SELF-LINKED CURVES AND NORMAL BUNDLE.

PH. ELLIA

ABSTRACT. We give necessary conditions on the degree and the genus of a smooth, integral curve $C \subset \mathbb{P}^3$ to be selk-linked (i.e. locus of simple contact of two surfaces). We also give similar results for set theoretically complete intersection curves with a structure of multiplicity three (i.e. locus of 2-contact of two surfaces).

Introduction.

The motivation of this note is the following question, raised in [5]: doest there exists a smooth, integral curve $C \subset \mathbb{P}^3$, of degree 8, genus 3, which is self-linked? We recall that a curve is self-linked if it is the locus of (simple) contact of two surfaces (see Section 1). This question in turn is motivated by the following fact (proved in [5], Proposition 7.5): let $S \subset \mathbb{P}^3$ be a surface with ordinary singularities. Let $C \subset S$ be a smooth, irreducible curve which is the set theoretic complete intersection (s.t.c.i.) of S with another surface. If $C \not\subset Sing(S)$, then C is self-linked (on S) (see Remark 7 for a precise statement). We recall that the problem to know whether or not every smooth irreducible curve $C \subset \mathbb{P}^3$ is a s.t.c.i. is still open. The study of self-linked curves is a first step in this long standing open problem. Self-linked curves have been studied by many authors (see [5] and the bibliography therein).

In this note we show that, as expected, no curve of degree 8, genus 3 is self-linked. This follows from our main result (Theorem 4) which gives necessary conditions on the invariants of a curve to be self-linked. As a consequence we obtain that if $d \ge 13$ and d > g - 3, then no curve of degree d, genus g can be self-linked (Corollary 6).

In the last section we obtain similar results for curves which are set theoretic complete intersections with a triple structure.

Throughout this note we work over an algebraically closed field of characteristic zero.

1. Generalities.

We denote by $C \subset \mathbb{P}^3$ a smooth, irreducible curve of degree d, genus g. The curve C is self-linked if it is (algebraically) linked to itself by a complete intersection $F_a \cap F_b$ of two surfaces of degrees a, b. In particular 2d = ab. This is equivalent to say that there exists a double structure, C_2 , on C which is a complete intersection of type (a, b).

Let's observe that if C is not a complete intersection, then $C \cap Sing(F_a) \neq \emptyset$ and $C \cap Sing(F_b) \neq \emptyset$. This follows from the fact (see [5], Lemma 7.6) that for a surface $S \subset \mathbb{P}^3$, $Pic(S)/Pic(\mathbb{P}^3)$ is a torsion free abelian group.

Date: November 5, 2013.

2010 Mathematics Subject Classification. 14H50, 13C40.

Key words and phrases. Space curves, self-linkage, set theoretic complete intersections.

PH. ELLIA

The two surfaces F_a, F_b are tangents almost everywhere along C. Moreover at every point $x \in C$ one of the two is smooth (otherwise the embedding dimension of the intersection would be three). So F_a, F_b define a sub-line bundle $L \subset N_C$. Abusing notations $L = N_{C,F_a} = N_{C,F_b}$. The quotient $N_C^* \to L^* \to 0$ defines the double structure C_2 , hence:

$$(1) 0 \to L^* \to \mathcal{O}_{C_2} \to \mathcal{O}_C \to 0$$

By the exact sequence of liaison:

$$0 \to \mathcal{I}_{C_2} \to \mathcal{I}_C \to \omega_C(4-a-b) \to 0$$

we see that $\mathcal{I}_{C,C_2} \simeq \omega_C(4-a-b)$. This means that $L^* = \omega_C(4-a-b)$. In particular:

(2)
$$\deg(L) =: l = d(a+b-4) - 2g + 2$$

Remark 1. If C is a complete intersection, then C is self-linked. If C is a curve on a quadric cone, then C is self-linked. In all these cases N_C splits.

On the other hand it is easy to give examples of curves which are not self-linked. Let $C \subset \mathbb{P}^3$ be a smooth, irreducible curve whose degree, d, is an odd prime number. Assume $h^0(\mathcal{I}_C(2)) = 0$. If C is self-linked by $F_a \cap F_b$, then $2d = ab, a \leq b$. Since d is prime, a = 2, in contradiction with the assumption $h^0(\mathcal{I}_C(2)) = 0$.

A less evident fact: if $C \subset \mathbb{P}^3$ is a smooth subcanonical curve (i.e. $\omega_C \simeq \mathcal{O}_C(a)$ for some $a \in \mathbb{Z}$) which is not a complete intersection, then C is not self-linked (see [1]).

