
On the Solution of Indefinite Systems Arising in Nonlinear Optimization ∗

Silvia Bonettini, Valeria Ruggiero and Federica Tinti
Dipartimento di Matematica, Università di Ferrara

Abstract

We consider the application of the preconditioned conjugate gra-
dient (PCG) method to the solution of indefinite linear systems aris-
ing in nonlinear optimization. Our approach is based on the choice
of quasidefinite preconditioners and of a suitable factorization routine.
Some theoretical and numerical results about these preconditioners are
obtained. Furthermore, we show the behaviour of the PCG method for
different representations of the indefinite systems and we compare the
effectiveness of the proposed variants.
Keywords: Preconditioned Conjugate Gradient Method, Indefinite
Preconditioners, Large Scale Optimization, Nonlinear Programming
Problems.

1 Introduction

This work is concerned with the solution of an indefinite linear system whose
coefficient matrix has the following form:

M =
(

H AT

A 0

)
(1)

where H is an n̄× n̄ symmetric matrix, while the matrix A is m̄× n̄.
This system is related to the first order Karush–Kuhn–Tucker (KKT) con-
ditions of the following quadratic programming problem

min 1
2xT Hx− cT x

Ax = b
(2)

∗This research was supported by the Italian Ministry for Education, University and
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which can be expressed as follows:
(

H AT

A 0

)(
x
y

)
=

(
c
b

)
. (3)

It is well known that a sufficient condition for the nonsingularity of (1) is
that

(A1) A is full row rank and H is positive definite on the null space of A,
which means pT Hp > 0 for any p ∈ Rn̄ (p 6= 0) such that Ap = 0.

The numerical solution of systems as (3) is required also in nonlinear pro-
gramming problems. Indeed, in the framework of the interior–point meth-
ods, a variety of algorithms for linearly and nonlinearly constrained opti-
mization (see, for example, [20], [21], [19], [4], [6]) requires, at each step, the
solution of the Newton system (or of a perturbation to it) applied to the
KKT optimality conditions of the problem:

min f(x)
h(x) = 0
g(x) ≥ 0

(4)

where f(x) : Rn → R, h(x) : Rn → Rneq, g(x) : Rn → Rm are twice
continuously differentiable functions. The inequality constraints are often
reformulated by introducing the vector of the slack variables s as

g(x)− s = 0
s ≥ 0.

(5)

In this case, the coefficient matrix of the Newton’s system is



Q BT CT 0
B 0 0 0
C 0 0 I
0 0 S W


 , (6)

with Q = ∇2f(x) − ∑neq
1 λi∇2hi(x) −∑m

1 wi∇2g(x), B = −∇hi(x)T and
C = −∇gi(x)T . Here Q is the Hessian matrix of the Lagrangian function
of the problem (4), ∇2f(x), ∇2hi(x), ∇2gi(x) are the Hessian matrices of
the function f(x) and of the i–th component of the constraints h(x) and
g(x) respectively. Furthermore, λ ∈ Rneq and w ∈ Rm are the Lagrange
multipliers of the equality and inequality constraints respectively.



3

The matrices S and W are diagonal matrices whose entries are the com-
ponents of the vectors s and w respectively. Since in the interior–point
approach the slack variables and the multipliers related to the inequalities
are forced to be positive, we will assume that the diagonal entries of the
matrices S and W are positive.
The matrix (6) is not symmetric; thus it is usual to obtain a symmetric
representation of the Newton system by a suitable scaling of the equations
and by applying elimination techniques.
From the literature, we devised four different representations of the Newton
system, which will be described in the section 3. The coefficient matrices of
these reformulations of the Newton system have the same block structure
(1).
Recently, many authors propose as efficient iterative linear solver for the
system (3), the preconditioned conjugate gradient (PCG) method, with an
indefinite preconditioner with the same block structure of the matrix (1)

P =
(

G AT

A 0

)
, (7)

where G is a positive definite approximation of H.
In [14], under suitable hypotheses, the authors prove that the PCG method
with such preconditioner applied to the system (3) terminates in a finite
number of steps in exact arithmetic, providing also a spectral analysis of
the matrix MP−1. The same preconditioner and its variants have been fur-
ther investigated (see for example [4], [15], [11], [7] and references therein).
The matrix P has a very special structure, which yields important prop-
erties. Indeed, if we consider the augmented system related to the first
order condition of the least squares problem ming ‖r − AT g‖2

G−1 , where
‖u‖2

G−1 = uT G−1u (G−1 positive definite), we obtain
(

G AT

A 0

)(
ḡ
g

)
=

(
r
0

)
. (8)

Here and in the following, if g is a n̄ + m̄ vector, we indicate with ḡ the n̄
vector whose entries are the first n̄ components of g and with g the m̄ vector
whose entries are the last m̄ components of g, so that

g =
(

ḡ
g

)
.

If the vector g solves the previous system, then the component ḡ is the
projection of r in the null space of the matrix A.
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More precisely, we have

ḡ = G−1(r −AT g) = (G−1 −G−1AT (AG−1AT )−1AG−1)r = PAr

where we denote by PA the projection operator on the null space of A

PA = G−1 −G−1AT (AG−1AT )−1AG−1. (9)

This implies Aḡ = 0.
This property plays a crucial role in the analysis of the PCG method that
enables us to derive in a more general way the theoretical features of the
PCG method, reported in the next section. We focus on the connection be-
tween the preconditioning technique with the matrix P and the projection
operation on the null space of the matrix A.
Moreover, we show that the approach followed in [14] and the one suggested
in [12], which provides to solve the quadratic problem (2) by projecting at
each step the current residual on the null space of A, are very similar. Never-
theless, the first approach could prevent the numerical instability problems
which may arise following the second approach.
In section 4, a set of numerical experiments enables us to compare the ef-
fectiveness of the PCG method for the solution of the Newton system in
four different formulations. Furthermore, we employed the PCG method as
inner solver for the Newton system arising at each step of the interior point
algorithm described in [2], comparing the performance of the whole interior
point algorithm with respect to the different representations of the inner
linear system.

