
ar
X

iv
:1

31
1.

05
00

v1
  [

m
at

h.
A

G
] 

 3
 N

ov
 2

01
3

SELF-LINKED CURVES AND NORMAL BUNDLE.

PH. ELLIA

Abstract. We give necessary conditions on the degree and the genus of a smooth,

integral curve C ⊂ P
3 to be selk-linked (i.e. locus of simple contact of two surfaces). We

also give similar results for set theoretically complete intersection curves with a structure

of multiplicity three (i.e. locus of 2-contact of two surfaces).

Introduction.

The motivation of this note is the following question, raised in [5]: doest there exists a

smooth, integral curve C ⊂ P
3, of degree 8, genus 3, which is self-linked? We recall that

a curve is self-linked if it is the locus of (simple) contact of two surfaces (see Section 1).

This question in turn is motivated by the following fact (proved in [5], Proposition 7.5):

let S ⊂ P
3 be a surface with ordinary singularities. Let C ⊂ S be a smooth, irreducible

curve which is the set theoretic complete intersection (s.t.c.i.) of S with another surface.

If C 6⊂ Sing(S), then C is self-linked (on S) (see Remark 7 for a precise statement). We

recall that the problem to know whether or not every smooth irreducible curve C ⊂ P
3 is a

s.t.c.i. is still open. The study of self-linked curves is a first step in this long standing open

problem. Self-linked curves have been studied by many authors (see [5] and the bibliography

therein).

In this note we show that, as expected, no curve of degree 8, genus 3 is self-linked. This

follows from our main result (Theorem 4) which gives necessary conditions on the invariants

of a curve to be self-linked. As a consequence we obtain that if d ≥ 13 and d > g − 3, then

no curve of degree d, genus g can be self-linked (Corollary 6).

In the last section we obtain similar results for curves which are set theoretic complete

intersections with a triple structure.

Throughout this note we work over an algebraically closed field of characteristic zero.

1. Generalities.

We denote by C ⊂ P
3 a smooth, irreducible curve of degree d, genus g. The curve C is

self-linked if it is (algebraically) linked to itself by a complete intersection Fa ∩ Fb of two

surfaces of degrees a, b. In particular 2d = ab. This is equivalent to say that there exists a

double structure, C2, on C which is a complete intersection of type (a, b).

Let’s observe that if C is not a complete intersection, then C ∩ Sing(Fa) 6= ∅ and C ∩
Sing(Fb) 6= ∅. This follows from the fact (see [5], Lemma 7.6) that for a surface S ⊂ P

3,

Pic(S)/P ic(P3) is a torsion free abelian group.
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The two surfaces Fa, Fb are tangents almost everywhere along C. Moreover at every point

x ∈ C one of the two is smooth (otherwise the embedding dimension of the intersection would

be three). So Fa, Fb define a sub-line bundle L ⊂ NC . Abusing notations L = NC,Fa
=

NC,Fb
. The quotient N∗

C → L∗ → 0 defines the double structure C2, hence:

(1) 0 → L∗ → OC2
→ OC → 0

By the exact sequence of liaison:

0 → IC2
→ IC → ωC(4− a− b) → 0

we see that IC,C2
≃ ωC(4− a− b). This means that L∗ = ωC(4− a− b). In particular:

(2) deg(L) =: l = d(a+ b− 4)− 2g + 2

Remark 1. If C is a complete intersection, then C is self-linked. If C is a curve on a

quadric cone, then C is self-linked. In all these cases NC splits.

On the other hand it is easy to give examples of curves which are not self-linked. Let

C ⊂ P
3 be a smooth, irreducible curve whose degree, d, is an odd prime number. Assume

h0(IC(2)) = 0. If C is self-linked by Fa ∩ Fb, then 2d = ab, a ≤ b. Since d is prime, a = 2,

in contradiction with the assumption h0(IC(2)) = 0.

A less evident fact: if C ⊂ P
3 is a smooth subcanonical curve (i.e. ωC ≃ OC(a) for some

a ∈ Z) which is not a complete intersection, then C is not self-linked (see [1]).

We can add a further class of examples:

Lemma 2. Let C be a smooth, irreducible curve lying on a smooth quadric Q ⊂ P
3. If

C is not a complete intersection and deg(C) > 4, then C is never self-linked.

Proof. Assume C self-linked by Fa ∩ Fb, a ≤ b. Let (α, β), α < β, denote the bi-degree of

C on Q. If Fa = Q, then Fb ∩ Q is a curve of bi-degree (b, b) = (2α, 2β). It follows that

α = β and C is a complete intersection. So we may assume that Fa is not a multiple of Q.

