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1. Introduction

In image deblurring problems, image formation is modeled as a Fredholm integral

equation of the first kind which, after discretization, results in a system of linear

equations. By representing a two dimensional image X ∈ Rn×n as a vector x =

(x1, . . . , xN)T ∈ RN , N = n2, in which the entries of X are stacked column by column,

the above system can be stated as

Ax = b, (1)

where A is an N × N matrix representing the physical effect of the imaging system,

x is the image to be reconstructed and b ∈ RN is the sum of two terms: b = g + η,

g ∈ RN being the blurred image that would have been recorded in absence of noise and

η ∈ RN denoting the noise affecting the image acquisition [1]. The image restoration

problem is then to obtain an approximation of x, knowing A and b. Since the system

(1) is given by the discretization of an ill-posed problem [1], the matrix A could be very

ill-conditioned and a trivial approach that looks for the solution of (1) is in general not

successful. Thus, alternative strategies must be exploited, that often consist in iterative

schemes motivated by different approaches, ranging from methods for the solution of

linear equations to methods for solving variational problems [2].

In this work we propose a scaled gradient projection method suited for the

constrained minimization problems arising from several variational approaches to image

restoration. Examples of such minimization problems are the following:

min J(x)

sub. to x ≥ 0,
(2)

or

min J(x)

sub. to x ≥ 0
∑N

i=1 xi = c,

(3)

where J(x) is a continuously differentiable convex function measuring the difference

between reconstructed and measured data and, possibly, containing a penalty term

expressing additional information on the solution, while the constraints force the

nonnegativity of the solution and, in case of the problem (3), the so-called flux

conservation property. Gradient projection type methods seem appealing approaches

for these problems for two main reasons. Firstly, the special structure of the constraints

makes the projection of a vector on the feasible region a non-excessively expensive

operation: this is obviously the case of the problem (2), but also of the problem (3), in

which the projection can be performed by linear-time algorithms [3, 4, 5, 6, 7]. Secondly,

the recent advances on the steplength selection in gradient methods [8, 4, 9, 10] allow to

largely improve the convergence rate of these schemes, without introducing significant

additional costs. Thus, new gradient projection methods can nowadays be designed

that, thanks to the low computational cost per iteration and the good convergence
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rate, may represent a valid alternative to other gradient-based iterative approaches

widely used in image restoration [11, 12, 13, 14, 15]. The main feature of the gradient

projection method introduced in this paper consists in the combination of non-expensive

diagonally scaled gradient directions with steplength selection rules specially designed

for these directions. Moreover, global convergence properties are ensured by exploiting

a nonmonotone line-search strategy along the feasible direction [16, 17]. Scaled gradient

directions are also exploited by other popular algorithms for image restoration; see,

for example, the projected Newton methods described in [2, 18, 19, 20]. However,

these schemes are substantially different from our approach since they require inner

linear solvers to compute the non-diagonally scaled gradient direction, do not consider

steplength selection strategies and use line-search along the projection arc instead of

along the feasible direction [21, p. 226].

The effectiveness of the proposed scheme is evaluated by solving the minimization

problems arising from the maximum likelihood approach to the deconvolution of images

corrupted by Poisson noise, that is when the objective function in (2) and (3) is the

Kullback-Leibler divergence of the blurred image Ax from the observed noisy image

b [1, 12, 15, 22]. Comparisons with the well known Expectation Maximization (EM)

method [15], the accelerated EM version proposed in [23] and the Weighted Modified

Residual Norm Steepest Descent (WMRNSD) algorithm introduced in [24] are reported

to assess the reconstruction accuracy and the computational gain provided by the new

method.

The paper is organized as follows: in section 2 the scaled gradient projection

approach is presented and its global convergence theory is developed, while in section

3 crucial details for a practical implementation of the method are given. An extensive

numerical experimentation on astronomical test images is presented in section 4. Our

conclusions and future developments are discussed in section 5.

2. The algorithm and its convergence

We introduce a Scaled Gradient Projection (SGP) method for solving constrained

minimization problems of the general form

min f(x)

sub. to x ∈ Ω,
(4)

where Ω ⊂ RN is a closed convex set and f : Ω → R is a continuously differentiable

function. Obviously, the deblurring problems (2) and (3) can be considered as special

cases of this formulation.

Before to state the SGP algorithm we recall some basic properties of the projection

operator.
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2.1. Definitions and basic properties

Throughout the paper, the 2-norm of vectors and matrices is denoted by ‖ · ‖ while

‖ · ‖D indicates the vector norm associated to a symmetric positive definite matrix D:

‖x‖D =
√

xT Dx.

Given the optimization problem (4), we recall that x∗ ∈ Ω is a stationary point of

f over Ω if

−∇f(x∗)T (y − x∗) ≤ 0, ∀ y ∈ Ω.

When Ω is convex, the stationarity condition can be stated also as −∇f(x∗)T w ≤ 0 for

any w in the tangent cone of Ω at x∗ [21, p. 336].

Let Ω ⊂ RN be a closed convex set and D be a symmetric positive definite N × N

matrix, we define the projection operator PΩ,D : RN → Ω as

PΩ,D(x) ≡ arg min
y∈Ω

‖y − x‖D = arg min
y∈Ω

(
φ(y) ≡ 1

2
yT Dy − yT Dx

)
. (5)

We observe that, given the set Ω and the point x, the operator PΩ,D(x) is a continuous

function with respect to the elements of the matrix D. Furthermore, from the definition

of stationary point and the strict convexity of the function φ introduced in (5), we have

that PΩ,D(x) is defined also by

(PΩ,D(x)− x)T D(PΩ,D(x)− y) ≤ 0, ∀ y ∈ Ω. (6)

Let DL ⊂ RN×N be the compact set of the symmetric positive definite N ×N matrices

such that ‖D‖ ≤ L and ‖D−1‖ ≤ L, for a given threshold L > 1. The next lemmas state

two basic properties related to the projection operator: a Lipschitz continuity condition

on PΩ,D and a characterization for the stationary points of the problem (4) [25].

Lemma 2.1 If D ∈ DL, then

‖PΩ,D(x)− PΩ,D(z)‖ ≤ L2‖x− z‖ (7)

for any x,z ∈ RN .

