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In this paper we consider the application of the preconditioned conjugate gra-
dient (PCG) method to the solution of equality constrained quadratic pro-
gramming problems. In particular, we consider three different PCG algorithms
and two indefinite preconditioners. A special attention is given to the choice
of the factorization method for the preconditioner. The numerical experiments
show a comparison of the effectiveness of the proposed variants. Furthermore,
we show the behaviour of the PCG method for the solution of the inner sub-
problem arising at each step of an interior point algorithm for the solution of
non linear programming problems.
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1. Introduction

This work is concerned with the solution of the quadratic programming
problem

min 1
2xT Hx− cT x

Ax = b
(1)

where H is an n× n symmetric matrix, while the matrix A is m× n.
The Karush–Kuhn–Tucker (KKT) conditions of the problem (1) are repre-
sented by the system

(
H AT

A 0

)(
x

y

)
=

(
c

b

)
, (2)

whose coefficient matrix is the following indefinite n + m matrix

M =
(

H AT

A 0

)
. (3)
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It is well known that a sufficient condition for the nonsingularity of (3) is
that

(A1) A is full row rank and H is positive definite on the null space of A,
which means pT Hp > 0 for any p ∈ Rn (p 6= 0) such that Ap = 0.

We are motivated to study the numerical solution of the problem (1) (or,
equivalently, (2)) since in the framework of the interior point approach,
a variety of algorithms for linearly and nonlinearly constrained optimiza-
tion (see, for example, Refs. 1–5) requires, at each step, the solution of a
subproblem of such form.

Recently, many authors propose as efficient iterative linear solver for the
system (2), the preconditioned conjugate gradient (PCG) method, with an
indefinite preconditioner having the same block structure of the matrix (3)

P =
(

G AT

A 0

)
, (4)

where G is a positive definite approximation of H.
In Ref. 6, under suitable hypotheses, the authors prove that in exact arith-
metic the PCG method with such preconditioner applied to the system (2)
terminates in a finite number of steps, and they provide also a spectral
analysis of the matrix MP−1. The same preconditioner and its variants
have been further investigated (see for example Refs. 4,7–9 and references
therein).
The matrix P has a very special structure, which yields important proper-
ties. Let us consider the system

(
G AT

A 0

)(
ḡ

g

)
=

(
r̄

0

)
. (5)

where, here and in the following, we indicate with ḡ the n the first n com-
ponents and with g the last m components of the n + m vector g. If the
vector g solves the previous system, then the component ḡ is the projection
of r in the null space of the matrix A.
More precisely, we have

ḡ = G−1(r −AT g) = (G−1 −G−1AT (AG−1AT )−1AG−1)r = PAr

where we denote by PA the projection operator on the null space of A

PA = G−1 −G−1AT (AG−1AT )−1AG−1. (6)

This property plays a crucial role in the analysis of the PCG method made
in Refs. 6,10,11.
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In the next section we recall the main theoretical results about the PCG
method applied to the problem (2) with the preconditioner P , and we de-
scribe three different variants of the method, focusing on the instability
that the finite precision could produce.

In section 3, we consider the following variant of the preconditioner P ,

P̃ =
(

G AT

A −E

)
, (7)

where E is a positive definite diagonal m×m matrix.
In section 4, we compare the effectiveness of the PCG algorithms de-

scribed in the sections 3 and 4 on a set of equality constrained quadratic
programs. Furthermore, we employed the PCG method as inner solver for
the system arising at each step of the interior point algorithm described in
Ref. 12, comparing the performance of the whole interior point algorithm
with respect to the different algorithms.

2. The preconditioned conjugate gradient method

By putting

v =
(

x

y

)
, z =

(
c

b

)
,

the system (2) can be written as Mv = z. The PCG method applied to (2)
can be written as follows:

Algorithm 2.1. Choose an initial point v0, compute r0 = z −Mv0, g0 =
P−1r0, ν = r0

T g0 and put p0 = g0;
for i = 0, 1, ... until a stopping criterion is satisfied

δ ← pi
T Mpi (8)

α ← ν/δ (9)

ri+1 = ri − αMpi (10)

vi+1 = vi + αpi (11)

gi+1 = P−1ri+1 (12)

δ ← ν (13)

ν ← ri+1
T gi+1 (14)