The intersection Fa ∩ Q consists of C and of curve A of bi-degree (a − α, a − β). Since A

is not empty (C is not a complete intersection) we have a > α and a ≥ β. It follows that:

2a > α + β = d. So a > d/2. Since ab = 2d, we get b = 2d/a ≥ a > d/2, so a ≤ 3 hence

d ≤ 5. If d = 5, then (a, b) = (2, 5) in contradiction with a > d/2. Hence d ≤ 4. �

If d < 5, then C is rational or elliptic, see Theorem 4. This lemma is in contrast with the

fact that every curve on a quadric cone is self-linked.

2. The Gauss map associated to L ⊂ NC.

We first recall some constructions associated to a sub-bundle of NC . In what follow we

don’t assume C self-linked, C is just any smooth, irreducible curve not contained in a plane.

If L is a sub-bundle of NC , then L(−1) ⊂ NC(−1) comes from a rank two vector bundle:

TL ⊂ TP3(−1)|C. At each point x ∈ C, TL(x) ⊂ TP3(−1)(x) = V/dx, defines a plane of P3

containing the tangent line TxC.

Local computations show that the plane TL(x) is the Zariski tangent plane to the double

structure C2 defined by N∗

C → L∗ → 0.
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Now the bundle TL defines the Gauss map ϕL : C → D ⊂ P
∗

3
(ϕL(x) = TL(x)). It is

known that ϕL can’t be constant and that D can’t be a line ([2], [6] Theorem 1.6). By the

Nakano’s exact sequence ϕ∗

L(OP∗

3
(1)) = TP3(−1)|C/FL, which has degree d−deg(FL). Since

L(−1) = TL/T (−1)C, we get:

(3) deg(ϕ∗

L(OP
∗

3
(1))) = deg(ϕL). deg(D) = 3d+ 2g − 2− l

Now consider the dual curve of D, D∗ ⊂ P
3 (defined by the osculating planes of D). The

tangent surface Tan(D∗) is called the characteristic surface of L and is denoted by S∨

L . This

surface is the envelope surface of the family of planes {TL(x)}x∈C . Since the TL(x) are the

tangent spaces to the double structure C2, we have C2 ⊂ S∨

L (see also [8] Lemma 2.1.2).

If D is a plane curve, then S∨

L is the cone over the (plane) dual curve D∗.

We will need the following result, which is contained in [7]:

Lemma 3. A smooth, integral curve C ⊂ P
3, of degree 9, genus 7 is never self-linked.

Proof. If C is self linked it is by a complete intersection of type (3, 6). If the cubic surface,

F3, is normal, then by (the proof of) Theorem 3.1 in [7], we should have 9.6 ≤ 6.7, which

is not the case. If the cubic is ruled we conclude with Propositions 3.4, 3.5 of [7]. Finally

if F3 is a cone, it has to be the cone over a smooth cubic curve (see the proof of Theorem

5.1 of [7]). But a degree 9 curve on such a cone is a complete intersection (3, 3), hence has

genus 10. �

Now we can state and prove our main result:

Theorem 4. Let C ⊂ P
3 be a smooth, irreducible curve of degree d, genus g. Assume

d ≥ 5 and h0(IC(2)) = 0. If C is self-linked by a complete intersection of type (a, b), then

one of the following occurs:

g = 3, d = 6 and (a, b) = (3, 4), or:

(4) g ≥ 4 and 4g ≥ d(a+ b− 7) + 12

Proof. From (2) and 3 we get

(5) r := deg(ϕ∗

L(OP∗

3
(1)) = deg(ϕL). deg(D) = 4g − 4− d(a+ b− 7)

Hence we have:

(6) 4g − 4− r = d(a+ b− 7) and 2d = ab.

The assumption h0(IC(2)) = 0 implies b ≥ a ≥ 3 and deg(D) ≥ 3. Indeed we already know

that deg(D) ≥ 2. If we have equality, then C ⊂ S∨

L which is a cone over the dual conic D∗.

So we have: r ≥ 3.

If g ≤ 1, 4g − 4 − d(a + b − 7) ≥ 3 implies a + b ≤ 6, hence (a, b) = (3, 3), which is

impossible. So g ≥ 2. If 2 ≤ g ≤ 3, we get (a, b) = (3, 4), hence d = 6. Moreover r = 4 if

g = 2 and r = 8 if g = 3.