Proof. By applying the condition (6) we get

(PΩ,D(x)− x)T D(PΩ,D(x)− PΩ,D(z)) ≤ 0

(PΩ,D(z)− z)T D(PΩ,D(z)− PΩ,D(x)) ≤ 0

and, by adding the two inequalities,

((PΩ,D(x)− x)− (PΩ,D(z)− z))T D(PΩ,D(x)− PΩ,D(z)) ≤ 0,

that is

‖PΩ,D(x)− PΩ,D(z)‖2
D ≤ (PΩ,D(x)− PΩ,D(z))T D(x− z). (8)
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If σmin denotes the minimum eigenvalue of the matrix D, for the left hand side of the

previous inequality we have

‖PΩ,D(x)− PΩ,D(z)‖2
D ≥ σmin‖PΩ,D(x)− PΩ,D(z)‖2

= 1
‖D−1‖‖PΩ,D(x)− PΩ,D(z)‖2

≥ 1
L
‖PΩ,D(x)− PΩ,D(z)‖2

and from (8) we obtain

1
L
‖PΩ,D(x)− PΩ,D(z)‖2 ≤ ‖PΩ,D(x)− PΩ,D(z)‖2

D

≤ (PΩ,D(x)− PΩ,D(z))T D(x− z)

≤ ‖PΩ,D(x)− PΩ,D(z)‖ ‖D‖ ‖x− z‖
≤ L‖PΩ,D(x)− PΩ,D(z)‖ ‖x− z‖

which yields (7). ¤

Lemma 2.2 A vector x∗ ∈ Ω is a stationary point of the problem (4) if and only if

x∗ = PΩ,D−1(x∗ − αD∇f(x∗)) for any positive scalar α and for any symmetric positive

definite matrix D.

Proof. Let α ∈ R+ and let D be a symmetric positive definite matrix. Assume that

x∗ = PΩ,D−1(x∗ − αD∇f(x∗)). From (6) we obtain

(x∗ − x∗ + αD∇f(x∗))T D−1(x∗ − x) ≤ 0, ∀ x ∈ Ω,

which implies the stationarity condition

∇f(x∗)T (x∗ − x) ≤ 0, ∀ x ∈ Ω.

Conversely, let us assume that x∗ ∈ Ω is a stationary point of (4), and suppose that

x̄ = PΩ,D−1(x∗ − αD∇f(x∗)), with x̄ 6= x∗. Then, from (6) we can write

(x̄− x∗ + αD∇f(x∗))T D−1(x̄− x∗) ≤ 0,

that is

‖x̄− x∗‖2
D−1 + α∇f(x∗)T (x̄− x∗) ≤ 0.

The previous inequality yields

∇f(x∗)T (x∗ − x̄) ≥ ‖x̄− x∗‖2
D−1

α
> 0,

which gives a contradiction with the stationarity assumption on x∗. ¤
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Algorithm SGP (Scaled Gradient Projection Method)

Choose the starting point x(0) ∈ Ω, set the parameters β, θ ∈ (0, 1), 0 < αmin < αmax

and fix a positive integer M .

For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling matrix Dk ∈ DL;

Step 2. Projection: y(k) = PΩ,D−1
k

(x(k) − αkDk∇f(x(k)));

If y(k) = x(k) then stop, declaring that x(k) is a stationary point;

Step 3. Descent direction: d(k) = y(k) − x(k);

Step 4. Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x(k−j));

Step 5. Backtracking loop:

If f(x(k) + λkd
(k)) ≤ fmax + βλk∇f(x(k))T d(k) then

go to Step 6;

Else

set λk = θλk and go to Step 5;

Endif

Step 6. Set x(k+1) = x(k) + λkd
(k).

End

2.2. The SGP method

The Lemma 2.2 shows the effect of the projection operator PΩ,D−1 on the points

(x∗ − αD∇f(x∗)), α > 0, when x∗ is a stationary point of (4). In the case x̄ ∈ Ω

is a nonstationary point, PΩ,D−1(x̄− αD∇f(x̄)) can be exploited to generate a descent

direction for the function f in x̄. This idea serves as the basis for the method described

in Algorithm SGP.

Before to discuss the convergence properties of the method, some considerations

about its main steps can be useful.

First of all, it is worth stressing that any choice of the steplength αk in a closed

interval and of the scaling matrix Dk in the compact set DL is permitted. This is very

important from a practical point of view since it allows one to make the updating rules

of αk and Dk problem related and oriented at optimizing the performance. Refer to the

next section for a study on the selection strategies of these parameters in the case of

the deblurring problems (2) and (3).

If the projection performed in step 2 returns a vector y(k) equal to x(k), then Lemma

2.2 implies that x(k) is a stationary point and the algorithm stops. When y(k) 6= x(k),

it is possible to prove that dk is a descent direction for f in x(k) (see the next lemma)

and the backtracking loop in step 5 terminates with a finite number of runs; thus the

algorithm is well defined.

The nonmonotone line-search strategy implemented in step 5 ensures that f(x(k+1))

is lower than the maximum of the objective function on the last M iterations [17]; of

course, if M = 1 then the strategy reduces to the standard monotone Armijo rule [21].
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Finally, we remark the relation between SGP and the projected gradient method

proposed in [26]. We observe that

d(k) = y(k) − x(k) = PΩ,D−1
k

(x(k) − αkDk∇f(x(k)))− x(k)

=

(
arg min

y∈Ω

1

2
yT D−1

k y − yT D−1
k (x(k) − αkDk∇f(x(k)))

)
− x(k)

and, by introducing a new variable d such that y = x(k) + d, we may rewrite d(k) in an

equivalent form:

d(k) = arg min
x(k)+d∈Ω

1

2
dT Bkd +∇f(x(k))T d, (9)

where Bk =
D−1

k

αk
. Since the general method proposed in [26] allows to define the search

direction as in (9) (or even by means of an inexact solution of the problem (9)), the

SGP algorithm could be seen as an alternative formulation of that scheme in which

the steplength and the scaling matrix are managed separately, with the aim to better

emphasize their contribution and to simplify the design of effective updating rules for

these parameters. This means also that the convergence results obtained in [26] could

be adapted to our method; however, for the sake of completeness, we develop a slightly

different convergence analysis, appropriately designed for SGP.

2.3. A convergence analysis for SGP

In this subsection we will focus on the case in which the algorithm generates an infinite

sequence of iterates, denoted by {x(k)}. The main SGP convergence result is stated in

Theorem 2.1, whose proof is based on some crucial properties that we report in the next

lemmas.

The first two lemmas are concerned with the descent condition and the boundedness

of the directions d(k), respectively.

Lemma 2.3 Assume that d(k) 6= 0. Then, d(k) is a descent direction for the function

f at x(k), that is, ∇f(x(k))T d(k) < 0.

Proof. From the inequality (6) with x = x(k) − αkDk∇f(x(k)), D = D−1
k and y = x(k),

it follows that

(d(k) + αkDk∇f(x(k)))T D−1
k d(k) ≤ 0,

and then

∇f(x(k))T d(k) ≤ −d(k)T D−1
k d(k)

αk

< 0. (10)

¤

Lemma 2.4 If the sequence {x(k)} is bounded, then also the sequence {d(k)} is bounded.
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Proof. From the definition of d(k) and (7) we have that, for any k,

‖d(k)‖ = ‖PΩ,D−1
k

(x(k) − αkDk∇f(x(k)))− x(k)‖
= ‖PΩ,D−1

k
(x(k) − αkDk∇f(x(k)))− PΩ,D−1

k
(x(k))‖

≤ L2‖αkDk∇f(x(k))‖ ≤ αmaxL
3‖∇f(x(k))‖.