2 The preconditioned conjugate gradient method

By putting

v =
(

x
y

)
, k =

(
c
b

)
,

the system (3) can be written as Mv = k. The PCG method applied to (3)
can be written as follows:

Algorithm 2.1 Choose an initial point v0, compute r0 = k − Mv0, g0 =
P−1r0, ν = r0

T g0 and put p0 = g0;
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for i = 0, 1, ... until a stopping criterion is satisfied

δ ← pi
T Mpi (10)

α ← ν/δ (11)
ri+1 = ri − αMpi (12)
vi+1 = vi + αpi (13)
gi+1 = P−1ri+1 (14)

δ ← ν (15)
ν ← ri+1

T gi+1 (16)
β ← ν/δ (17)

pi+1 = gi+1 + βpi (18)

Since M is an indefinite matrix, it can happen that, for some index i, the
quantity δ computed at the step (10) is zero: in this case, we say that
a breakdown occurs for the algorithm. It can be proved (Theorem 3.4 in
[14]) that, if P is defined as in (7), A is full row rank, M is a symmetric
nonsingular matrix and a breakdown does not occur, then, starting from
any v0 ∈ Rn̄+m̄, the Algorithm 2.1 finds a solution of the system Mv = k in
at most n̄− m̄ + 2 iterations.
The approach described above can be considered a “primal–dual” approach
to the solution of the programming problem (2), since the Algorithm 2.1 is
equivalent to the PCG method applied to the determination of a stationary
point of the Lagrangian function of the problem (2)

L(x, y) =
1
2
xT Hx− cT x + yT (Ax− b).

Indeed, at each step (12), we have

ri = −
( ∇xL(xi, yi)
∇yL(xi, yi)

)
.

2.1 Preconditioning techniques and projection procedures

The next theorem shows that, if the starting point of the PCG procedure
is chosen so that Ax0 = b, then the linear system which has to be solved at
the step (14) has the form (8) at each iterate i.

Theorem 2.1 Assume that P defined as in (7), A is full row rank and M
is a symmetric nonsingular matrix.
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If the starting point

v0 =
(

x0

y0

)
(19)

is chosen such that x0 solves the system Ax = b and a breakdown does not
occur, then the Algorithm 2.1 generates a sequence of points xi such that
Axi = b so that

ri =
(

r̄i

0

)
.

Moreover, the direction p is given by

pi =
(

p̄i

p
i

)
,

where p̄i belongs to the null space of A.

Proof. The inverse of the preconditioner P is given by

P−1 =
(

G−1 −G−1AT (AG−1AT )−1AG−1 G−1AT (AG−1AT )−1

(AG−1AT )−1AG−1 −(AG−1AT )

)
.

(20)
The left up block of the matrix P−1 is the projection operator on the null
space of A defined in (9).
If the starting point (19) is such that x0 is a solution of the system Ax = b,
then we have

r0 =
(

c−Hx0 −AT y0

0

)
=

(
r̄0

0

)
.

Then, when we compute g0 = P−1r0, we have

g0 =
(

PAr̄0

(AG−1AT )−1AG−1r̄0

)
=

(
ḡ0

g
0

)
,

where ḡ0 is the projection of the vector r̄0 on the null space of A.
Since p̄0 = ḡ0 belongs to the null space of A, we have that

Ax1 = A(x0 + αp̄0) = A(x0 + αḡ0) = Ax0 = b

and then

r1 =
(

r̄1

0

)
,

where r̄1 = c−Hx1 −AT y1.
Let us proceed by induction and assume that Axi = b and

pi =
(

p̄i

p
i

)
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where p̄i belongs to the null space of A. Then, since xi+1 = xi + αp̄i, we
have that Axi+1 = b and

ri+1 =
(

r̄i+1

0

)
. (21)

Moreover, the preconditioned gradient gi+1 is given by

gi+1 = P−1ri+1 =
(

PAr̄i+1

(AG−1AT )−1AG−1r̄i+1

)
=

(
ḡi+1

g
i+1

)
,

where ḡi+1 belongs to the null space of A. Then we can conclude that p̄i+1

belongs to the null space of A, since, from the step (18) of the Algorithm 2.1,
the direction pi+1 is computed as a linear combination of the preconditioned
gradient gi+1 and the previous direction pi. ¤

The previous theorem suggests that, if we choose an appropriate starting
point, the use of the preconditioner P and the projection of the component
r̄i of the residual vector on the null space of A are two strictly related oper-
ations.
Remark: We observe that the component AT yi of the residual r̄i =
c−Hxi−AT yi lies in the range space of AT , which is orthogonal to the null
space of A; thus it does not affect, theoretically, the result of the projection
PAr̄i. The Example 1 in [12] shows that this fact could not be true from the
numerical point of view: this fact will be further investigated in the next
section.

Let us introduce the following notation: if Z is a n̄ × (n̄ − m̄) matrix
whose columns form a basis for the null space of A, and A is a full row rank
matrix, then every vector x ∈ Rn̄ admits a unique representation of the form

x = AT xν + Zxτ , (22)

where xν = (AAT )−1Ax is the normal component of x and xτ is the tan-
genzial component of x expressed in term of the basis Z. Indeed Rn̄ is the
direct sum of the range space of AT and of the null space of A.
If G is a symmetric nonsingular matrix, then we have also that

xν = (AG−1AT )−1AG−1x,

since G−1Z is again a basis of the null space of A. Moreover we can also
write

x = AT xν + GZxτG
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For a convenient xτZ , we have GZxτG = GZ(ZT GZ)−1xτZ , then ZT x = xτZ .
Thus, we can write

x = AT xν + GZ(ZT GZ)−1xτZ (23)

and Zxτ = GZ(ZT GZ)−1xτZ .
We can obtain the tangential components with respect to the basis Z, GZ
and GZ(ZT GZ)−1 by computing

xτ = (ZT Z)−1ZT x

xτG = (ZT GZ)−1ZT x

xτZ = ZT x.

The above relations are useful for the proof of the following theorem, where
a different interpretation of Algorithm 2.1 is derived (see proof of Theorem
3.5 in [14]), under a weaker assumption: here we do not require that b = 0,
y0 = 0 and that Z is an orthonormal basis of the null space of A.