β ← ν/δ (15)

pi+1 = gi+1 + βpi (16)
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Since M is an indefinite matrix, it can happen that, for some index i, the
quantity δ computed at the step (8) is zero: in this case, we say that a
breakdown occurs for the algorithm.
It is possible to prove that if the starting point is chosen such that Ax0 = b,
then the points xi generated by the PCG procedure are such that Axi = b,
then the linear system which has to be solved at the step (12) has the form
(5) at each iterate i (see Theorem 2.1 in Ref. 10).
Thus, the step (12) is equivalent to a projection of the vector r̄i on the null
space of the matrix A. This yields very strong properties to the Algorithm
2.1, which can be stated as follows (for the proof, see Theorem 3.5 in Ref.
6 and Theorem 2.2 in Ref. 10):

Theorem 2.1. Let us assume that the hypothesis A1 holds and let Z be a
matrix whose columns form a basis for the null space of A, so that every
vector u ∈ Rn can be written as u = Zuτ + AT uν .
Let x∗ the first n components of the solution of the system (2). If we choose
a starting point v0 such that Ax0 = b, then the components {xτ

k} of the
elements of the sequence {xk} generated by the Algorithm 2.1 applied to
the system (2) are the elements of the sequence generated by the conjugate
gradient method with the preconditioner ZT GZ applied to the system

ZT HZxτ = ZT cz (17)

where cz = c−HAT xν
∗.

Furthermore, the Algorithm 2.1 does not break down and it finds the solution
x∗ after at most n − m iterations, and for 1 ≤ i ≤ n − m the following
estimation holds

‖xi − x∗‖ ≤ 2
√

k

(
1−

√
k

1 +
√

k

)i

‖x0 − x∗‖, (18)

where k = k(ZT HZ(ZT GZ)−1) and ‖ · ‖ is the euclidean norm in Rn.

2.1. Two projection algorithms

The Algorithm 2.1 actually solves the problem

min
1
2
xτ T ZT HZxτ − xτ T cZ

that we obtain by substituting the expression x = Zxτ + AT xν in (1). A
similar approach is used in the Algorithm 2 in Ref. 11, where the PCG
iteration is applied only to the primal variable x.
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In this case, the residual vector is defined as r̃+ = Hxi − c. The resid-
ual r̃+

i in the algorithm, will be bounded away from zero, but, as the it-
erates approach to the solution, it will become increasingly closer to the
range of AT . Indeed, if (xT

∗ , yT
∗ )T is the solution of the system (2), we have

c−Hx∗ = AT y∗. Thus, the projection of the residual on the null space of
A, the vector g̃i, will become increasingly closer to zero.
This difference in the magnitudes of r̃+

i and g̃i might cause numerical diffi-
culties, as shown in Example 1 in Ref. 11, and it leads the projected residual
to do not belong exactly to the null space of A.
In order to avoid this drawback, in Ref. 11 the authors propose a variant of
the PCG algorithm, which, at each step, provides a least squares estimate
of the component of the residual in the range space of AT , which is orthog-
onal to the null space of A; then, the residual is updated by subtracting
this component. This update leads the revised residual r̃i to become in-
creasingly closer to zero as the iterates approach to the solution.

Algorithm 2.2 ( [11],Algorithm III). Choose an initial point x0 such
that Ax0 = b and compute r̃+

0 = Hx0 − c, v0 = argmin‖r̃+
0 − AT v‖G−1 ,

r̃0 = r̃+
0 −AT v0, g̃0 = PAr̃0, and put p̃0 = g̃0;

for i = 0, 1, ... until a stopping criterion is satisfied

α ← r̃T
i g̃i

p̃T
i Hp̃i

xi+1 = xi + αp̃i

r̃+
i+1 = r̃+

i + αHp̃i

vi+1 = argmin‖r̃+
i+1 −AT v‖G−1 (19)

r̃i+1 = r̃+
i+1 −AT vi+1 (20)

g̃i+1 = PAr̃i+1 (21)

β ← r̃T
i+1pi+1

r̃T
i g̃i

p̃i+1 = g̃i+1 + βp̃i

Here and in the following we denote by ‖u‖G−1 the norm
√

uT G−1u, with
G−1 positive definite.
In order to compute the projection (21), we have to solve two systems: first,
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we obtain vi+1 in (19) by solving the system

(
G AT

A 0

) (
g

vi+1

)
=

(
r̃+
i+1

0

)

and then, to obtain the vector g̃i+1 in (21), we solve

(
G AT

A 0

)(
g̃i+1

u

)
=

(
r̃+
i+1 −AT vi+1

0

)
.