Let Ω̄ ⊂ Ω be a closed and bounded set that contains the iterates x(k). Since ∇f is a

continuous function on Ω, then it is bounded in Ω̄ and thus {d(k)} is bounded. ¤

Now we prove two properties of the accumulation points of the sequence generated

by SGP.

Lemma 2.5 Assume that the subsequence {x(k)}k∈K , K ⊂ N, is converging to a point

x∗ ∈ Ω. Then, x∗ is a stationary point of (4) if and only if

lim
k∈K

∇f(x(k))T d(k) = 0.

Proof. Let x∗ be a stationary point of (4); this means that ∇f(x∗)T d ≥ 0 for any vector

d such that x∗ + d ∈ Ω. Suppose that {∇f(x(k))T d(k)} does not tend to 0 for k ∈ K.

In this case, taking into account Lemma 2.3, we know that there exists ε > 0 and an

infinite set K1 ⊂ K such that

∇f(x(k))T d(k) ≤ −ε < 0, ∀ k ∈ K1.

By the compactness of the interval [αmin, αmax] and of the set DL, we can extract a set

of indices K2 ⊂ K1 such that αk → α∗, α∗ ∈ [αmin, αmax], and Dk → D∗, D∗ ∈ DL, for

k ∈ K2; hence, by continuity, we can write limk∈K2 d(k) = d∗, where

d∗ = PΩ,D−1∗ (x∗ − α∗D∗∇f(x∗))− x∗. (11)

Thus,

lim
k∈K2

∇f(x(k))T d(k) = ∇f(x∗)T d∗ ≤ −ε < 0. (12)

Since from by the definition (11) we have that x∗ + d∗ belongs to Ω, the inequality (12)

contradicts the stationarity assumption on x∗.
On the other hand, let us assume that limk∈K ∇f(x(k))T d(k) = 0. Suppose by

contradiction that x∗ is not a stationary point. Let K3 ⊂ K be a set of indices

such that αk → α∗ and Dk → D∗, when k diverges, k ∈ K3; we have limk∈K3 d(k) =

(PΩ,D−1∗ (x∗ − α∗D∗∇f(x∗)) − x∗). Furthermore, from Lemma 2.2 there exists δ > 0

such that ‖PΩ,D−1∗ (x∗ − α∗D∗∇f(x∗))−x∗‖2 = δ. By exploiting (10), we can write, for

a sufficiently large k̄ ∈ K3,

∇f(x(k))T d(k) ≤ −d(k)T D−1
k d(k)

αk

≤ − δ

2αmaxL
< 0, ∀ k ≥ k̄, k ∈ K3.

This contradicts the assumption limk∈K ∇f(x(k))T d(k) = 0 and then x∗ must be a

stationary point. ¤
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Lemma 2.6 Let x∗ ∈ Ω be an accumulation point of the sequence {x(k)} such that

limk∈K x(k) = x∗, for some K ⊂ N. If x∗ is a stationary point of (4), then x∗ is an

accumulation point also for the sequence {x(k+r)}k∈K for any r ∈ N. Furthermore,

lim
k∈K

‖d(k+r)‖ = 0, ∀ r ∈ N.

Proof. From Lemma 2.5 we have that limk∈K ∇f(x(k))T d(k) = 0 and, from (10), we

obtain that limk∈K ‖d(k)‖ = 0. Thus limk∈K ‖x(k+1) − x(k)‖ = 0, and this implies that

x∗ is an accumulation point also for the sequence {x(k+1)}k∈K . Recalling again Lemma

2.5, we obtain that limk∈K ∇f(x(k+1))T d(k+1) = 0; for the same reasons as before, we

conclude that limk∈K ‖d(k+1)‖ = 0. Hence, the statement of the lemma follows by

induction. ¤
At this point we may state a convergence result for SGP.

Theorem 2.1 Assume that the level set Ω0 = {x ∈ Ω : f(x) ≤ f(x(0))} is bounded.

Every accumulation point of the sequence {x(k)} generated by the SGP algorithm is a

stationary point of (4).

Proof. Since every iterate x(k) lies in Ω0, the sequence {x(k)} is bounded and has at

least one accumulation point. Let x∗ ∈ Ω be such that limk∈K x(k) = x∗ for a set of

indices K ⊂ N. Let us consider separately the two cases

a. infk∈K λk = 0;

b. infk∈K λk = ρ > 0.

Case a.

Let K1 ⊂ K be a set of indices such that limk∈K1 λk = 0. This implies that, for k ∈ K1,

k sufficiently large, the backtracking rule fails to be satisfied at least once. Thus, at the

penultimate step of the backtracking loop, we have

f(x(k) +
λk

θ
d(k)) > f(x(k)) + β

λk

θ
∇f(x(k))T d(k),

hence

f(x(k) + λk

θ
d(k))− f(x(k))
λk

θ

> β∇f(x(k))T d(k). (13)

By the mean value theorem, we have that there exits a scalar tk ∈ [0, λk

θ
] such that

the left hand side of (13) is equal to ∇f(x(k) + tkd
(k))T d(k). Thus, the inequality (13)

becomes

∇f(x(k) + tkd
(k))T d(k) > β∇f(x(k))T d(k). (14)

Since αk and Dk are bounded, it is possible to find a set of indices K2 ⊂ K1 such that

limk∈K2 αk = α∗ and limk∈K2 Dk = D∗. Thus the sequence {d(k)}k∈K2 converges to the
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vector d∗ = (PΩ,D−1∗ (x∗ − α∗D∗∇f(x∗)) − x∗) and, furthermore, tkd
(k) → 0 when k

diverges, k ∈ K2. Taking limits in (14) as k →∞, k ∈ K2, we obtain

(1− β)∇f(x∗)T d∗ ≥ 0.

Since (1 − β) > 0 and ∇f(x(k))T d(k) < 0 for all k, then we necessarily have

limk∈K2 ∇f(x(k))T d(k) = ∇f(x∗)T d∗ = 0. Then, by Lemma 2.5, we conclude that

x∗ is a stationary point.

Case b.

Let us define the point x(`(k)) as the point such that

f(x(`(k))) = fmax = max0≤j≤min(k,M−1) f(x(k−j)).