Theorem 2.2 Let us assume that the hypothesis A1 holds and let Z be
a matrix whose columns form a basis for the null space of A. Let x∗ =
AT xν∗ + Zxτ∗ the first n̄ components of the solution of the system (3). If we
choose a starting point v0 such that Ax0 = b, then the tangential components
{xτ

k} of the elements of the sequence {xk} generated by Algorithm 2.1 applied
to the system (3) are the elements of the sequence generated by the conjugate
gradient method with the preconditioner ZT GZ applied to the system

ZT HZxτ = ZT cz (24)

where cz = c−HAT xν∗.

Proof. Since the starting point x0 solves the system Ax = b, the previous
theorem can be applied and the residuals ri at each iterate i have the form
(21). In particular, for the vector r̄i we have

r̄i = (c−Hxi)−AT yi. (25)

Since x∗ is a solution of the system, we have that Ax∗ = b which implies
AAT xν∗ = b. Moreover, we also have that Axi = b for every index i, so that
AAT xν

i = b. Thus, we can conclude that xν∗ = xν
i for each i, because A is

full row rank. By substituting the expression xi = AT xν
i + Zxτ

i in (25), we
obtain

r̄i = c−HZxτ
i −HAT xν

i −AT yi,
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so that the tangential component of the residual r̄i expressed with respect
to the basis GZ(ZT GZ)−1is given by

r̄τZ
i = ZT r̄i

= ZT (c−HAT xν
i )− ZT HZxτ

i

= ZT cz − ZT HZxτ
i

which is the residual of the system (24).
By exploiting the decomposition (23) of r̄i, we can write

ri =
(

GZ(ZT GZ)−1r̄τZ
i + AT r̄ν

i

0

)
.

The projection operator PA defined in (9), can be expressed by means of
the null space basis Z as

PZ = Z(ZT GZ)−1ZT ,

since, for every vector u ∈ Rn̄, using the formula (23), we have

PAu = Z(ZT GZ)−1uτZ = PZu.

Exploiting the previous formulation of the projection operator and taking
into account (20), it is easy to see that the preconditioned gradient computed
at the step (14) has the following form:

gi = P−1ri =
(

Z(ZT GZ)−1r̄τZ
i

r̄ν
i

)
. (26)

Thus, it follows that

ri
T gi = r̄τZT

i (ZT GZ)−1r̄τZ
i . (27)

Furthermore, recalling the previous theorem, the direction pi can be written
as

pi =
(

Zp̄τ
i

p
i

)

since p̄i belongs to the null space of A; this implies that

Mpi =
(

HZp̄τ
i + AT p

i
0

)

from which we obtain

pi
T Mpi = p̄τT

i (ZT HZ)p̄τ
i . (28)
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The equalities (27) and (28) show that the coefficients α and β involved in
the updating steps (12) and (18) of the Algorithm 2.1 are the same as in
the CG algorithm with preconditioner (ZT GZ) applied to the system (24).
Moreover, the tangential component of the vector p̄i+1 = Zp̄τ

i+1 can be
obtained as follows

p̄i = Zp̄τ
i

= ḡi + βp̄i−1

= Z(ZT GZ)−1r̄τZ
i + βZp̄τ

i−1

thus we can write
p̄τ

i = (ZT GZ)−1r̄τZ
i + βp̄τ

i−1.

The last equality show that also the direction p̄τ
i can be obtained by the

updating rule of the CG algorithm with preconditioner (ZT GZ) applied to
the system (24).
The previous remarks guarantee that the Algorithm 2.1 applied to the sys-
tem (3) implicitly acts on the tangential components of the iterates as the
CG method applied to the system (24) with preconditioner (ZT GZ). ¤

The previous result can be employed to derive an estimation of the abso-
lute error and the finite termination property of the Algorithm 2.1. Indeed
the Algorithm 2.1 finds the solution vector x∗ after at most n̄−m̄ iterations,
and for 1 ≤ i ≤ n̄− m̄ the following estimation holds

‖xi − x∗‖ ≤ 2
√

k

(
1−

√
k

1 +
√

k

)i

‖x0 − x∗‖ (29)

where k = k(ZT HZ(ZT GZ)−1) and ‖ · ‖ is the euclidean norm.
Furthermore, under the assumptions of the previous theorem, the Algorithm
2.1 does not break down: indeed, the quantity δ computed at the step (10)
actually has the form (27), and, if the matrix H is positive definite on the
null space of A, δ is strictly positive.

Our implementation of the Algorithm 2.1 provides the direct factoriza-
tion of the preconditioner P . We observe that this matrix can be factorized
in a Cholesky–like form

Ln̄+m̄DLT
n̄+m̄, (30)

where Ln̄+m̄ is a lower triangular matrix with diagonal entries equal to
one and D is a nonsingular diagonal matrix with n̄ positive and m̄ negative
diagonal entries. In order to reduce the fill–ins in the lower triangular factor,
we can perform a minimum degree reordering of the matrix P . But, it is not
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assured that the symmetrically permuted matrix UPUT can be factorized
in the Cholesky–like form.
Nevertheless, we can obtain a factorization in the form (30) if we use for
the matrix P the regularization technique described in [1]; in other words,
instead of using the preconditioner P , we compute the factorization of

P̄ = P +
(

R1 0
0 −R2

)

where R1 and R2 are non negative diagonal matrices such that UP̄UT ad-
mits a factorization of the form (30). The computation of R1 and R2 can
be obtained during the factorization procedure. If a pivot di is too small
(|di| < 10−15 maxj<i |dj |), we put di =

√
ε if 1 ≤ i ≤ n̄, or di = −√ε if

n̄ + 1 ≤ i ≤ n̄ + m̄, where ε is the machine precision.
The dynamic computation of the elements of R1 and R2 reduces the pertur-
bation to a minimum. The Cholesky–like factorization of P̄ can be obtained
by a modification of the Ng and Peyton package. The modifications are de-
scribed in [3]. This new package, called BLKFCLT and downloadable from
the web page http://dm.unife.it/blkfclt/, is structured in two phases: the
first phase provides an a priori reordering routine for the sparsity preserv-
ing and the computation of a symbolic factorization, while, in the second
phase, the Cholesky–like factorization is computed, employing the dynamic
regularization strategy.

