
A REMARK ON THE RADICAL OF ODD PERFECT NUMBERS.

PH. ELLIA

Abstract. If n is an odd perfect number with Euler’s prime q, we show that if 3 - n and
q ≤ 148 207 (resp. if 3 | n and q ≤ 223), then

√
n ≥ rad(n). We also show the non-existence

of odd perfect numbers of certain forms.

1. Introduction

Let n be a positive integer and let n =
∏
pαii be its prime factorization. Then rad(n) :=∏

pi. The integer n is perfect if σ(n) = 2n, where σ is the sum of divisors function. In [4] Luca

and Pomerance prove that if n is an odd perfect number, then rad(n) ≤ 2n17/26. By a result

of Euler, an odd perfect number (if there exist any) is of the form: n = q4b+1.
∏
p2aii , with

q ≡ 1 (4), the prime q is called the Euler’s prime of n. Clearly if b > 0, then
√
n ≥ rad(n).

Here we show that if 3 - n and if q is small (q ≤ 148 207), then this inequality holds (Prop.
3.1). We also show a similar result when 3 | n, but with a much weaker bound (q ≤ 223).
Computations are very limited and there is no doubt that with more computational power
these results can be improved. By the way we also prove (Prop. 2.3, Prop. 2.5, Lemma 4.1)
the non-existence of odd perfect numbers of certain types.

I thank the referee for suggesting the use of [2] and pointing to me the reference [5].

2. Perfect numbers of given types.

Following Brauer [1], we will use the following result:

Lemma 2.1. Let p be a positive prime. The diophantine equation: p2 + p + 1 = ym has no
solution for m > 1.

Proof. See [1]. �

Remark 2.2. (a) By the way observe that (−19)2 − 19 + 1 = 73.
(b) We have also the following well known fact (p a positive prime): 3m | p2+p+1⇔ m = 1

and p ≡ 1 (3). If q > 3 is a prime such that qm | p2 + p+ 1, then q ≡ 1 (3).

Proposition 2.3. Let n = qr21r
2
2 · · · r2l s2a, q ≡ 1 (4) be the prime factorization of the positive

integer n. If 3 - n or if r1 = 3, then n is not perfect.

Proof. Assume n is perfect, then σ(n) = 2n and:

n = q · s2a ·
l∏

i=1

r2i =
q + 1

2
· σ(s2a) ·

l∏
i=1

(r2i + ri + 1) (1)
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(1) Assume 3 - n. In this case ri ≡ 2 (3),∀i and by (b) of 2.2: (
∏l r2i ,

∏l(r2i + ri + 1)) = 1. It
follows from (1) that:

l∏
i=1

(r2i + ri + 1) | qs2a (2)

• If q - r2i + ri + 1, then r2i + ri + 1 | s2a and Lemma 2.1 implies r2i + ri + 1 = s.
• It may happen, but just for one index t, that q | r2t + rt + 1. In this case, by the

previous step, r2i + ri + 1 = s, if i 6= t.

Since l = ω(n) − 2 (ω(n) the number of prime factors of n) and since ω(n) ≥ 9 ([5]), we get
r2i + ri + 1 = s = r2j + rj + 1 with i 6= j, which is impossible.

(2) Assume r1 = 3. In this case, for i > 1, there are at most two ri’s with ri ≡ 1 (3). So we

may assume that

l∏
i=4

(r2i + ri + 1) | qs2a. Since l− 3 = ω(n)− 5 ≥ 3, we conclude as above. �

Remark 2.4. It is known that no odd perfect number of the form q4b+1r21r
2
2...r

2
l s

2a exist if
a = 1 ([6]) and a = 2 ([1], [3]).

In the same vein:

Proposition 2.5. Let n = q · r21 · r22 · · · r2l · p
2a1
1 · p2a22 , q ≡ 1 (4), 1 ≤ a1 ≤ a2, q, ri, pj distinct

positive primes. If n is an odd perfect number and if 3 - n, then a1 ≥ 3 and a2 ≥ 9.

Proof. By Prop. 2.3 we know that a2 ≥ a1 ≥ 2. We have ri ≡ 2 (3), ∀i, it follows, as in the
previous proof, that:

l∏
i=1

(r2i + ri + 1) | qp2a11 p2a22 (3)

It may happen that for one index i, say i = 1, q | (r21 + r1 + 1). In any case we may assume

that:
l∏

i=2

(r2i + ri + 1) | p2a11 p2a22 .

If (r2i + ri + 1, pt) = 1, then by Lemma 2.1, r2i + ri + 1 = pj , {t, j} = {1, 2}. So we may

assume that for i = 4, ..., l: r2i + ri + 1 = pαi1 p
βi
2 , with αi ≥ 1, βi ≥ 1. It follows that:

l − 3 ≤
∑l

4 αi ≤ 2a1. Since l − 3 = ω(n) − 6 and since ω(n) ≥ 12 (see [5]), we get a1 ≥ 3.
On the other hand, by [2], Ω(n) = 2l + 2a1 + 2a2 + 1, the total number of primes dividing n,
satisfies Ω(n) ≥ 75. It follows that l − 3 ≥ 34− a1 − a2. Hence 34− a1 − a2 ≤ l − 3 ≤ 2a1, so
34 ≤ a2 + 3a1 ≤ 4a2 and a2 ≥ 9. �

3. On the radical of odd perfect numbers relatively prime to 3.

We use the results of the previous section to investigate the radical of odd perfect numbers
not divisible by 3. Our result is:

Proposition 3.1. Let n = q4b+1 ·
∏
p2aii be an odd perfect number. Assume 3 - n and

q ≤ 148 207, then
√
n ≥ rad(n).