Then, for k > M − 1, k ∈ N, the following condition holds:

f(x(`(k))) ≤ f(x(`(`(k)−1))) + βλ`(k)−1∇f(x(`(k)−1))T d(`(k)−1). (15)

Since the iterates x(k), k ∈ N belong to a bounded set, the monotone non-increasing

sequence {f(x(`(k)))} admits a finite limit L ∈ R for k ∈ K. Let K3 ⊂ K be a set of

indices such that limk∈K3 λ`(k)−1 = ρ1 ≥ ρ > 0 and limk∈K3 ∇f(x(`(k)−1))T d(`(k)−1) exists

(recall that, from Lemma 2.4, the sequence {d(k)}k∈N is bounded); taking limits on (15)

for k ∈ K3 we obtain

L ≤ L+ βρ1 lim
k∈K3

∇f(x(`(k)−1))T d(`(k)−1),

that is

lim
k∈K3

∇f(x(`(k)−1))T d(`(k)−1) ≥ 0.

Recalling that ∇f(x(k))T d(k) < 0 for any k, the previous inequality implies that

lim
k∈K3

∇f(x(`(k)−1))T d(`(k)−1) = 0. (16)

Then, by the Lemma 2.5, (16) implies that every accumulation point of the sequence

{x(`(k)−1)}k∈K3 is a stationary point of (4).

Let us prove that the point x∗ is an accumulation point of {x(`(k)−1)}k∈K3 .

The definition of x(`(k)) implies that k −M + 1 ≤ `(k) ≤ k. Thus we can write

‖x(k) − x(`(k)−1)‖ ≤
k−`(k)∑

j=0

λ`(k)−1+j ‖d(`(k)−1+j)‖, k ∈ K. (17)

Let K4 ⊂ K3 be a subset of indices such that the sequence {x(`(k)−1)}k∈K4 converges to an

accumulation point x̄ ∈ Ω. Recalling that, from (16) and Lemma 2.5, x̄ is a stationary

point of (4), we can apply Lemma 2.6 to obtain that limk∈K4 ‖d(`(k)−1+j)‖ = 0 for any

j ∈ N. By using (17) we conclude that

lim
k∈K4

‖x(k) − x(`(k)−1)‖ = 0. (18)

Since

‖x∗ − x(`(k)−1)‖ ≤ ‖x(k) − x(`(k)−1)‖+ ‖x(k) − x∗‖
and limk∈K x(k) = x∗, then (18) implies that x∗ is an accumulation point also for the

sequence {x(`(k)−1)}k∈K3 . Hence, we conclude that x∗ is a stationary point of (4). ¤
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3. The SGP method for image deblurring

In this section we describe SGP implementations for solving special constrained

minimization problems arising in image deblurring. We consider the maximum

likelihood approach to the deconvolution of images corrupted by Poisson noise [1, 12, 15].

It is well known that in this approach an estimate of the unknown image is obtained

by approximating the solutions of minimization problems of the form (2) or (3), in

which, following the notation used in the introduction, the objective function is the

Kullback-Leibler divergence of the blurred image Ax from the observed noisy image b.

In particular, we deal with models that take into account also the existence of a constant

background radiation bg > 0 and, consequently, we must look for approximate solutions

of (2) or (3) when J(x) is the Kullback-Leibler divergence of (Ax + bg) from b:

J(x) = DKL(Ax + bg, b) =

=
∑N

i=1

(∑N
j=1 Aijxj + bg − bi − bi log

∑N
j=1 Aijxj+bg

bi

)
.

(19)

We remark that, due to the ill-posedness of the image restoration problem, when J(x)

is defined as in (19), one is not interested in computing the exact solution of (2) or

(3), because this does not provide a sensible estimate of the unknown image; for this

reason, the iterative minimization methods are usually exploited to obtain acceptable

(regularized) solutions by early stopping. A different approach to image restoration

consists in minimizing special regularized functionals given by the sum of a fit-to-data

function and a penalty term; in this case the trade-off between data fidelity and stability

is controlled by means of a regularization parameter and a suited image restoration is

obtained by an exact solution of the minimization problem. Even if SGP can be used

in this context, we do not consider such approaches here and we refer to [19, 20, 27] for

examples of minimization methods applied to these problems.

Some comments about the objective function (19) are necessary for the subsequent

discussions. The gradient and the hessian of J(x) can be written as

∇J(x) = AT e− AT Y −1b (20)

∇2J(x) = AT BY −2A, (21)

where e ∈ RN is a vector whose components are all equal to one, Y = diag(Ax + bg) is

a diagonal matrix with the entries of (Ax + bg) on the main diagonal and B = diag(b).

The matrix A can be considered with nonnegative entries, generally dense and such

that AT e = e and
∑

j Aij > 0, ∀ i; moreover, we may assume that periodic boundary

conditions are imposed for the discretization of the Fredholm integral equation that

models the image formation process, so that the matrix A is block-circulant with

circulant blocks. Other boundary conditions can be used, but the crucial point is that

matrix-vector products can be done quickly. For example, one can replace periodic

boundary conditions with zero, reflexive or anti-reflexive boundary conditions. In all

of these cases the products Ax can be performed with O(N log N) complexity, by

employing the Fast Fourier Transform (FFT) [28], or a fast trigonometric transform



SGP Method for Constrained Image Deblurring 12

such as the Discrete Cosine Transform (DCT) or Discrete Sine Transform (DST)

[29]. Concerning the components bi of the observed image, we remark that they are

nonnegative; this implies that the hessian matrix (21) is positive semidefinite in any

point of the nonnegative orthant and the problems (2) and (3) are convex minimization

problems. Thus, when J(x) is defined as in (19), each accumulation point of the

sequence generated by applying SGP to (2) or (3) is a solution of the problem (we

recall that the assumption of Theorem 2.1 is trivially satisfied for these problems).

Concerning the computational cost of SGP in this particular application, we observe that

the heaviest tasks in each iteration are two matrix-vector products useful to compute

∇J(x(k)) in Step 2 and J(x(k) + λkd
(k)) in Step 5; that is, two (two-dimensional)

FFT/IFFT pairs (O(N log N) complexity). It is possible to implement the other

significant operations in each iteration in such a way that their costs are no larger

than those of the above products. To this end, in the following subsections we show

how the projection on the feasible region of (3) can be performed and how the scaling

matrix Dk and the steplength parameter αk can be updated.

3.1. Compute the projection

From now on we will assume that the scaling matrix Dk is diagonal, Dk =

diag
(
d

(k)
1 , d

(k)
2 , . . . , d

(k)
N

)
, as usually done in scaled gradient projection methods; some

examples of diagonal scaling matrices will be given in the next subsection.

Under this assumption, the projections arising from the application of SGP to the

problem (2) are trivial operations and do not require special investigations.

Let Ω̄ be the feasible region of the minimization problem (3):

Ω̄ =
{

x ∈ RN | x ≥ 0,
∑N

i=1 xi = c
}

. (22)

When algorithm SGP is applied for solving (3), at each iteration we need to compute

PΩ̄,D−1
k

(x(k) − αkDk∇f(x(k))), that is, we must solve the constrained strictly convex

quadratic program

min 1
2
xT D−1

k x− xT z

sub. to
∑N

i=1 xi − c = 0,

xi ≥ 0, i = 1, . . . , N,

(23)

where z = D−1
k

(
x(k) − αkDk∇f(x(k))

)
.