Assume first that ϕL is bi-rational. Then D ⊂ P
∗

3
is an integral curve of degree r

and geometrical genus g. If D is not contained in a plane, then g ≤ pa(D) ≤ G(r, 2),

where G(r, 2) is given by the Halphen-Castelnuovo’s bound: G(r, 2) = (r − 2)2/4 if r is

even, G(r, 2) = (r − 1)(r − 3)/4, if r is odd. It follows that g ≤ G(7, 2) = 6. Since
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g ≥ 2 we immediately get r ≥ 5. From what we said above, this implies g ≥ 3, hence

d ≥ 6. We have 4g − 4 − r ≤ 15 and from (6), since d ≥ 6, a + b − 7 ≤ 2. It follows that

(a, b; d) = (3, 4; 6), (4, 4; 8), (3, 6; 9), (4, 5; 10). From (6) we get: 4(g−1) = r, r+8, r+18, r+20

and we see that there is no solution with 5 ≤ r ≤ 7, 3 ≤ g ≤ 6.

In conclusion if r ≤ 7 and if ϕL is bi-rational, then D is a plane curve of degree r and

geometric genus g ≥ 2. We have 2 ≤ g ≤ (r− 1)(r− 2)/2 = pa(D). Moreover C2 lies on the

cone, K, over the (plane) dual curve D∗. Finally since ϕL is bi-rational, C is a unisecant on

the cone K. This implies that deg(D∗) + ε = d (+), where ε = 1, 0, according to whether

C passes through the vertex of the cone or not.

Since g ≥ 2, we get r ≥ 4.

If r = 4 then 2 ≤ g ≤ 3 and we already know that d = 6. If g = 3, D is smooth and

deg(D∗) = 12, in contradiction with (+). If g = 2, D has one double point which can be

a node, a cusp or a tacnode. It follows that deg(D∗) = 10, 9 or 8. In any case we get a

contradiction with (+).

If r = 5, then 2 ≤ g ≤ 6 and from (6) we get 4g− 9 = d(a+ b− 7). Since d ≥ 5, the cases

2 ≤ g ≤ 3 are impossible. If g = 4, the only possibility is d = 7, a+ b = 8. Hence a = b = 8,

but then again d = ab/2 = 8: contradiction. In the same way we see that the cases g = 5, 6

are impossible.

If r = 6 then 2 ≤ g ≤ 10 and 4g − 10 = d(a + b − 7), with d = ab/2. Observe that if

a+ b− 7 = 1, then a = b = 4 and d = 8, if a+ b− 7 = 2, then (a, b, d) = (3, 6, 9) or (4, 5, 10).

We get that for g < 10 the only possibility is g = 7, d = 9, (a, b) = (3, 6), which is excluded

by Lemma 3. Finally if g = 10, then D is smooth. It follows that d = deg(D∗) + ε = 30+ ε.

Since (6) yields 30 = d(a+ b− 7), we get d = 30 and a = b = 4, which is impossible.

If r = 7 then 2 ≤ g ≤ 15 and 4g−11 = d(a+b−7). For most values of g ≤ 15, 4g−11 is a

prime number and anyway it always has a simple factorization into prime numbers. Bearing

in mind that if a+ b−7 = 1, then a = b = 4 and d = 8; if a+ b−7 = 2 the (a, b, d) = (3, 6, 9)

or (4, 5, 10) and if a + b − 7 = 3, then (a, b, d) = (4, 6, 12), we easily see that there are no

solutions.

In conclusion if r ≤ 7 and ϕL is bi-rational, then the only possibility is for r = 6, d = 9,

g = 7 and (a, b) = (3, 6) (in this case D is a plane curve with a triple point).

Now for 3 ≤ r ≤ 7, r = deg(ϕL). deg(D) and deg(D) ≥ 3, we see that if ϕL is not

bi-rational, then r = 6, deg(ϕL) = 2 and deg(D) = 3.

If D is not contained in a plane it is a twisted cubic. The dual curve D∗ is again a twisted

cubic and S∨ = Tan(D∗) is a quartic surface. Since C2 ⊂ S∨, S∨ = AFa +BFb. If b > 4, it

follows that Fa = S∨, i.e. a = 4. From (6) we get: 4g = d(d− 6)/2+ 10. Since b = d/2, d is

even, hence d ≡ 0, 2 (mod 4) and we see that the previous equation never gives an integral

value for g. This shows b ≤ 4, hence (a, b, d) = (3, 4, 6), (4, 4, 8). Plugging these values into

(6) we get a contradiction.

It follows that D must be a cubic plane curve. If D is smooth (has a node, a cusp), then

deg(D∗) = 6 (4 or 3). Since ϕL has degree two, C is a bi-secant on the cone S∨ over D∗.

It follows that d = 2deg(D∗) + ε. Since C2 ⊂ S∨, S∨ = AFa + BFb. If b > deg(D∗), then

Fa = S∨ and a = deg(D∗). It follows that b = 2d/ deg(D∗). This implies b = 4. It follows

that (a, b, d) = (3, 4, 6), (4, 4, 8). Plugging these values into (6) we get a contradiction.

In conclusion we must have r ≥ 8. �
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Remark 5. Because of Lemma 2 the assumption h0(IC(2)) = 0 is harmless.