Proof. The conclusion is clear if b > 0, so let’s assume b = 0.
Assume there are at least three indices i such that ai ≥ 2, say a3 ≥ a2 ≥ a1 ≥ 2. Then

n ≥ q · p41 · p42 · p43 ·
∏
i>3 p

2
i , hence

√
n ≥ √q · p21 · p22 · p23 ·

∏
i>3 pi. We have to show that under
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our assumptions: p21 · p22 · p23 ≥ q. Since 3 - n, we have p1 ≥ 5, p2 ≥ 7, p3 ≥ 11 and since
52 · 72 · 112 = 148 225, we are done.

If there are less than three indices i such that ai ≥ 2, then by Prop. 2.5: a1 ≥ 3 and a2 ≥ 9

and n ≥ q ·p61 ·p182 ·
∏
i>2

p2i and it is enough to check: p41 ·p162 ≥ q. Since p41 ·p162 ≥ 74 ·516 > 148 207,

we are done. �

4. The case 3 | n.

If n = q · 32a · p21 · p22 · · · p2l is an odd perfect number, we know by [1], that a ≥ 3.

Lemma 4.1. If n = q · 36 ·
∏t p2i , where q, pi are distinct primes > 3, then n is not perfect.

Proof. Assume n is perfect and write it as: n = q ·36 ·
∏k p2j ·

∏l r2i , where pj ≡ 1 (3), ri ≡ 2 (3)

(and q ≡ 1 (4)). From σ(n) = 2n we get:

n = q · 36 ·
k∏
p2j ·

l∏
r2i =

q + 1

2
·
k∏

(p2j + pj + 1) ·
l∏

(r2i + ri + 1) · 1 093 (4)

Where 1 093 = σ(36) is a prime ≡ 1 (12). Since pj ≡ 1 (3), σ(p2j ) = 3.cj where (3, cj) = 1 (see

2.2). It follows that 3k | 36, so k ≤ 6 and we have:

q · 36−k ·
k∏
p2j ·

l∏
r2i =

q + 1

2
·
k∏
cj ·

l∏
σ(r2i ) · 1 093 (5)

If 6 − k > 0, since (3, cj) = 1, ri ≡ 2 (3) and 1 093 ≡ 1 (3), 36−k ‖ (q + 1)/2. This implies
q ≡ 2 (3). But then (σ(r2i ), q) = (cj , q) = 1 (see 2.2) and q 6= 1 093, so q cannot divide the
LHS of (5) contradiction.

This shows k = 6, q ≡ 1 (12), moreover:

l∏
r2i |

q + 1

2
(6)

We have q 6= 1 093. Indeed otherwise (q+ 1)/2 = 547 which is a prime ≡ 1 (3), so p1 = 547.
Then σ(5472) = 3 × 163 × 613, so p2 = 163, p3 = 613. Since σ(6132) = 3 × 7 × 17 923,
σ(1632) = 3× 7× 19× 67, we get too many pj ’s (p4 = 7, p5 = 17 923, p6 = 19, p7 = 67).

So we may assume p1 = 1 093. We have σ(p21) = 3 × 398 581, so c1 = 398 581 which is a
prime ≡ 1 (12). If c1 = q, then (q + 1)/2 = 17× 19× 617. Since 17 ≡ 2 (3), l > 0 and we get
a contradiction with (6). We conclude that p2 = 398 581. Now σ(p22) = 3 × 52 955 737 381 =
3× 1 621× 32 668 561. Both 1 621 and s2 := 32 668 561 are primes ≡ 1 (12).

If q = 1 621, then p3 = s2 and (q + 1)/2 = 811 which is prime, so p4 = 811. Now
σ(8112) = 3× 31× 73× 97: too many pj ’s again.

So we may assume p3 = 1 621. We have σ(p23) = 3 × 7 × 13 × 9 631. Since q 6= 7, p4 = 7.
Then σ(72) = 3 × 19, p5 = 19: too many pj ’s again (one at most among s2, 13 and 9 631 is
q). �

To conclude:

Proposition 4.2. Let n = q4b+1 ·
∏
p2aii be an odd perfect number. If q ≤ 223, then

√
n ≥

rad(n).
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Proof. If 3 - n use Prop. 3.1. Assume 3 | n and b = 0. Let n = q ·32a ·
∏k
i=1 p

2ai
i . If a2 ≥ a1 ≥ 2,

then n ≥ q · 32 · p41 · p42 ·
∏
p2i . We conclude since p21 · p22 ≥ 52 · 72 > 223 ≥ q.

If a1 ≥ 2, ai = 1 for i > 1, then n = q · 32a · p2a11 ·
∏
p2i . By Prop. 2.3, a ≥ 2. We conclude

since 9 · p21 ≥ 9 · 52 = 225 > q.
Finally if ai = 1,∀i, then by Lemma 4.1, a ≥ 8 and since 36 > 223, we are done. �

These results leave open the following problems: (i) improve these bounds, especially when
3 | n (feasible with some computational power); (ii) does the inequality

√
n ≥ rad(n) hold for

every odd perfect number?
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