Due to the special structure of the constraints, the problem (23) can be reformulated

as a one-dimensional root-finding problem.

In fact, if x̄ denotes the solution of (23), then from the KKT first order optimality

conditions we know that there exist Lagrange multipliers λ̄ ∈ R and µ̄ ∈ RN such that

D−1
k x̄− z − λ̄e− µ̄ = 0

x̄ ≥ 0

µ̄ ≥ 0

µ̄T x̄ = 0∑N
i=1 x̄i − c = 0



SGP Method for Constrained Image Deblurring 13

Figure 1. Time in seconds to perform 100 projections.
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From the first four KKT conditions it is easy to obtain x̄ and µ̄ as functions of λ̄:

x̄i(λ̄) = max
{

0, d
(k)
i (zi + λ̄)

}
, µ̄i(λ̄) = max

{
0,−(zi + λ̄)

}
, i = 1, . . . , N.

Thus, in order to solve the KKT system, we must find λ̄ such that

N∑
i=1

x̄i(λ̄)− c = 0. (24)

This means that the computation of the projection PΩ̄,D−1
k

(x(k) − αkDk∇f(x(k)))

essentially reduces to solve a root-finding problem for a piecewise linear monotonically

non-decreasing function. Specialized linear time algorithms for this root-finding problem

can be derived from the wide literature available for the continuous quadratic knapsack

problem [3, 4, 5, 6, 7]. In the SGP implementation proposed in this work we face

the problem (24) by the secant-based method suggested in [4] that has shown very

good performance also within the gradient projection methods used for the quadratic

programs arising in training the learning methodology Support Vector Machines [30, 31].

To emphasize the scaling properties of the projection algorithm [4] we show in Figure

1 the computational time it requires with respect to the size of the problem. The

projection problems arise from the application of SGP to the reconstruction of images

of different sizes; for each size, the time to perform one hundred projections is reported.

The experiments are carried out on an AMD Opteron Dual Core 2.4 GHz processor

using Matlab 7.5.0
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From Figure 1 we may observe the linear scaling of the secant-based method [4]

and the low computational cost of each projection: for example, in case of N = 10242 a

projection is performed in approximately 0.2 seconds.

3.2. Update the scaling matrix

The choice of the scaling matrix Dk in SGP must aim at two main goals: avoiding

to introduce significant computational costs and improving the convergence rate. As

previously motivated, a diagonal scaling allows one to make the projection in step 2 of

SGP a non-excessively expensive task; thus, we will concentrate on such kind of scaling

matrices. A classical choice is to use a scaling matrix Dk = diag
(
d

(k)
1 , d

(k)
2 , . . . , d

(k)
N

)

that approximates the inverse of the Hessian matrix ∇2J(x); for example by requiring

d
(k)
i ≈

(
∂2J(x(k))

(∂xi)2

)−1

, i = 1, . . . , N.

In this case an updating rule for the entries of Dk could be

d
(k)
i = min

{
L, max

{
1

L
,

(
∂2J(x(k))

(∂xi)2

)−1
}}

, i = 1, . . . , N, (25)

where L is an appropriate threshold. Another appealing choice is suggested by the

diagonal scaling used to rewrite the EM method as a special scaled gradient method for

minimizing J(x) [15]:

x̄(k+1) = XkA
T Y −1

k b = x̄(k) −Xk∇J(x̄(k)),

where Xk = diag(x̄(k)) and Yk = diag(Ax̄(k)+bg) (refer to section 4.3 for more details on

the EM method and a comparison with SGP). By following this idea we may introduce

the updating rule

d
(k)
i = min

{
L, max

{
1

L
, x

(k)
i

}}
, i = 1, . . . , N. (26)

From a computational viewpoint, the updating rule (25) is more expensive than

(26), due to the computation of the diagonal entries of the Hessian (see (21)). With

regard to the effect of the scaling on the SGP convergence rate, we will show the

behaviour of the above updating rules on several test problems in the next section.

Now we go into details about another crucial issue for the convergence rate of a gradient

method: the choice of the steplength.

3.3. Update the steplength

Steplength selection rules in gradient methods have received an increasing interest

in the last years from both the theoretical and the practical point of view. On one

hand, following the original ideas of Barzilai and Borwein (BB) [32], several steplength

updating strategies have been devised to accelerate the slow convergence exhibited in

most cases by standard gradient methods, and a lot of effort has been put into explaining
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the effects of these strategies [33, 8, 4, 34, 9, 35, 10]. On the other hand, numerical

experiments on randomly generated, library and real-life test problems have confirmed

the remarkable convergence rate improvements involved by some BB-like steplength

selections [8, 4, 36, 9, 37, 30, 10]. Thus, it seems natural to equip SGP with a steplength

selection that takes into account of the recent advances on the BB-like updating rules.

First of all we must rewrite, in case of a scaled gradient method, the two BB rules

usually exploited by the main steplength updating strategies. To this end, we can regard

the matrix B(αk) = (αkDk)
−1 as an approximation of the Hessian ∇2J(x(k)) and derive

two updating rules for αk by forcing quasi-Newton properties on B(αk):

αBB1
k = argmin

αk∈R
‖B(αk)s

(k−1) − z(k−1)‖ (27)

and

αBB2
k = argmin

αk∈R
‖s(k−1) −B(αk)

−1z(k−1)‖, (28)

where s(k−1) =
(
x(k) − x(k−1)

)
and z(k−1) =

(∇J(x(k))−∇J(x(k−1))
)
.

In this way, the steplengths

α
(1)
k =

s(k−1)T D−1
k D−1

k s(k−1)

s(k−1)T D−1
k z(k−1)

(29)

and

α
(2)
k =

s(k−1)T Dkz
(k−1)

z(k−1)T DkDkz(k−1)
(30)

are obtained, that reduce to the standard BB rules in case of non-scaled gradient

methods, that is when Dk is equal to the identity matrix for all k:

αBB1
k =

s(k−1)T s(k−1)

s(k−1)T z(k−1)
, αBB2

k =
s(k−1)T z(k−1)

z(k−1)T z(k−1)
. (31)

At this point, inspired by the steplength alternations successfully implemented in the

framework of non-scaled gradient methods [9, 10], we propose a steplength updating

rule for SGP which adaptively alternates the values provided by (29) and (30). The

details of the SGP steplength selection are given in Algorithm SS. This rule decides the

alternation between two different selection strategies by means of the variable threshold

τk instead of a constant parameter as done in [9] and [10]. This trick makes the choice

of τ0 less important for the SGP performance and, in our experience, seems able to

avoid the drawbacks due to the use of the same steplength rule in too many consecutive

iterations. Finally, we remark that a deeper analysis about the SGP steplength selections

should be worthwhile; in fact, at least to our knowledge, steplength rules for scaled

gradient methods are not well investigated in literature and the generalization of the

standard BB-like selections to this context is an interesting open problem. However,

such an analysis is beyond the aims of this work and we will limit to show in the next

section the effectiveness of the proposed strategy in comparison with some widely used

steplength selections.