We can add a further class of examples:

Lemma 2. Let C be a smooth, irreducible curve lying on a smooth quadric $Q \subset \mathbb{P}^3$. If C is not a complete intersection and $\deg(C) > 4$, then C is never self-linked.

Proof. Assume C self-linked by $F_a \cap F_b$, $a \leq b$. Let (α, β) , $\alpha < \beta$, denote the bi-degree of C on Q. If $F_a = Q$, then $F_b \cap Q$ is a curve of bi-degree $(b, b) = (2\alpha, 2\beta)$. It follows that $\alpha = \beta$ and C is a complete intersection. So we may assume that F_a is not a multiple of Q. The intersection $F_a \cap Q$ consists of C and of curve A of bi-degree $(a - \alpha, a - \beta)$. Since A is not empty (C is not a complete intersection) we have $a > \alpha$ and $a \geq \beta$. It follows that: $2a > \alpha + \beta = d$. So a > d/2. Since ab = 2d, we get $b = 2d/a \geq a > d/2$, so $a \leq 3$ hence $d \leq 5$. If d = 5, then (a, b) = (2, 5) in contradiction with a > d/2. Hence $d \leq 4$.

If d < 5, then C is rational or elliptic, see Theorem 4. This lemma is in contrast with the fact that every curve on a quadric cone is self-linked.

2. The Gauss map associated to $L \subset N_C$.

We first recall some constructions associated to a sub-bundle of N_C . In what follow we don't assume C self-linked, C is just any smooth, irreducible curve not contained in a plane. If L is a sub-bundle of N_C , then $L(-1) \subset N_C(-1)$ comes from a rank two vector bundle: $\mathcal{T}_L \subset T_{\mathbb{P}^3}(-1)|C$. At each point $x \in C$, $\mathcal{T}_L(x) \subset T_{\mathbb{P}^3}(-1)(x) = V/d_x$, defines a plane of \mathbb{P}^3 containing the tangent line T_xC .

Local computations show that the plane $\mathcal{T}_L(x)$ is the Zariski tangent plane to the double structure C_2 defined by $N_C^* \to L^* \to 0$.

Now the bundle \mathcal{T}_L defines the Gauss map $\varphi_L: C \to D \subset \mathbb{P}_3^*$ $(\varphi_L(x) = \mathcal{T}_L(x))$. It is known that φ_L can't be constant and that D can't be a line ([2], [6] Theorem 1.6). By the Nakano's exact sequence $\varphi_L^*(\mathcal{O}_{\mathbb{P}_3^*}(1)) = T_{\mathbb{P}^3}(-1)|C/F_L$, which has degree $d - \deg(F_L)$. Since $L(-1) = \mathcal{T}_L/T(-1)_C$, we get:

(3)
$$\deg(\varphi_L^*(\mathcal{O}_{\mathbb{P}_2^*}(1))) = \deg(\varphi_L). \deg(D) = 3d + 2g - 2 - l$$

Now consider the dual curve of D, $D^* \subset \mathbb{P}^3$ (defined by the osculating planes of D). The tangent surface $Tan(D^*)$ is called the *characteristic surface of* L and is denoted by S_L^{\vee} . This surface is the envelope surface of the family of planes $\{\mathcal{T}_L(x)\}_{x\in C}$. Since the $\mathcal{T}_L(x)$ are the tangent spaces to the double structure C_2 , we have $C_2 \subset S_L^{\vee}$ (see also [8] Lemma 2.1.2). If D is a plane curve, then S_L^{\vee} is the cone over the (plane) dual curve D^* .

We will need the following result, which is contained in [7]:

Lemma 3. A smooth, integral curve $C \subset \mathbb{P}^3$, of degree 9, genus 7 is never self-linked.

Proof. If C is self linked it is by a complete intersection of type (3,6). If the cubic surface, F_3 , is normal, then by (the proof of) Theorem 3.1 in [7], we should have $9.6 \le 6.7$, which is not the case. If the cubic is ruled we conclude with Propositions 3.4, 3.5 of [7]. Finally if F_3 is a cone, it has to be the cone over a smooth cubic curve (see the proof of Theorem 5.1 of [7]). But a degree 9 curve on such a cone is a complete intersection (3,3), hence has genus 10.