There exist smooth curves of degree 6, genus 3 which are self-linked ([4], [3]).

This improves Theorem 7.8 of [5]. It follows from (4) that no curve of degree 8, genus 3

can be self-linked. This answers to a question raised in [5] (Introduction and Remark 7.19).

Corollary 6. let C ⊂ P
3 be a smooth, irreducible curve of degree d > 4, genus g, with

h0(IC(2)) = 0. If C is self-linked, then:

(7) g ≥ d(
√
8d− 7)

4
+ 3

Moreover if d ≥ 13 and d > g − 3 no curve of degree d, genus g can be self-linked.

Proof. If 2d = ab, a ≥ 2, then a+ b varies from d+ 2 (a = 2, b = d) to 2
√
2d (a = b =

√
2d).

The inequality then follows from (4).

A curve with d > g− 3 and d ≥ 13 cannot lie on a quadric cone. Moreover if d ≥ 13, then

2d = ab ≥ 26. It follows that a+ b ≥ 11 and inequality (4 is never satisfied if d > g− 3. �

Remark 7. A reduced surface S ⊂ P
3 is said to have ordinary singularities if its singular

locus consists of a double curve, R, the surface having transversal tangent planes at most

points of R, plus a finite number of pinch points and non-planar triple points. As proved

in [5], Proposition 7.5, if a smooth curve is a set theoretic complete intersection on S with

ordinary singularities and if C 6⊂ Sing(S), then C is self-linked (on S).

3. Triple structures.

To conclude let’s see how this approach applies also to set theoretic complete intersections

(s.t.c.i.) with a triple structure. Assume Fa ∩ Fb = C3, where C3 is a triple structure on a

smooth, irreducible curve of degree d, genus g (i.e. C3 is a locally Cohen-Macaulay (in our

case l.c.i.) scheme with Supp(C3) = C and ab = 3d). The complete intersection Fa∩Fb links

C to a double structure, C2, on C. By liaison we have: pa(C2)−g = d(a+ b−4)/2. Now C2

(which as any double structure on C is a locally complete intersection curve) corresponds

to a sub-line bundle L ⊂ NC . From the exact sequence (1), we get:

(8) l := deg(L) =
d

2
(a+ b− 4)− g + 1

Theorem 8. Let C ⊂ P
3 be a smooth, connected curve of degree d, genus g. Assume

C does not lie on a plane nor on a quadric cone. If C is a s.t.c.i. with a triple structure of

two surfaces of degrees a, b, then:

(9) 3g ≥ d

2
(a+ b− 10) + 6

In particular: g ≥ d

6
(
√
12d− 10) + 1.

Proof. As before we consider the Gauss map ϕL. By (3) and (8), we have:

r := deg(ϕL). deg(D) = 3g − 3− d

2
(a+ b− 10).
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We know that r ≥ 2 and if equality C lies on a quadric cone. So we may assume r ≥ 3 and

(9) follows. For the second inequality, if ab = 3d, then a+ b ≥ 2
√
3d. �

Combining with Corollary 6 we get:

Corollary 9. Let C ⊂ P
3 be a smooth, connected curve of degree d, genus g. If C is

not contained in a plane nor in a quadric cone and if g <
d(
√
12d− 10) + 6

6
, then C cannot

be a s.t.c.i. with a structure of multiplicity m ≤ 3.

By the way let us observe the following elementary fact:

Lemma 10. Let C ⊂ P
3 be a smooth, connected curve of degree d, genus g. Let s

denote the minimal degree of a surface containing C. Assume C is the set theoretic complete

intersection of two surfaces of degrees a, b; a ≤ b and that a is minimal with respect to this

property. Let md = ab. If a > s or if h0(IC(s)) > 1, then m ≥ d/s2.

Proof. Assume C = Fa ∩ Fb as sets with a ≤ b and ab = md. If S ∈ H0(IC(s)), then

Sm ∈ H0

∗
(IX), where X denotes the m− 1-th infinitesimal neighbourhood of C (IX = Im

C ).

It follows that Sm ∈ (Fa, Fb). So Sm = AFa +BFb. If b > sm, then Sm = AFa and since S

is integral, we get St = Fa. It follows that S ∩Fb = C as sets. By minimality of a, it follows

that Fa = S. This is excluded by our assumptions (a > s or h0(IC(s)) > 1). So b ≤ sm.

Thus m ≥ b/s, hence m2 ≥ ab/s2 = md/s2 and the result follows. �

Let C ⊂ Q, Q a smooth quadric surface. Assume C is the s.t.c.i. of two surfaces of

degrees a, b. Then if d > 3 and C is not a complete intersection, it is easy to see that

b ≥ a > 2. Hence m ≥ d/4, where dm = ab.
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