SGP Method for Constrained Image Deblurring 16

Algorithm SS (SGP Steplength Selection)

if k = 0

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a nonnegative integer Mα;

else

if s(k−1)T D−1
k z(k−1) ≤ 0 then

α
(1)
k = αmax;

else

α
(1)
k = max

{
αmin, min

{
s(k−1)T

D−1
k D−1

k s(k−1)

s(k−1)T
D−1

k z(k−1)
, αmax

}}
;

endif

if s(k−1)T Dkz
(k−1) ≤ 0 then

α
(2)
k = αmax;

else

α
(2)
k = max

{
αmin, min

{
s(k−1)T

Dkz(k−1)

z(k−1)T
DkDkz(k−1)

, αmax

}}
;

endif

if α
(2)
k /α

(1)
k ≤ τk then

αk = min
{

α
(2)
j , j = max {1, k −Mα} , . . . , k

}
; τk+1 = τk ∗ 0.9;

else

αk = α
(1)
k ; τk+1 = τk ∗ 1.1;

endif

endif

4. Numerical experiments

The experiments of this section aim to show the practical usefulness of SGP for image

restoration problems. Firstly, in order to determine an SGP setting suited for this

application, we carefully evaluate the updating rules for the scaling matrix and the

steplength parameter proposed in the previous section. Secondly, we compare SGP

with the standard EM method [15], the accelerated EM version described in [23] and

the WMRNSD algorithm proposed in [24]. All the methods are implemented in Matlab

7.5.0 and the experiments are performed on a computer equipped with a processor AMD

Opteron Dual Core 2.4 GHz.

4.1. Test problems and performance measures

The considered methods are tested on several optimization problems of the form (2) and

(3), with the objective function J(x) defined as in (19), corresponding to the deblurring

problems arising from a set of astronomical images corrupted by Poisson noise. The test

problems are generated by convolving the original 256 × 256 images shown in Figure

2 and denoted by the letters A, B, C, with a point spread function (PSF). Then, a

constant background term is added and the resulting images are perturbed with Poisson
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noise. From the original images, several blurred noisy images have been generated, with

Image A Image B Image C

Figure 2. Original images.

different PSFs and noise levels; however, the relative behaviour of the methods on the

corresponding deblurring problems are very similar and, consequently, we only discuss

the results corresponding to an ideal PSF and three levels of noise. In particular, by

following [38], our PSF is defined as

2

(
J1(R)

R

)2

,

where J1 is the Bessel function of the first kind and R =
√

x2 + y2, x, y ∈ R. The

PSF is computed on a 256× 256 grid defined by considering uniformly spaced values in

[-36.4113, 36.4113]; the resulting matrix is then normalized such that AT e = e. Since

we are considering the case of Poisson noise, the different noise levels are obtained by

changing the total flux (total number of counts) of the original image: the noise level is

increasing when the total flux is decreasing. For each of the considered images, we show

in Figure 3 the three blurred noisy images used in these experiments: the total flux is

4.43×109 for the images in the left panels, 7.02×108 for the images in the middle panels

and 4.43×107 for the images in the right panels. In all the experiments the background

level is bg = 6.76× 103.

In order to evaluate the performance of the deblurring methods, we measure for

each method the relative reconstruction error, defined as ‖x(k) − x‖/‖x‖, where x is

the image to be reconstructed and x(k) is the reconstruction after k iterations; then

we report the minimum relative reconstruction error (err opt), the number of iterations

(it opt) and the computational time in seconds (sec) required to provide the minimum

error. The cases where a method reaches the prefixed maximum number of iterations

will be marked with an asterisk and the relative error and the time corresponding to

that number of iterations will be given.
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Image A1 Image A2 Image A3

Image B1 Image B2 Image B3

Image C1 Image C2 Image C3

Figure 3. Blurred noisy images. The left, middle and right panels refer to low,
medium and high noise levels, respectively.

4.2. Scaling matrix and steplength parameter in SGP

We study the SPG behaviour for different choices of the scaling matrix and of the

steplength rule. We test three scaling matrices: Dk = I, where I denotes the identity

matrix, Dk selected as in (25) and Dk defined as in (26). In the last two cases we use

L = 1010. Concerning the steplength, we evaluate the following updating rules:

• SGP-BB1: αk = α
(1)
k , where α

(1)
k is defined as in Algorithm SS;

• SGP-BB2: αk = α
(2)
k , where α

(2)
k is defined as in Algorithm SS;
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• SGP-ABB: αk defined by alternating α
(1)
k and α

(2)
k as in the ABB method described

in [10] (that is, by setting in Algorithm SS Mα = 0 and τk = 0.15, for any k);

• SGP-SS: αk defined by the Algorithm SS, with τ1 = 0.5 and Mα = 2.

In all the above selections we set αmin = 10−10, αmax = 105 and α0 = 1.3, except for

SGP-BB1 where we found convenient to start with a smaller steplength: α0 = 10−2.

The above scaling matrices and steplength rules are examined in both the monotone

and the nonmonotone version of SGP; the line-search parameter are: θ = 0.4, β = 10−4,

M = 1 in the monotone SGP and M = 10 in the nonmonotone SGP. In every experiment

the pixels of the starting image x(0) are set as follows: x
(0)
i = c/N, i = 1, . . . , N , where

c =
∑N

i=1(bi − bg) denotes the right hand side of the equality constraint in the problem

(3).

The numerical results obtained by solving the problem (2) are reported in Tables

1 and 3 for the nonmonotone and monotone versions, respectively. The behaviour on

the problem (3) is described in Table 2 for the nonmonotone SGP and in Table 4 for

the monotone SGP. The main conclusion that can be drawn from these experiments

is that the updating rule (26) for the scaling matrix Dk combined with the steplength

selection suggested in Algorithm SS gives generally the best performance in terms of

computational time and a reconstruction error comparable with those provided by the

other choices of Dk and αk. This special version of SGP is able to achieve a very

good convergence rate and benefits from a non-expensive updating of the matrix Dk.