Now we can state and prove our main result:

Theorem 4. Let $C \subset \mathbb{P}^3$ be a smooth, irreducible curve of degree d, genus g. Assume $d \geq 5$ and $h^0(\mathcal{I}_C(2)) = 0$. If C is self-linked by a complete intersection of type (a,b), then one of the following occurs:

$$g = 3, d = 6$$
 and $(a, b) = (3, 4),$ or:

(4)
$$g \ge 4 \text{ and } 4g \ge d(a+b-7)+12$$

Proof. From (2) and 3 we get

(5)
$$r := \deg(\varphi_L^*(\mathcal{O}_{\mathbb{P}_3^*}(1)) = \deg(\varphi_L). \deg(D) = 4g - 4 - d(a + b - 7)$$

Hence we have:

(6)
$$4g - 4 - r = d(a + b - 7) \text{ and } 2d = ab.$$

The assumption $h^0(\mathcal{I}_C(2)) = 0$ implies $b \ge a \ge 3$ and $\deg(D) \ge 3$. Indeed we already know that $\deg(D) \ge 2$. If we have equality, then $C \subset S_L^{\vee}$ which is a cone over the dual conic D^* . So we have: $r \ge 3$.

If $g \le 1$, $4g-4-d(a+b-7) \ge 3$ implies $a+b \le 6$, hence (a,b)=(3,3), which is impossible. So $g \ge 2$. If $2 \le g \le 3$, we get (a,b)=(3,4), hence d=6. Moreover r=4 if g=2 and r=8 if g=3.

Assume first that φ_L is bi-rational. Then $D \subset \mathbb{P}_3^*$ is an integral curve of degree r and geometrical genus g. If D is not contained in a plane, then $g \leq p_a(D) \leq G(r,2)$, where G(r,2) is given by the Halphen-Castelnuovo's bound: $G(r,2) = (r-2)^2/4$ if r is even, G(r,2) = (r-1)(r-3)/4, if r is odd. It follows that $g \leq G(7,2) = 6$. Since

PH. ELLIA

 $g \geq 2$ we immediately get $r \geq 5$. From what we said above, this implies $g \geq 3$, hence $d \geq 6$. We have $4g-4-r \leq 15$ and from (6), since $d \geq 6$, $a+b-7 \leq 2$. It follows that (a,b;d)=(3,4;6),(4,4;8),(3,6;9),(4,5;10). From (6) we get: 4(g-1)=r,r+8,r+18,r+20 and we see that there is no solution with $5 \leq r \leq 7, 3 \leq g \leq 6$.

In conclusion if $r \leq 7$ and if φ_L is bi-rational, then D is a plane curve of degree r and geometric genus $g \geq 2$. We have $2 \leq g \leq (r-1)(r-2)/2 = p_a(D)$. Moreover C_2 lies on the cone, K, over the (plane) dual curve D^* . Finally since φ_L is bi-rational, C is a unisecant on the cone K. This implies that $\deg(D^*) + \varepsilon = d$ (+), where $\varepsilon = 1, 0$, according to whether C passes through the vertex of the cone or not.

Since $g \geq 2$, we get $r \geq 4$.

4

If r=4 then $2 \le g \le 3$ and we already know that d=6. If g=3, D is smooth and $deg(D^*)=12$, in contradiction with (+). If g=2, D has one double point which can be a node, a cusp or a tacnode. It follows that $deg(D^*)=10,9$ or 8. In any case we get a contradiction with (+).

If r=5, then $2 \le g \le 6$ and from (6) we get 4g-9=d(a+b-7). Since $d \ge 5$, the cases $2 \le g \le 3$ are impossible. If g=4, the only possibility is d=7, a+b=8. Hence a=b=8, but then again d=ab/2=8: contradiction. In the same way we see that the cases g=5,6 are impossible.

If r=6 then $2 \le g \le 10$ and 4g-10=d(a+b-7), with d=ab/2. Observe that if a+b-7=1, then a=b=4 and d=8, if a+b-7=2, then (a,b,d)=(3,6,9) or (4,5,10). We get that for g<10 the only possibility is g=7, d=9, (a,b)=(3,6), which is excluded by Lemma 3. Finally if g=10, then D is smooth. It follows that $d=\deg(D^*)+\varepsilon=30+\varepsilon$. Since (6) yields 30=d(a+b-7), we get d=30 and a=b=4, which is impossible.

If r=7 then $2 \le g \le 15$ and 4g-11=d(a+b-7). For most values of $g \le 15$, 4g-11 is a prime number and anyway it always has a simple factorization into prime numbers. Bearing in mind that if a+b-7=1, then a=b=4 and d=8; if a+b-7=2 the (a,b,d)=(3,6,9) or (4,5,10) and if a+b-7=3, then (a,b,d)=(4,6,12), we easily see that there are no solutions.