In exact arithmetic the vector r̃ = r̃+ − AT v computed at the step (20)
belongs to the null space of A, thus the step (21) can be considered as an
iterative refinement step.
Furthermore, we can obtain an estimate of the Lagrange multiplier as
yi = −∑i

k=0 vi and, then the vector r̃i represents the residual of the first
equation of the system (2): indeed we have r̃i = Hxi + AT yi − c.
In the Algorithm 2.1 the vector gi+1 is obtained by solving one system only

(
G AT

A 0

) (
ḡi+1

g
i+1

)
=

(
r̄i+1

ri+1

)
,

where r̄i+1 = c−Hxi+1 −AT yi+1 and ri+1 = b−Axi+1.
In exact arithmetic, the component ri+1 of the residual should be the null
vector, but operating in finite arithmetic this is not guaranteed.

We propose a further variant of the PCG method, which can be obtained
by projecting the residual r̂+

i = c−Hxi on the null space of A and providing
a least squares estimate of the multiplier yi at each step.
The resulting algorithm can be written as follows:

Algorithm 2.3. Choose an initial point x0 such that Ax0 = b and compute
r̂+
0 = c −Hx0, y0 = argmin‖r̂+

0 − AT y‖G−1 , r̂0 = r̂+
0 − AT y0, ĝ0 = PAr̂0,

and put p̂0 = ĝ0;
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for i = 0, 1, ... until a stopping criterion is satisfied

α ← r̂T
i ĝi

p̂T
i Hp̂i

xi+1 = xi + αp̂i

r̂+
i+1 = r̂+

i − αHp̂i

yi+1 = argmin‖r̂+
i+1 −AT y‖G−1

r̂i+1 = r̂+
i+1 −AT yi+1

ĝi+1 = PAr̂i+1

β ← r̂T
i+1pi+1

r̂T
i ĝi

p̂i+1 = ĝi+1 + βp̂i

It is interesting to observe the effects of the finite precision on the Algo-
rithms 2.1, 2.2 and 2.3.
The figure 2.1 shows a comparison between the Algorithms 2.1, 2.2 and 2.3
on the test problem CVXEQP3 of the CUTE collection [13] with n = 1000
and m = 750; the matrix P has a condition number of order 1012.
The solution of the systems involved in the three algorithms is computed
by means of the direct factorization of the preconditioner P obtained with
the MA27 routine of the Harwell Subroutine Library [14].
For each iteration i, we have considered the following quantities: the norm
of the residuals ri, r̃i and r̂i which indicate the progress towards the solu-
tion of the system (Residuals); the scalar products ri

T gi, r̃T
i g̃i and r̂T

i ĝi,
which are measurements of the angle between the residuals and gi, g̃i and ĝi

respectively (Orthogonality); the quantities ‖Aḡi‖, ‖Ag̃i‖ and ‖Aĝi‖, which
tells us how precisely the projection is computed (Projection).
After 100 iterations, we can observe that for the Algorithm 2.1, the pro-
jection is computed with a residual whose norm is less than 10−20, while
for the algorithms 2.2 and 2.3, the projection is computed with a residual
greater than 10−15.
Furthermore, we observe that norm of the residual ‖r̂i‖ in the Algorithm
2.3 is greater than 10−7

Thus, the finite precision does not significantly influence the Algorithm 2.1,
while it leads the algorithms 2.2 and 2.3 to have less accuracy in the results.

3. A different preconditioner

In this section we consider the Algorithm 2.1 with the preconditioner P̃

defined as in (7).
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Fig. 1. Test problem CVXEQP3
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In this case, the Theorem 2.1 can not apply, but the finite termination
property is ensured by the Theorem 3.4 in Ref. 6, which can be stated as
follows.

Theorem 3.1. Consider the PCG method applied to the system Mv = k

with preconditioner P , where M and P are two n×n symmetric nonsingular
matrices. If a breakdown does not occur, then the Algorithm 2.1 finds the
solution of the system in at most l iterates, where l is the dimension of the
Krylov space K = Span{r0,MP−1r0, (MP−1)2r0, ...}.
We can prove the previous theorem using the same arguments employed in
the proof of the Theorem 3.4 in Ref. 6, part (a).
If M is defined as in (3) and employing the preconditioner P̃ defined (7),
under the hypothesis A1 the previous theorem holds.
Even if the preconditioner P̃ has weaker theoretical properties than P , it
is very interesting from the numerical point of view.
Indeed, the matrix P admits a Cholesky–like factorization of the form
LDLT where L is a lower triangular matrix with diagonal entries equal
to one and D is a nonsingular diagonal matrix with n positive and m neg-
ative diagonal entries. In order to reduce the fill–ins in the lower triangular