2.2 Another projection algorithm

It is important to notice that the proof of Theorem 2.2 and the estimation
(29) do not depend on the variable y, which represents the Lagrange multi-
plier of the equality constraints of the problem (2).
Indeed, the Algorithm 2.1 actually solves the problem

min
1
2
xτ T ZT HZxτ − xτ T cZ

that we obtain by substituting (22) in (2). On the contrary of the methods
proposed in [9], [13], [18], in this case we do not have to determine Z.
A similar approach is used in the Algorithm 2 in [12], where the PCG iter-
ation is applied only to the primal variable x.
In this case, the residual vector is defined as r̃+ = Hxi − c, and, in gen-
eral, in the algorithm, it will be bounded away from zero, but, as the it-
erates approach to the solution, it will become increasingly closer to the
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range of AT . Indeed, if (xT∗ , yT∗ )T is the solution of the system (3), we have
c −Hx∗ = AT y∗. Thus, the projection of the residual on the null space of
A, the vector g̃i, will become increasingly closer to zero.
This difference in the magnitudes of r̃+

i and g̃i might cause numerical diffi-
culties, since g̃i = PAr̃+

i = G−1(r̃+
i −AT v), where v = argmin‖r̃+

i −AT v‖G−1 ,
and, in finite arithmetic, r̃+

i − AT v might give rise to a significant cancel-
lation of digits. This roundoff error leads the projected residual to do not
belong exactly to the null space of A (see Example 1 in [12]).
In order to avoid this drawback, in [12] the authors propose a variant of the
PCG algorithm, which, at each step, provides a least squares estimate of the
normal component of the residual AT vi and, then, it updates the residual by
subtracting its normal component. This update leads the revised residual r̃i

to become increasingly closer to zero as the iterates approach to the solution.

Algorithm 2.2 Algorithm III (Preconditioned CG with residual update) in
[12].

Choose an initial point x0 such that Ax0 = b and compute r̃+
0 = Hx0 − c,

v0 = argmin‖r̃+
0 −AT v‖G−1 , r̃0 = r̃+

0 −AT v0, g̃0 = PAr̃0, and put p̃0 = g̃0;
for i = 0, 1, ... until a stopping criterion is satisfied

α ← r̃T
i g̃i

p̃T
i Hp̃i

(31)

xi+1 = xi + αp̃i

r̃+
i+1 = r̃+

i + αHp̃i

vi+1 = argmin‖r̃+
i+1 −AT v‖G−1 (32)

r̃i+1 = r̃+
i+1 −AT vi+1 (33)

g̃i+1 = PAr̃i+1 (34)

β ← r̃T
i+1pi+1

r̃T
i g̃i

p̃i+1 = g̃i+1 + βp̃i

In order to compute the projection (34), we have to solve two system: first,
we obtain vi+1 in (32) by solving the system

(
G AT

A 0

)(
g

vi+1

)
=

(
r̃+
i+1

0

)
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and then, to obtain the vector g̃i+1 in (34), we solve
(

G AT

A 0

)(
g̃i+1

u

)
=

(
r̃+
i+1 −AT vi+1

0

)
.

In exact arithmetic, the vector r̃+ − AT v belongs to the null space of A,
so that the component u of the solution of the previous system is zero. In
other words, in exact arithmetic, the desired projection of the residual r̃ is
the vector r̃ itself; thus, the steps (32)–(33) can be considered as an iterative
refinement step.
We observe that, at the iterate i of the Algorithm 2.2, we can obtain an
estimate of the Lagrange multiplier as yi = −∑i

k=0 vk and, furthermore,
the vector r̃i represents the residual of the first equation of the system (3):
indeed we have r̃i = Hxi +AT yi− c. In exact arithmetic, the residual of the
second equation of the system (3) should be the null vector, but operating
in finite arithmetic, in general, this is not true.
In the Algorithm 2.1 the vector gi+1 is obtained by solving one system only

(
G AT

A 0

) (
ḡi+1

g
i+1

)
=

(
r̄i+1

ri+1

)
,

where r̄i+1 = c−Hxi+1 −AT yi+1 and ri+1 = b−Axi+1.
Also in this case, in exact arithmetic, the component ri+1 of the residual
should be the null vector, but operating in finite arithmetic this is not guar-
anteed.
Thus, since the Algorithm 2.1 works with the primal and dual variables, it
takes into account that ḡi+1 could not belong to the null space of A because
of the roundoff errors in the component ri+1; on the other hand, the Algo-
rithm 2.2 does not take into account of the dual variable, so that it partially
controls the error on the projection of the residual vector r̃+

i+1 with one step
of iterative refinement. It is interesting to observe the effects of the finite
precision on the Algorithms 2.1 and 2.2.

The figure 2.2 shows a comparison between the Algorithms 2.1 and 2.2
on the test problem CVXEQP3 of the CUTE collection [5] with n̄ = 1000
and m̄ = 750. For each iteration i, we have considered the following quanti-
ties: the norm of the residuals ri and r̃i, which indicate the progress towards
the solution of the system(Residuals); the scalar products ri

T gi and r̃T
i g̃i,

which are measurements of the angle between the residual and gi and g̃i

respectively (Orthogonality); the quantities ‖Aḡi‖ and ‖Ag̃i‖, which tells us
how precisely the projection is computed (Projection).
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Figure 1: Test problem CVXEQP3
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After 100 iterations, can observe that for the Algorithm 2.1, all the consid-
ered quantities are less than 10−8, while for the Algorithm 2.2, the norm
of the residual, is greater than 10−3. Thus, the finite precision does not
significantly influence the Algorithm 2.1, while it leads the Algorithm 2.2 to
have less accuracy in the results.

3 Representations of the Newton system

In this section we describe four different formulations of the Newton system
whose matrix is given in (6).