In conclusion if $r \leq 7$ and φ_L is bi-rational, then the only possibility is for r = 6, d = 9, g = 7 and (a, b) = (3, 6) (in this case D is a plane curve with a triple point).

Now for $3 \le r \le 7$, $r = \deg(\varphi_L) \cdot \deg(D)$ and $\deg(D) \ge 3$, we see that if φ_L is not bi-rational, then r = 6, $\deg(\varphi_L) = 2$ and $\deg(D) = 3$.

If D is not contained in a plane it is a twisted cubic. The dual curve D^* is again a twisted cubic and $S^{\vee} = Tan(D^*)$ is a quartic surface. Since $C_2 \subset S^{\vee}$, $S^{\vee} = AF_a + BF_b$. If b > 4, it follows that $F_a = S^{\vee}$, i.e. a = 4. From (6) we get: 4g = d(d-6)/2 + 10. Since b = d/2, d is even, hence $d \equiv 0, 2 \pmod{4}$ and we see that the previous equation never gives an integral value for g. This shows $b \leq 4$, hence (a, b, d) = (3, 4, 6), (4, 4, 8). Plugging these values into (6) we get a contradiction.

It follows that D must be a cubic plane curve. If D is smooth (has a node, a cusp), then $\deg(D^*)=6$ (4 or 3). Since φ_L has degree two, C is a bi-secant on the cone S^\vee over D^* . It follows that $d=2\deg(D^*)+\varepsilon$. Since $C_2\subset S^\vee$, $S^\vee=AF_a+BF_b$. If $b>\deg(D^*)$, then $F_a=S^\vee$ and $a=\deg(D^*)$. It follows that $b=2d/\deg(D^*)$. This implies b=4. It follows that (a,b,d)=(3,4,6),(4,4,8). Plugging these values into (6) we get a contradiction.

In conclusion we must have $r \geq 8$.

Remark 5. Because of Lemma 2 the assumption $h^0(\mathcal{I}_C(2)) = 0$ is harmless.

There exist smooth curves of degree 6, genus 3 which are self-linked ([4], [3]).

This improves Theorem 7.8 of [5]. It follows from (4) that no curve of degree 8, genus 3 can be self-linked. This answers to a question raised in [5] (Introduction and Remark 7.19).

Corollary 6. let $C \subset \mathbb{P}^3$ be a smooth, irreducible curve of degree d > 4, genus g, with $h^0(\mathcal{I}_C(2)) = 0$. If C is self-linked, then:

$$(7) g \ge \frac{d(\sqrt{8d} - 7)}{4} + 3$$

Moreover if $d \ge 13$ and d > g - 3 no curve of degree d, genus g can be self-linked.

Proof. If $2d = ab, a \ge 2$, then a + b varies from d + 2 (a = 2, b = d) to $2\sqrt{2d}$ $(a = b = \sqrt{2d})$. The inequality then follows from (4).

A curve with d > g - 3 and $d \ge 13$ cannot lie on a quadric cone. Moreover if $d \ge 13$, then $2d = ab \ge 26$. It follows that $a + b \ge 11$ and inequality (4 is never satisfied if d > g - 3. \square

Remark 7. A reduced surface $S \subset \mathbb{P}^3$ is said to have ordinary singularities if its singular locus consists of a double curve, R, the surface having transversal tangent planes at most points of R, plus a finite number of pinch points and non-planar triple points. As proved in [5], Proposition 7.5, if a smooth curve is a set theoretic complete intersection on S with ordinary singularities and if $C \not\subset Sing(S)$, then C is self-linked (on S).

3. Triple structures.

To conclude let's see how this approach applies also to set theoretic complete intersections (s.t.c.i.) with a triple structure. Assume $F_a \cap F_b = C_3$, where C_3 is a triple structure on a smooth, irreducible curve of degree d, genus g (i.e. C_3 is a locally Cohen-Macaulay (in our case l.c.i.) scheme with $Supp(C_3) = C$ and ab = 3d). The complete intersection $F_a \cap F_b$ links C to a double structure, C_2 , on C. By liaison we have: $p_a(C_2) - g = d(a+b-4)/2$. Now C_2 (which as any double structure on C is a locally complete intersection curve) corresponds to a sub-line bundle $L \subset N_C$. From the exact sequence (1), we get:

(8)
$$l := \deg(L) = \frac{d}{2}(a+b-4) - g + 1$$

Theorem 8. Let $C \subset \mathbb{P}^3$ be a smooth, connected curve of degree d, genus g. Assume C does not lie on a plane nor on a quadric cone. If C is a s.t.c.i. with a triple structure of two surfaces of degrees a, b, then:

(9)
$$3g \ge \frac{d}{2}(a+b-10) + 6$$

In particular: $g \ge \frac{d}{6}(\sqrt{12d} - 10) + 1$.