November 30, 2006 23:11 WSPC - Proceedings Trim Size: 9in x 6in Bonettini˙SIMAI06

9

factor, we can perform a minimum degree reordering of the matrix P , but it
is not assured that the permuted matrix can be factorized in the Cholesky–
like form.
Nevertheless, we can obtain a factorization in the form LDLT if we use for
the matrix P the regularization technique described in Ref. 15: if a pivot
di is too small (|di| < 10−15 maxj<i |dj |), we put di =

√
ε if 1 ≤ i ≤ n, or

di = −√ε if n + 1 ≤ i ≤ n + m, where ε is the machine precision.
By applying the regularization technique during the factorization of P , we
actually obtain the factorization of P̃ .
The Cholesky–like factorization can be implemented by modifying the Ng
and Peyton package as described in Ref. 16. This new package, called BLK-
FCLT and downloadable from the web page http://dm.unife.it/blkfclt/, is
structured in two phases: the first phase provides an a priori reordering
routine for the sparsity preserving and the computation of a symbolic fac-
torization, while, in the second phase, the Cholesky–like factorization is
computed, employing the dynamic regularization strategy.

4. Numerical results

The aim of our numerical experience is to compare the effectiveness of the
different PCG algorithms as solvers for equality constrained quadratic pro-
grams. Furthermore, we considered the PCG method as inner solver in the
inexact Newton interior point algorithm described in Ref. 12, which at each
step has to solve a system of the form (2).
The numerical results presented in the following have been carried out by
coding the algorithms in C++, on a HP zx6000 workstation with Itanium2
processor 1.3 GHz and 2 Gb of RAM; the code is provided of an AMPL
interface.
The first comparison in table 1 shows the performances of the PCG algo-
rithms on the solution of the system arising at the last iterate of the interior
point method applied to the nonlinear programming problems listed in the
first column of the table.
The starting point is the same in all cases. The stopping criterion for the
PCG procedure is ‖ri‖ ≤ 10−8 for the Algorithm 2.1, ‖r̃i‖ ≤ 10−8 for the
Algorithm 2.2 and ‖r̂i‖ ≤ 10−8 for the Algorithm 2.3.
The table reports the dimension of the system (n and m), the iterations
number and, in brackets, the total execution time in seconds, that is the
factorization plus the solution time. The symbol ‘ * ’ indicates that the
tolerance of 10−8 was not satisfied after n + 2 iterations.
We can observe that the Algorithm 2.1 with the preconditioner (7) gives
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the best results in terms of time: this is due also to the effectiveness of the
Cholesky–like factorization subroutine BLKFCLT described in the previ-
ous section. Furthermore, the Algorithm 2.1 solves one system only at each
step, while the other algorithms has to solve two systems.
The table 2 contains the comparison of four different versions of the interior
point method on a set of nonlinear programming problems. Each version
is obtained by applying a different PCG algorithm to the solution of the
inner linear system.
In this case, the termination criterion for the PCG procedure exploits an
adaptive stopping rule which depends on the violation of the KKT opti-
mality conditions at the current iterate of the interior point algorithm.
In the table, we report the execution time (in seconds) of the interior point
algorithm and the number of iterations: the first number in the columns
‘iter’ is referred to the outer iterations, while in brackets we indicate the
total number of PCG iterations.
We declare a failure of the interior point algorithm if the line–search strat-
egy requires more than 10 backtracking reductions (see Ref. 12) or when
the factorization routine requires an excessive memory storage.
We can see that the versions of the interior point method with the algo-
rithms 2.2 and 2.3 as inner solvers fail on 2 and 3 problems respectively,
while, employing the Algorithm 2.1 we observe one only failure: this failure
occurs when the preconditioner (4) is factorized by means of the MA27
routine and it is due to a lack of memory.
Furthermore, in the most part of the cases, the best results in terms of time
are obtained by the version which employs the Algorithm 2.1 with the pre-
conditioner (7), factorized with the BLKFCLT routine. In some cases, for
example for the test problems ‘marine’, ‘pinene’, ‘optcdeg2’, the reduction
of the execution time is remarkable.
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