3.1 Full System

Following the approach in [21], [20], [6], by multiplying the last block of
equations by S−1 and by performing a symmetric permutation on the second
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and fourth columns, we obtain a block system whose coefficient matrix is
the following 



Q 0 CT BT

0 F−1 Im 0
C Im 0 0
B 0 0 0


 , (35)

where
F−1 = S−1W. (36)

We can consider the matrix (35) as a special case of (1) with

H =
(

Q 0
0 F−1

)
and A =

(
C Im

B 0

)
. (37)

A sufficient condition for the nonsingularity of the matrix (35) is that

(A2) B is a full row rank matrix and Q + CT F−1C is positive definite on
the null space of B.

Let us prove that, under the hypothesis (A2), the matrix (35) is nonsingular.
If we have 



Q 0 CT BT

0 F−1 Im 0
C Im 0 0
B 0 0 0







x
y
w
z


 =




0
0
0
0




then, from the fourth equality, x belongs to the null space of B. From the
third block of equations, we have y = −Cx and, from the second block of
equations, w = −F−1y + F−1Cx, so that

(Q + CT F−1C)x + BT z = 0

If we consider
xT (Q + CT F−1C)x + xT BT z = 0

since Bx = 0, from the hypothesis (A2), we have x = 0, y = 0, w = 0 and
finally BT z = 0. Since B is a full row rank matrix, z = 0. Then the matrix
(34) is nonsingular. A sufficient condition so that the hypothesis (A2) is
satisfied, is that the hypothesis (A1) holds.
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3.2 Reduced system

From (35), by eliminating the second block of equations, we derive the second
representation of the Newton system. In this case the coefficient matrix has
the form 


Q CT BT

C −F 0
B 0 0


 (38)

The block structure of the matrix (38) is the same as in (1), with

H =
(

Q CT

C −F

)
and A = (B 0) (39)

A special case of the system (38) can be obtained if we have neq = 0:
this occurs when there are no equality constraints , or when the equality
constraints in (4) are treated as range constraints, with upper and lower
bounds that coincide, as in [7], [19].
In this case, the coefficient matrix is

M = H =
(

Q CT

C −F

)
. (40)

A sufficient condition for the nonsingularity of the matrix (38) is that the
hypothesis (A2) is satisfied. Indeed, if we have




Q CT BT

C −F 0
B 0 0







x
y
z


 =




0
0
0




then, from the last equality, x belongs to the null space of B.
From the second block of equations, we obtain y = F−1Cx, so that, from
the first block of equations, it follows that

(Q + CT F−1C)x + BT z = 0.

Since x belongs to the null space of B, the previous equality yields xT (Q +
CT F−1C)x = 0 which, under the hypothesis (A2), implies x = 0 and z = 0.
This proves the nonsingularity of the matrix (38).

The condition (A2) is consistent with the fact that the system



Q CT BT

C −F 0
B 0 0







x
y
z


 =




c
d
b


 (41)
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represents the optimality conditions of the following equality constrained
quadratic problem

min 1
2xT Qx− cT x + 1

2(Cx− d)T F−1(Cx− d)
Bx = b

(42)

Indeed, the optimality conditions for (42) are

Qx + CT F−1(Cx− d) + BT z = c
Bx = b

and by introducing a new variable y and the block of equations y = F−1(Cx−
d), we obtain (41).

We point out that matrix in the reduced form has the block F , while in
the full form it has the block F−1.

3.3 Condensed form

By applying elimination techniques to the second block of equations in (38)
we obtain the following coefficients matrix

(
Q̄ BT

B 0

)
(43)

with Q̄ = Q + CT F−1C.
Also in this case, the hypothesis A2 is a sufficient condition for the nonsin-
gularity of the matrix (43).

3.4 Active form

We consider also the approach followed in [15]; in this version of the interior–
point method, a subdivision of the inequality constraints in two disjoint
subsets is performed at each step, the active and the inactive constraints.
The resulting system is obtained by eliminating only the equations related
to the inactive constraints in the second block. Thus, the coefficient matrix
has the following form:

H =
(

Q̂ CT
a

Ca −Fa

)
and A = (B 0) (44)

where Ca is the jacobian matrix of the active inequality constraints, CI

indicates the jacobian matrix of the inactive inequality constraints and Q̂ =
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Q + CT
I F−1

I CI . Furthermore, Fa and FI have the same meaning as in (36),
but the slacks and the multipliers are only the ones related to the active and
inactive constraints respectively.
In this case, the sizes of the blocks and the structure of the matrix can
change at each iteration of the outer method.

3.5 The choice of the preconditioner

The Newton system can be solved with the PCG method described in the
section 2. For the full and condensed representations the matrix P can be
chosen as 



D 0 CT BT

0 F−1 Im 0
C Im 0 0
B 0 0 0


 and

(
D̄ BT

B 0

)
(45)

where D and D̄ are positive diagonal approximations of Q and Q̄ respec-
tively.
For the reduced and active form, the preconditioner can be chosen as




D CT BT

C −F 0
B 0 0


 or




D̂ CT
a BT

Ca −Fa 0
B 0 0


 (46)

where D̂ is a positive diagonal approximation of the matrix Q̂.
We remember that F = SW−1, where the elements of the diagonal matrices
S and W are respectively the slack variables and the multipliers related to
inequality constraints. We observe that the preconditioner in (46) related
to the reduced form of the Newton system contains the matrix F while in
the preconditioners in (45) related to the full and the condensed form of the
Newton system, the inverse of F appears. The diagonal elements of F or
F−1 affect the condition of the matrices M and P ; indeed, in the last itera-
tions of the outer optimization method, when we are near the solution, the
diagonal elements of S corresponding to active inequality constraints and
the ones of W corresponding to inactive inequality constraints assume grad-
ually small values, very close to zero. If the method has a local superlinear
convergence, this situation is not critical, since few outer steps produce the
solution within the required accuracy [17]. Nevertheless the preconditioners
in (45) can be more convenient when the problem has many inactive inequal-
ity constraints, while the preconditioner in (46) related to the reduced form
can be more convenient in presence of many active constraints. The precon-
ditioner in (46) related to the active form of the Newton system contains
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the diagonal entries of F related to the active inequality constraints and
the inverse of diagonal entries of F corresponding to the inactive inequality
constraints. This technique is used to assure that the entries of Fa and these
of F−1

I are bounded.