Interesting results in terms of number of iterations are observed also when Dk is updated

by the rule (25); nevertheless, the additional costs introduced by this rule seem to

imply significant reductions of the overall performance. Concerning the steplength, the

selections exploited in SGP-ABB and SGP-SS provide the better results, confirming

the effectiveness of the strategies based on adaptive alternations of the BB-like rules

[9, 10]. In particular, the alternation implemented in Algorithm SS yields remarkable

improvements when Dk is updated as in (26). For shortness, in the following we will

denote by SGP the scheme that uses Algorithm SS for defining the steplength and

exploits the rule (26) for updating the scaling matrix.

For the sake of completeness, we show in Figure 4 the SGP relative reconstruction

error as a function of the number of iterations. In each panel of the figure the errors

obtained by applying SGP to the problems (2) and (3) are reported (denoted by

SGP-(2) and SGP-(3), respectively); for each test image, both the nonmonotone (the

left panels) and the monotone (the right panels) version of SGP is considered. No

significant differences are observed between the reconstruction errors corresponding to

the two problems. In particular, in both cases the error drops to a value close to the

minimum in very few iterations and it remains close to this value for a large number

of iterations; this suggests that the choice of the optimal number of iterations does not

seem to be critical in the case of real images. From a computational point of view, it

is worth recalling that, when SGP applies to the problem (3), each iteration is slightly

more expensive due to the more complicated projection operation. If we compare the
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Table 1. Nonmonotone SGP on the deblurring problem (2).

Dk = I Dk as in (25) Dk as in (26)

it opt err opt sec it opt err opt sec it opt err opt sec

Test problem: Image A1

SGP-BB1 2443 0.1865 147.43 607 0.1862 61.90 748 0.1850 53.08

SGP-BB2 898 0.1865 46.75 736 0.1862 69.29 678 0.1851 38.24

SGP-ABB 979 0.1866 49.92 443 0.1862 32.54 624 0.1851 36.94

SGP-SS 624 0.1866 33.91 346 0.1862 27.03 380 0.1851 23.40

Test problem: Image B2

SGP-BB1 1101 0.0586 66.34 307 0.0571 30.76 550 0.0544 48.66

SGP-BB2 1107 0.0586 59.05 380 0.0571 34.58 229 0.0542 12.83

SGP-ABB 1084 0.0586 55.57 367 0.0571 27.01 205 0.0547 12.24

SGP-SS 1086 0.0586 60.70 292 0.0571 23.06 157 0.0542 9.82

monotone and the nonmonotone version of SGP, almost identical behaviours in terms of

reconstruction error are observed. Thus, taking into account that the two SGP versions

exhibit similar convergence rate and that the nonmonotone line-search strategy requires

less function evaluations with respect to the monotone version, the nonmonotone SGP

seems preferable (see also the numerical results in Tables 1-4).

Table 2. Nonmonotone SGP on the deblurring problem (3).

Dk = I Dk as in (25) Dk as in (26)

it opt err opt sec it opt err opt sec it opt err opt sec

Test problem: Image A1

SGP-BB1 4000∗ 0.1871 266.97 794 0.1861 91.93 1178 0.1850 102.92

SGP-BB2 4000∗ 0.1873 241.27 673 0.1861 76.45 666 0.1850 44.12

SGP-ABB 4000∗ 0.1873 266.38 338 0.1861 28.16 399 0.1851 29.27

SGP-SS 4000∗ 0.1868 262.98 385 0.1862 33.38 336 0.1851 22.37

Test problem: Image B2

SGP-BB1 4000∗ 0.0613 631.13 352 0.0577 42.22 363 0.0635 35.32

SGP-BB2 4000∗ 0.0588 348.76 372 0.0578 42.38 214 0.0542 14.17

SGP-ABB 4000∗ 0.0608 590.31 360 0.0577 34.49 180 0.0547 13.65

SGP-SS 4000∗ 0.0587 281.35 353 0.0577 34.95 163 0.0544 11.37



SGP Method for Constrained Image Deblurring 21

Table 3. Monotone SGP on the deblurring problem (2).

Dk = I Dk as in (25) Dk as in (26)

it opt err opt sec it opt err opt sec it opt err opt sec

Test problem: Image A1

SGP-BB1 1592 0.1865 103.36 527 0.1862 44.01 748 0.1850 49.94

SGP-BB2 985 0.1866 55.99 659 0.1863 50.48 605 0.1850 35.35

SGP-ABB 1125 0.1866 60.17 659 0.1862 49.84 538 0.1851 33.24

SGP-SS 568 0.1866 37.40 418 0.1862 33.61 388 0.1851 28.85

Test problem: Image B2

SGP-BB1 1475 0.0586 90.54 528 0.0571 43.20 550 0.0542 49.72

SGP-BB2 1087 0.0586 60.55 400 0.0582 32.49 190 0.0543 11.71

SGP-ABB 1072 0.0586 57.11 327 0.0571 26.47 191 0.0548 12.54

SGP-SS 1110 0.0586 72.74 386 0.0571 31.56 137 0.0543 9.27

Table 4. Monotone SGP on the deblurring problem (3).

Dk = I Dk as in (25) Dk as in (26)

it opt err opt sec it opt err opt sec it opt err opt sec

Test problem: Image A1

SGP-BB1 4000∗ 0.1882 569.74 450 0.1861 46.99 778 0.1851 58.47

SGP-BB2 4000∗ 0.1886 647.82 573 0.1861 48.53 573 0.1850 38.41

SGP-ABB 4000∗ 0.1884 637.89 571 0.1861 46.98 511 0.1851 35.18

SGP-SS 4000∗ 0.1874 557.53 324 0.1861 27.75 420 0.1851 38.26

Test problem: Image B2

SGP-BB1 4000∗ 0.0638 627.51 400 0.0577 42.55 633 0.0599 83.25

SGP-BB2 4000∗ 0.0659 651.00 355 0.0578 32.69 228 0.0541 17.71

SGP-ABB 4000∗ 0.0631 648.92 313 0.0577 28.57 243 0.0546 17.47

SGP-SS 4000∗ 0.0598 648.81 320 0.0577 30.23 145 0.0543 13.91

4.3. Comparisons with other methods

To better evaluate the SGP behaviour in image deblurring, we report some comparisons

with other widely used iterative regularization methods.

We first consider the EM method [15], also known as Richardson-Lucy method [14, 13].

Starting from a positive initial image x(0), the EM algorithm looks for a minimum of
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Figure 4. SGP relative reconstruction error.

the functional (19) by exploiting the iteration

x(k+1) = XkA
T Y −1

k b. (32)

where Xk = diag(x(k)) and Yk = diag(Ax(k) + bg). The nonnegativity of A, bg and b

guarantees that all the iterates remain nonnegative and, under the assumption bg = 0,

useful to ensure the flux conservation property, the convergence to a solution of (2) has

been proved by several authors [39, 40, 41, 42, 43] (see also [44] for a convergence analysis

derived by a proximal point interpretation of the EM algorithm). In the general case

bg 6= 0, at least to our knowledge, the EM convergence is not proved. The EM method is

attractive because of its low computational cost, consisting inO(N log N) operations per

iteration (needed to perform the two matrix-vector products involving the matrix A).

