGP and KP in terms of both number of iterations and computational time, it turns out that
the exact solution of the two subproblems not always leads to a faster convergence. In particular, an
efficient iterative solver is convenient when the problem size is large.

6. Conclusions and perspectives

In this paper we proposed an inexact nonlinear Gauss-Seidel method and we developed the related con-
vergence analysis, proving that the inexact scheme has the same properties of the standard Gauss-Seidel
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Table 6. Inner solvers comparison.
k = 0 k = 100 k = 200

W H W H W H
it. time it time it. time it time it time it time

cbcl
GP 113 1.8 330 51.1 136 2.3 33 4.9 138 2.3 29 4.4
nlssubprob 388 8.1 1288 230.5 488 9.8 202 37.4 492 9.8 170 32.6
nmf_gpsr_bb 827 13.3 * * 668 10.4 724 104.5 729 11.3 595 81.3

orl
GP 61 17.7 166 1.4 53 16.9 27 0.2 49 15.6 26 0.2
nlssubprob 319 118.9 306 3.1 193 72.9 51 0.5 172 68.1 36 0.4
nmf_gpsr_bb 403 148.4 * * 196 72.5 1836 14.9 176 66.7 1269 10.5

nat
GP 133 2.8 96 89.3 80 1.7 12 10.6 69 1.5 13 11.3
nlssubprob 1018 26.5 205 232.0 210 5.0 42 42.8 169 4.1 34 34.0
nmf_gpsr_bb * * 728 759.0 60 1.2 42 44.6 62 1.3 35 37.1

FIG. 3. Inner solver comparison: projected gradient norm over the iteration number.

0 100 200 300 400 500 600 700
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

GP
nlssubprob
nmf_gpsr_bb

0 100 200 300 400 500 600 700 800
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

GP
nlssubprob
nmf_gpsr_bb

method.
Furthermore, we proved a stronger property of the cyclic block gradient projection method, that leads
to stationary points even with more than two blocks of variables. Finally we analyzed the alternating
approach applied to large scale problems arising in the NMF framework, showing that the performances
of the CBGP method are comparable to the ones of other recently proposed methods.
The future research will deal with both theoretical and practical issues. In particular, it would be in-
teresting to extend the theoretical results obtained in the present work to non cyclic choices of the
optimization variables of each subproblem. Furthermore, the encouraging results obtained on the NMF
problems suggest to consider other formulations of such problem, that can also be handled by the CBGP
method.
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