For the formulation (38), it is possible to prove some result analogous to
the ones presented in the section 2.
Let us introduce the following notation: if v̄ is a n̄ vector, with n̄ = n + m,
we will indicate its first n components as v̂ and its last m components as v̌.
Thus, if v is a n + m + neq vector, we have

v =
(

v̄
v

)
=




v̂
v̌
v


 .

Theorem 3.1 Consider the PCG method applied to the system (41). Choos-
ing the starting point such that Bx0 = b and Cx0−Fy0 = d, if a breakdown
does not occur, then the Algorithm 2.1 generates a sequence of points {xi}
such that Bxi = b and Cxi − Fyi = d, so that

ri =




r̂i

0
0


 .

Moreover, at each iteration i, we have

r̂i = c + CT F−1d− (Q + CT F−1C)xi −BT zi

and the component p̂i of the direction pi belongs to the null space of B; we
have also that

ǧi = F−1Cĝi (47)
p̌i = F−1Cp̂i (48)

We give only a sketch of the proof.
The first residual of the PCG procedure is a n + m + neq vector given by

r0 =
(

r̄0

0

)

where

r̄0 =
(

r̂0

0

)
,
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and r̂0 = c−Qx0 − CT y0 −BT z0.
Since y0 solves the second equation of the system (41), then we have y0 =
F−1(Cx0 − d), so that we can write

r̂0 = c + CT F−1d− (Q + CT F−1C)x0 −BT z0.

The vector g0 is computed as g0 = P−1r0, thus ḡ0 belongs to the null space
of the matrix A defined in (39), but the null space of A is given by the
vectors (ûT , ǔT )T such that û belongs to the null space of A and ǔ ∈ Rm. It
follows that ĝ belongs to the null space of B.
Moreover, the component ǧ0 solves the equation Cĝ0 − F ǧ0 = 0, thus we
have ǧ0 = F−1Cĝ0. Since p0 = g0, it follows that that Bx1 = B(x0 +αĝ0) =
Bx0 = b, which implies r1 = 0.
Furthermore we have

Cx1 − Fy1 = C(x0 + αĝ0)− F (y0 + αǧ0)
= C(x0 + αĝ0)− F (y0 + αF−1Cĝ0)
= Cx0 − Fy0

= d

which yields ř1 = 0 and r̂1 = c + CT F−1d− (Q + CT F−1C)x1 −BT z1.
Moreover we have p̌0 = F−1Cp̂0.
If we assume that Bxi = b and Cxi − Fyi = d so that ři = 0 and ri = 0, it
follows that the component ǧi of the vector gi = P−1ri satisfies the relation
(47).
Moreover, assuming that p̌i = F−1Cp̂i and p̂i belongs to the null space of
B, we have that Bxi+1 = B(xi + αp̂i) = b, which implies ri+1 = 0, and
Cxi+1−Fyi+1 = C(xi + αp̂i)−F (yi + αF−1Cp̂i) = d, which implies ři = 0.
Since gi+1 = P−1ri+1, we have that ĝi+1 = PAr̂i+1 belongs to the null space
of B, ǧi+1 = F−1Cĝi+1. Then p̂i+1 = ĝi+1 + βp̂i belongs to the null space
of B.
Furthermore we have

p̌i+1 = ǧi+1 + βp̌i

= F−1Cĝi+1 + βF−1Cp̂i

= F−1C(ĝi+1 + βp̂i)
= F−1Cp̂i+1

which yields (48).
¤
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If B is a full row rank matrix, Z is an n×(n−neq) matrix whose columns
form a basis of the null space of B and N̄ is a symmetric nonsingular matrix,
we can write any n vector x as

x = BT xν + Zxτ (49)
x = BT xν + N̄ZxτN̄ (50)
x = BT xν + N̄Z(ZT N̄Z)−1xτZ . (51)

Given a symmetric nonsingular matrix D, for the normal component we can
write

xν = (BBT )−1Bx = (BD−1BT )−1BD−1x,

while the coefficients of the tangential components with respect to the dif-
ferent basis of the null space of B satisfy

xτ = (ZT Z)−1ZT x

xτN̄ = (ZT N̄Z)−1ZT x

xτZ = ZT x.

Theorem 3.2 Let Z a matrix whose columns form a basis for the null
space of B, and assume that the hypothesis (A2) holds, so that the ma-
trix Z(Q + CT F−1C)ZT is positive definite. Let x∗ = BT xν∗ + Zxτ∗ the first
n components of the solution of the system (41). Then, the tangential com-
ponents {xτ

i } of the sequence {xi} generated by the Algorithm 2.1 applied to
the system (41) with a starting point such that Bx0 = b and Cx0−Fy0 = d
are the elements of the sequence generated by the conjugate gradient method
with the preconditioner ZT N̄Z, N̄ = (D + CT F−1C), applied to the system

ZT NZxτ = ZT cZ , (52)

where N = Q + CT F−1C and cZ = (c + CT F−1d) − NBT xν∗ Thus, the
conjugate gradient method finds the vector x∗ after at most n−neq iterations,
and for 1 ≤ i ≤ n̄− m̄ the following estimation holds

‖xi − x∗‖ ≤ 2
√

k

(
1−

√
k

1 +
√

k

)i

‖x0 − x∗‖ (53)

where k = k(ZT NZ(ZT N̄Z)−1).

Proof.
We can apply the previous result, so that

r̂i = (c + CT F−1d)−Nxi −BT zi,
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from which, exploiting the formula (49) we obtain

r̂i = (c + CT F−1d)−NBT xν
i −NZxτ

i −BT zi.

Since Bx∗ = Bxi = b, it follows that xν
i = xν∗ , thus the previous formula

becomes
r̂i = cZ −NZxτ

i −BT zi.

Its tangential component expressed in the basis N̄Z(ZT N̄Z)−1 can be ob-
tained as follows:

r̂τZ
i = ZT r̂i

= ZT cZ − ZT N̄Zxτ
i

The inverse of the preconditioner P can be written as

P−1 =




PB PBCT F−1 D−1BT (BD−1BT )−1

F−1CT PB F−1CD−1CT F−1 F−1CD−1BT (BD−1BT )−1

(BD−1BT )−1BD−1 (BD−1BT )−1BD−1CT F−1 −(BD−1BT )−1


 ,

where PB is the projection operator on the null space of B

PB = N̄−1 − N̄−1BT (BN̄−1BT )−1BN̄−1,

which can be expressed also as

PZ = Z(ZT N̄Z)−1ZT .