Proof. As before we consider the Gauss map φ_L . By (3) and (8), we have:

$$r := \deg(\varphi_L).\deg(D) = 3g - 3 - \frac{d}{2}(a+b-10).$$

6 PH. ELLIA

We know that $r \ge 2$ and if equality C lies on a quadric cone. So we may assume $r \ge 3$ and (9) follows. For the second inequality, if ab = 3d, then $a + b \ge 2\sqrt{3d}$.

Combining with Corollary 6 we get:

Corollary 9. Let $C \subset \mathbb{P}^3$ be a smooth, connected curve of degree d, genus g. If C is not contained in a plane nor in a quadric cone and if $g < \frac{d(\sqrt{12d} - 10) + 6}{6}$, then C cannot be a s.t.c.i. with a structure of multiplicity $m \leq 3$.

By the way let us observe the following elementary fact:

Lemma 10. Let $C \subset \mathbb{P}^3$ be a smooth, connected curve of degree d, genus g. Let s denote the minimal degree of a surface containing C. Assume C is the set theoretic complete intersection of two surfaces of degrees $a, b; a \leq b$ and that a is minimal with respect to this property. Let md = ab. If a > s or if $h^0(\mathcal{I}_C(s)) > 1$, then $m \geq d/s^2$.

Proof. Assume $C = F_a \cap F_b$ as sets with $a \leq b$ and ab = md. If $S \in H^0(\mathcal{I}_C(s))$, then $S^m \in H^0_*(\mathcal{I}_X)$, where X denotes the m-1-th infinitesimal neighbourhood of C ($\mathcal{I}_X = \mathcal{I}_C^m$). It follows that $S^m \in (F_a, F_b)$. So $S^m = AF_a + BF_b$. If b > sm, then $S^m = AF_a$ and since S is integral, we get $S^t = F_a$. It follows that $S \cap F_b = C$ as sets. By minimality of a, it follows that $F_a = S$. This is excluded by our assumptions $(a > s \text{ or } h^0(\mathcal{I}_C(s)) > 1)$. So $b \leq sm$. Thus $m \geq b/s$, hence $m^2 \geq ab/s^2 = md/s^2$ and the result follows.

Let $C \subset Q$, Q a smooth quadric surface. Assume C is the s.t.c.i. of two surfaces of degrees a, b. Then if d > 3 and C is not a complete intersection, it is easy to see that $b \geq a > 2$. Hence $m \geq d/4$, where dm = ab.

References

- Beorchia, V.-Ellia, Ph.: Normal bundle and complete intersections, Rend. Sem. Mat. Univers. Politecn. Torino, vol. 48, 4, 553-562 (1990)
- [2] Eisenbud, D.-Van de Ven, A.: On the normal bundles of smooth rational space curves, Math. Ann., 256, 453-463 (1981)
- [3] Ellia, Ph.: Exemples de courbes de P³ à fibré normal semi-stable, stable, Math. Ann., 264, 389-396, (1983)
- [4] Gallarati, D.: Ricerche sul contatto di superficie algebriche lungo curve, Mémoire Acad. Roy. Belge 32, 1-78 (1960)
- [5] Hartshorne, R.-Polini, C.: Divisors class groups of singular surfaces, Preprint arXiv: 1301. 3222v1 [math.AC], 15 Jan 2013 (2013)
- [6] Hulek, K.-Sacchiero, G.: On the normal bundle of elliptic space curves, Arch. Math., 40, 61-68 (1983)
- [7] Jaffe, D.: On set theoretic complete intersections in \mathbb{P}^3 , Math. Ann., 285, 165-176 (1989)
- [8] Ramella L.: Sur les schémas définissant les courbes rationnelles lisses de \mathbb{P}^3 ayant fibré normal et fibré tangent restreint fixés, Mémoire (nouvelle sèrie) de la Soc. Math. de France, **54**, (1993)

Dipartimento di Matematica, 35 via Machiavelli, 44100 Ferrara $E\text{-}mail\ address:\ phe@unife.it}$