This nice feature made the method one of the most popular approaches for astronomical

and medical image restoration problems. However, the main drawback of the method

is the slow convergence, that, in many cases, leads to the desired approximation of the

solution in a too large time. With regard to the comparison between SGP and EM, it
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is interesting to observe that the iteration (32) can be written as

x(k+1) = x(k) − αkDk∇J(x(k)), (33)

with

Dk = Xk, αk = 1, ∀ k.

This means that EM can be interpreted as a scaled steepest descent method with a

special scaling matrix and a constant steplength [21, 45]. On the other hand, we have

seen that SGP uses a similar scaling matrix, exploits variable steplengths to improve

the convergence rate and can handle in a natural way a flux conservation constraint.

Thus, we may considered SGP a generalization of the EM method.

An interesting accelerated EM version is provided in [23]: it exploits a vector

extrapolation to determine the point on which the EM iteration is applied. The

extrapolation, consisting in a shift along the direction given by the difference between the

current iteration and the previous iteration, introduces a little computational overhead

and, consequently, the cost per iteration of the method is only slightly larger than in

EM. In the following of the paper we will denote by EM MATLAB the implementation

of this algorithm available in the deconvlucy function of the Image Processing MATLAB

toolbox.

Another algorithm able to show superior convergence rate when compared to

EM is the WMRNSD method recently proposed in [24]. This algorithm can be

viewed as a steepest descent method applied to the minimization problem arising

from a constrained weighted least squares approach to the image restoration problem;

the nonnegativity constraint is satisfied by modifying the standard line-search that

minimizes the residual norm. The main tasks per iteration consist in two matrix-

vector products, as for the other methods. In our computational study we consider

the WMRNSD version tested in [24], whose MATLAB implementation is available at

the web page http://web.math.umt.edu/bardsley/codes.html.

In Table 5 we show the numerical results obtained by solving some deblurring

problems with the above iterative image reconstruction algorithms: the nonmonotone

SGP applied to the problem (2) (SGP-(2)) and (3) (SGP-(3)), the standard EM,

the EM MATLAB and the WMRNSD. The methods start from the same image

(x
(0)
i = c/N, i = 1, . . . , N) and all the parameters of the nonmonotone SGP are set as

described in the previous section. Also in this table, the numbers of iterations (it opt)

refer to the iteration where the minimum relative reconstruction error is obtained; an

asterisk is used to mark the cases where this minimum is not reached within the prefixed

maximum number of iterations. In all the experiments, SGP largely outperforms EM in

the number of iterations and in the computational time, even if the time per iterations

exhibited by SGP-(2) and SGP-(3) is approximately 40% and 70% grater than in EM,

respectively. Concerning the optimal reconstruction error, no significant differences are

observed between SGP and EM. To better compare the behaviour of the two methods,

we plot in Figure 5 the reconstruction error as a function of the number of iterations for

the test problems corresponding to the blurred images C1 and C3. The reconstructed
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Table 5. Comparison among SGP, EM, EM MATLAB and WMRNSD

it opt err opt sec it opt err opt sec it opt err opt sec

Image A1 Image A2 Image A3

SGP-(2) 380 0.1851 23.40 103 0.1866 6.37 21 0.1944 1.32

SGP-(3) 336 0.1851 22.37 108 0.1865 8.44 20 0.1947 1.55

EM 10000∗ 0.1852 433.25 4047 0.1865 177.14 414 0.1942 17.90

EM MATLAB 388 0.1853 18.32 141 0.1868 7.19 46 0.1947 2.40

WMRNSD 10000∗ 0.1853 573.31 2904 0.1866 163.61 50 0.1942 2.72

Image B1 Image B2 Image B3

SGP-(2) 251 0.0513 15.67 157 0.0542 9.82 26 0.0689 1.61

SGP-(3) 274 0.0514 19.12 163 0.0544 11.37 35 0.0688 2.57

EM 10000∗ 0.0512 413.20 4185 0.0541 183.49 500 0.0687 21.69

EM MATLAB 259 0.0516 12.30 139 0.0559 7.83 44 0.0700 2.64

WMRNSD 10000∗ 0.0521 571.69 2928 0.0548 166.43 80 0.0690 4.26

Image C1 Image C2 Image C3

SGP-(2) 736 0.2922 45.89 374 0.2953 23.36 41 0.3127 2.51

SGP-(3) 1125 0.2923 80.13 272 0.2949 18.99 45 0.3125 3.26

EM 10000∗ 0.2929 431.77 10000∗ 0.2945 430.14 1459 0.3110 61.60

EM MATLAB 811 0.2952 38.30 280 0.2977 14.60 68 0.3138 3.75

WMRNSD 10000∗ 0.2939 582.13 10000∗ 0.2948 580.76 168 0.3115 9.09

images corresponding to the minimum errors are shown in Figure 6 for the blurred

images A2, B2 and C2. From the above results we may conclude that SGP seems

able to provide the same reconstruction accuracy given by EM but with a remarkable

computational gain.

We complete the experiments by comparing SGP also with the accelerated

algorithm EM MATLAB and with the WMRNSD method. The numerical results in

Table 5 show that, even if the cost per iteration in SGP is higher than in EM MATLAB,

the two approaches are very well comparable and sometimes SGP-(2) can be a valid

alternative. We point out that, as far as we know, no convergence proof of the Biggs-

Andrews algorithm implemented by EM MATLAB is available.

Finally, we can observe that SGP largely outperforms the WMRNSD method in terms
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Figure 5. SGP and EM relative reconstruction error.

of both iterations number and computational time.

5. Conclusions

We have proposed a scaled gradient projection method, called SGP, for solving

optimization problems with simple constraints. The main features of SGP are its

global convergence properties and the use of efficient updating rules for the steplength

parameter and for the scaling matrix able to improve the convergence rate. A wide

computational study on the minimization problems arising from the maximum likelihood

approaches to image deblurring shows that SGP can provide the same reconstruction

accuracy of the standard EM method with much less iterations and, consequently, with

a remarkable computational gain. Furthermore, it exhibits the ability to effectively

handle a linear equality constraint in addition to the nonnegativity or box constraints.

The SGP effectiveness is also confirmed by the comparisons with other popular iterative

regularization methods.

Future works will regard the evaluation of the proposed algorithm on different

optimization problems arising in image deblurring and the comparison with quasi-

Newton and interior point methods. If SGP can compete with these methods, then

it could provide a very useful and simple approach to iterative image reconstruction.
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SGP-(2) SGP-(3) EM

Figure 6. Reconstruction obtained with the SGP-(2), the SGP-(3) and the EM
methods for the blurred images A2, B2, C2 (from the top to the bottom of the figure).
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