If we write the residual in the form (51), we obtain

ri =




r̂i

0
0


 =




BT r̂ν
i + N̄Z(ZT N̄Z)−1r̂τZ

i

0
0




from which we can write

gi = P−1ri =




ĝi

ǧi

g
i


 =




Z(ZT N̄Z)−1r̂τZ
i

F−1CT ĝi

r̂ν
i




This implies that
rT
i gi = r̂τZT

i (ZT N̄Z)−1r̂τZ
i .

Furthermore, recalling that the component p̂i belongs to the null space of
B and taking into account of (48), we can write

pi =




Zp̂τ
i

F−1CZp̂τ
i

p
i


 ,
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from which we obtain

Mpi =




QZp̂τ
i + CT F−1CZp̂τ

i + BT p
i

0
0




that implies
pT

i Mpi = p̂τT
i (ZT NZ)p̂τ

i .

Finally, we observe that the vector p̂τ
i can be written as

p̂τ
i = (ZT N̄Z)−1r̂τZ

i + βp̂τ
i−1

which is the updating step of the PCG method with preconditioner (ZT N̄Z)
applied to the system (52). This implies that the Algorithm 2.1 applied to
the system (41) is the PCG method with preconditioner (ZT N̄Z) applied
to the system (52); thus the estimate (53) holds. ¤

Finally, for the special case (40), the Algorithm 2.1 with the following
preconditioner (

D CT

C −F

)
, (54)

applied to the system
(

Q CT

C −F

)(
x
y

)
=

(
c
d

)
,

is equivalent to the application of the PCG method to the system

(Q + CT F−1C)x = c + CT F−1d

with preconditioner D + CT F−1C (Theorem 3.1 in [7]). The system is
nonsingular under the hypothesis (A2)

4 Numerical results

The aim of our numerical experience is to compare the effectiveness of the
PCG method as solver for the Newton system formulated in the four cases
described in section 3. In particular, we are interested on how much the
representation of the Newton system can influence the performance of the
method. Furthermore, we use the PCG method as inner solver in an interior–
point method: we consider the inexact Newton interior–point algorithm de-
scribed in [2], which at each step has to solve the Newton system associated
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to the KKT conditions of the NLP problem (4).
The numerical results presented in the following have been carried out by
coding this algorithm in C++, on a HP zx6000 workstation with Itanium2
processor 1.3 GHz and 2 Gb of RAM; the code is provided of an AMPL
interface.

In order to obtain a significant comparison, we build a set of NLP prob-
lems, with a large number of inequality constraints, listed in table 1. The
columns nl and nu report the number of lower and upper bounds on the
components of the variable x. Except for the problem Svanberg, which be-
longs to the CUTE collection, the other test problems have been obtained
by modifying the nonlinearly equality constrained problems described in
[16]: some or all of the original equality constraints have been changed in
inequality constraints.

The first comparison in table 2 shows the performances of the PCG
method on the solution of the Newton system arising at the last iterate of
the interior–point code. The starting point is the same in all cases. The
stopping criterion for the PCG procedure is

‖ri‖ ≤ 10−12.

The system has been formulated in the four different representations de-
scribed in the previous section: “3x3” denotes the reduced form, “2x2” is
the condensed system, “4x4” is the full system while “Luk” indicates the
active approach.
In this case, we say that the ith inequality constraint is inactive if the fol-
lowing condition is satisfied:

wi ≤ 10−5si.

The first two columns of the table 2 indicates the number of the active (ma)
and inactive (mi) inequality constraint, thus the dimension of the system in
the active form is given by n + ma + neq.
The table reports the comparison in terms of iterations number and execu-
tion time (in seconds), while the symbol “ * ” indicates that the tolerance
of 10−12 was not satisfied after n̄ iterations.
The table 3 summarizes the results of the comparison, reporting the number
of test problems in which the Newton system in the different representations
has been solved by the PCG method obtaining the best and worst perfor-
mance. The representations of the Newton system which gives the best
result are the reduced and the active form, while the less valid approach
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seems to be the reduction in condensed form. An explanation of this fact
could be that the preconditioner of the system in condensed form is obtained
by approximating the matrix Q̂, which in general is not sparse, with a diag-
onal matrix, so that the approximation could be very poor.
Furthermore, we can notice that the best performance obtained with the
reduction in condensed form have been obtained in the test problems with
many inactive constraints, for example the problem Lukvli12. This could
be explained by observing that in this case the diagonal matrix F−1 has
small elements, so that the dense part of Q̂ = Q + CT F−1C is in some way
“weighted” by small quantities.

The table 4 contains the time comparison of four different version of the
interior–point method described in [2] obtained by representing the Newton
system in the forms presented in the section 3.
In this case, the termination rule for the PCG procedure exploits an adap-
tive stopping rule which depends on the violation of the KKT optimality
conditions at the current iterate of the interior–point algorithm.
In the table 5 we report the summary of this experimentation: the interior–
point algorithm performs better if the Newton system is represented in re-
duced form or in active form. The behaviour of the PCG method for these
forms is very similar and we observe that, generally, the PCG method is
convenient for test problems with many active inequality constraints. Also
the PCG method applied to the full system is convenient but, in general,
has a worse behaviour than that of the reduced and the active form. For
the condensed form of the Newton system, the PCG method is convenient
when there are many inactive inequality constraints (Lukvlie17, Lukvlie18,
Lukvli10) (Q̄ is reduced to Q at the last iterations), but, in the opposite
case, we observe worse performance or failure.
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Table 1: Test Problems
N TEST n neq m nl nu

1 Lukvlie3 50000 1 1 0 0
2 Lukvlie4 50000 24999 24999 0 0
3 Lukvlie6 50001 12500 12500 0 0
4 Lukvlie7 50000 2 2 0 0
5 Lukvlie10 50000 24999 24999 0 0
6 Lukvlie11 49997 16665 16665 0 0
7 Lukvlie14 49997 16665 16665 0 0
8 Lukvlie16 49997 12499 24998 0 0
9 Lukvlie17 49997 12499 24998 0 0
10 Lukvlie18 49997 12499 24998 0 0
11 Lukvli2 50000 0 49993 0 0
12 Lukvli3 50000 0 2 0 0
13 Lukvli4 50000 0 49998 0 0
14 Lukvli6 49999 0 24999 0 0
15 Lukvli7 50000 0 4 0 0
16 Lukvli10 50000 0 49998 0 0
17 Lukvli11 49997 0 33330 0 0
18 Lukvli12 49997 0 37497 0 0
19 Lukvli13 49997 0 33330 0 0
20 Lukvli14 49997 0 33330 0 0
21 Lukvli15 49997 0 37497 0 0
22 Lukvli16 49997 0 37497 0 0
23 Lukvli18 49997 0 37497 0 0
24 Svanberg 50000 0 50000 50000 50000
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Table 2: Numerical solution of one Newton system
CG iterations Execution time

ma mi Prob 3x3 2x2 4x4 Luk 3x3 2x2 4x4 Luk
1 0 Lukvlie3 6 25 6 6 0.1 0.6 0.1 0.1

12498 12501 Lukvlie4 14 233 15 14 0.8 9.4 0.9 0.8
12500 0 Lukvlie6 9 203 9 9 0.6 11.5 0.6 0.6

2 0 Lukvlie7 4 13 10 4 0.1 0.2 0.1 0.1
24999 0 Lukvlie10 3 106 3 3 0.2 4.0 0.2 0.2
16664 1 Lukvlie11 10 15 22 11 0.5 0.5 1.0 0.5
16665 0 Lukvlie14 2 * 2 2 0.1 * 0.1 0.1
24997 1 Lukvlie16 10 21 14 9 0.4 0.6 0.6 0.4

1 24997 Lukvlie17 10 48 10 10 0.4 1.4 0.4 0.3
0 24998 Lukvlie18 3 5 3867 3 0.1 0.2 154.0 0.1

25000 24993 Lukvli2 12 1266 305 13 1.2 78.6 26.8 1.4
1 1 Lukvli3 7 10 7 7 0.2 0.2 0.2 0.2

24998 2500 Lukvli4 16 171 17 16 1 6.1 1 1
24999 0 Lukvli6 12 255 12 12 0.8 13.8 0.9 0.7

3 1 Lukvli7 4 27 7 4 0.1 0.3 0.1 0.1
0 33330 Lukvli10 23 24 34 25 1.0 0.7 1.6 0.8
0 37497 Lukvli11 * * * * * * * *
0 33330 Lukvli12 11 11 12 11 0.5 0.4 0.6 0.4

33329 1 Lukvli13 4 960 5 4 0.2 25,0 0.3 0.1
37492 5 Lukvli14 36 68 46 37 1.7 2.2 2.4 1.9
37496 1 Lukvli15 11 21 26 11 0.5 0.6 1.2 0.5
24998 12499 Lukvli16 5 10 * 5 0.2 0.3 * 0.2
49998 3 Lukvli18 3 109 3 3 0.2 3.6 0.2 0.2
40387 9613 Svanberg 1 * 2 1 0.2 * 0.3 0.2

Table 3: Summary
CG iterations Execution time

3x3 2x2 4x4 Luk 3x3 2x2 4x4 Luk
Best 22 1 8 19 18 4 9 20
Worst 0 16 5 0 0 14 8 0
Failures 1 3 2 1
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Table 4: Execution time in seconds for an interior–point algorithm
N Problem 3x3 2x2 4x4 Luk
1 Lukvlei3 11.5 11.1 11.1 11.5
2 Lukvlei4 51.7 * 57.7 51.7
3 Lukvlei6 161.1 534 612 161.1
4 Lukvlei7 6.6 8.0 10.5 6.6
5 Lukvlei10 * 46.4 * *
6 Lukvlei11 24.3 27.0 26.6 25.5
7 Lukvlei14 * * 482.7 *
8 Lukvlei16 21.8 24.1 22.1 20.8
9 Lukvlei17 46.3 16.4 * 167.9
10 Lukvlei18 12.1 11.7 12.7 12.1
11 Lukvli2 127.3 * 83.1 126.8
12 Lukvli3 8.6 14.4 9.3 8.7
13 Lukvli4 54.3 1408.4 51.9 54.9
14 Lukvli6 177.7 564.0 132.5 177.0
15 Lukvli7 9.0 11.9 10.8 9.1
16 Lukvli10 * 41.2 * *
17 Lukvli11 211.1 198.9 615.0 189.5
18 Lukvli12 55.54 170.5 43.6 50.9
19 Lukvli13 310.1 349.2 22.0 319.7
20 Lukvli14 20.2 * 22.0 20.4
21 Lukvli15 187.4 * 102.5 205.5
22 Lukvli16 20.0 20.7 22.6 19.9
23 Lukvli18 12.2 13.1 13.4 13.5
24 Svanberg 59.0 * 60.2 63.1
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[8] E.D. Dolan, J. J. Moré and T. S. Munson (2004). Benchmarking op-
timization software with COPS 3.0, Technical Report ANL/MCS-TM-
273, Argonne National Laboratory, Illinois, USA.

[9] J. Dunn, (1993). Second–order multiplier calculations for optimal con-
trol problems and related large scale nonlinear programs, SIAM Journal
on Optimization, 3, 489–502.

[10] I.S. Duff and J.K. Reid, A set of Fortran subroutines for solving
sparse symmetric sets of linear equations. Tech. Report AERE R10533,
HMSO, London, 1982.



30

[11] Durazzi C., Ruggiero V.; Indefinitely preconditioned conjugate gradient
method for large sparse equality and inequality constrained quadratic
problems, Numer. Linear Algebra Appl., 10 (2003), 673-688 .

[12] N.I.M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality
constrained quadratic programming problems arising in optimization,
SIAM J. Sci. Comput., vol. 23, 2001, 1376–1395.

[13] D. James (1992). Implicit nullspace iterative methods for constrained
least square problems, SIAM Journal on Matrix Analysis and Applica-
tions, 13, 962–978.
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