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COMPLETE INTERSECTIONS PRIMITIVE STRUCTURES ON

SPACE CURVES.

PH. ELLIA

Abstract. A multiple structure X on a smooth curve C ⊂ P3 is said to be

primitive if X is locally contained in a smooth surface. We give some numerical

conditions for a curve C to be a primitive set theoretical complete intersection

(i.e. to have a primitive structure which is a complete intersection).

Introduction.

It is a long standing problem to know whether or not every smooth, irreducible

curve C ⊂ P3 (P3 = P3
k, k algebraically closed, of characteristic zero) is a set theoretic

complete intersection (s.t.c.i.) of two surfaces Fa, Fb. We recall that C is a s.t.c.i. of

Fa, Fb if Fa ∩ Fb = C as sets, i.e.
√

(Fa, Fb) = I(C), where I(C) = H0
∗ (IC). It turns

out that this is equivalent to the existence of a multiple structure X on C which is

the complete intersection of Fa and Fb. A multiple structure on C is a locally Cohen-

Macaulay curve whose support is C and such that deg(X) = md, where d = deg(C).

The integer m is called the multiplicity of X.

Following [1] we can distinguish three cases:

a) X is a primitive structure: X is locally contained in a smooth surface; in our

case this means that at each point x ∈ C one of the two surfaces Fa, Fb is smooth.

b) X is a quasi-primitive structure: X is generically contained in a smooth surface;

in our case this means that there exists a finite subset T ⊂ C such that for x ∈ C \T ,

one of the two surfaces Fa, Fb is smooth at x; if y ∈ T , both surfaces are singular at

y.

c) X is a thick structure: X contains the first infinitesimal neighbourhood of C;

in our case this means that both surfaces Fa, Fb are singular along C.

Definition 1. We say that C is a primitive s.t.c.i. of type (a, b), multiplicity

m, if there exists a primitive structure of multiplicity m on C which is the complete

intersection of two surfaces of degrees a, b.

In this note we will consider only primitive s.t.c.i. First we show (Proposition 3)

that given any curve C of degree d, genus g, there are only finitely many possible
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(a, b,m) for C to be a primitive s.t.c.i. Now assume X is a primitive multiple

structure on C which is a complete intersection: X = Fa ∩ Fb, a ≤ b. If a < b, Fa

is uniquely defined, but Fb moves. For instance X is cut-off schematically by the

surfaces of degree b. In particular the general G ∈ H0(IX(b)) is smooth outside of

C. We want to use this freedom to control the singularities of G along C. The main

result of this note (Theorem 12) states that there exist integers n, k such that for

every p ∈ Sing(G), (G,C)p is a singularity of type Ak
n (see Definition.8). With this

result we are able to give (Theorem 15) some new numerical conditions for C to be

a primitive s.t.c.i. When applied to the case where C is a smooth rational quartic

curve, these conditions yield (Corollary 16) a slight improvement on a earlier result

of Jaffe ([3]). Finally, and unfortunately, we show (Remark 18) that the results of

this note are not sufficient for giving a single example of a curve which is not a

primitive s.t.c.i. Something else is needed.

As the reader will see, this note owes a lot to Jaffe’s work ([3], [4]), so thank you to

him. I also thank Massimiliano Mella for pointing to me the paper [5].

1. Primitive structures.

Let C ⊂ P3 be a smooth, irreducible curve of degree d, genus g. Assume there is

a primitive structure X, of multiplicity m, on C which is the complete intersection

of two surfaces Fa, Fb. Let a = deg(Fa), b = deg(Fb), a ≤ b.

The Cohen-Macaulay filtration C = X0 ⊂ X1 ⊂ ... ⊂ Xk = X is defined by

Xi = C(i)∩X where C(i) is the i-th infinitesimal neighbourhood of C (IC(i) = I i+1
C ).

If X is primitive, Xi is locally CM, in fact even locally complete intersection of

multiplicity i + 1 (locally given by (x, yi+1) in suitable coordinates). In particular

X1 is a double structure corresponding to a quotient, L∗, of the conormal bundle

N∗
C , and we will say that X is a primitive structure of type L. For 1 ≤ i ≤ m − 1,

we have exact sequences:

0 → L∗⊗i → OXi
→ OXi−1 → 0

It follows that:

(1) pa(X) = g −

m−1
∑

i=1

χ(L∗⊗i)

hence:

(2) pa(X) = m(g − 1) + 1 + lm(m− 1)/2

where l = deg(L), L ⊂ NC .

Of course, since X = Fa ∩ Fb, we also have:

(3) pa(X) = 1 +
ab(a+ b− 4)

2

and:

(4) dm = ab
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Combining everything we get:

(5) 2g − 2 + l(m− 1) = d(a+ b− 4)

We recall the following:

Lemma 2. Let C ⊂ P3 be a smooth, irreducible curve of degree d, genus g.

Assume C is not contained in a plane. If L ⊂ NC , then:

(6) l = deg(L) ≤ 3d+ 2g − 4

Proof. The line bundle L(−1) ⊂ NC(−1) comes from a rank two sub-bundle EL ⊂

TP3(−1)|C containing TC(−1). The bundle EL gives a Gauss map ϕL : C → P∗
3.

If D = ϕL(C), then D is a curve of degree ≥ 2. We have deg(ϕL).deg(D) =

3d+ 2g − 2− l (see [2]). The conclusion follows. �

Proposition 3. Let C ⊂ P3 be a smooth, irreducible curve of degree d, genus g.

There exist finitely many (l,m, a, b) satisfying (5). In other words there exist finitely

many possible (a, b,m) for C to be a primitive s.t.c.i. of surfaces of degrees a, b, with

multiplicity m.

Proof. If l ≤ 0, from (5) we get a+ b− 4 ≤ (2g− 2)/d. Hence we have finitely many

(a, b). Since m = ab/d, each (a, b) determines m and l. From now on let us assume

l > 0 and a ≤ b. By Lemma 2, we have finitely many possible values of l. We may

rewrite (5) as follows:

(7) a = α(1 +
a

b
−

4

b
) +

γ

b

where α = d2/l, γ = 2d(1 − g)/l + d. Clearly γ ≤ 3d. Hence γ/b ≤ d3
b
≤ d

(we may assume b ≥ 3). Now since a ≤ b, 1 + a/b − 4/b < 2. It follows that

a < 2α+ d = 2d2/l+ d. So for each value of l we have finitely many possible a. We

conclude since to any fixed (a, l) there corresponds a unique b. �

The first candidate for a non s.t.c.i. curve in P3 is a rational quartic curve. In

this case we have:

Lemma 4. let C ⊂ P3 be a smooth rational quartic curve. If C is a primitive

s.t.c.i. of type (a, b,m, l) then (a, b,m, l) is one of the following fifteen cases:

l 7 6 6 5 3 2 2 2

(a, b) (3,4) (3,8) (4,4) (4,7) (6,26) (13,16) (12,18) (10,28)

m 3 6 4 7 39 52 54 70

l 2 1 1 1 1 1 1

(a, b) (9,48) (28,33) (22,50) (20,67) (19,84) (18,118) (17,220)

m 108 231 275 335 399 531 935
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Proof. A sub-bundle of NC ≃ 2OP1(7) has degree at most 7. From (5 we get l > 0,

so 1 ≤ l ≤ 7. Equation (5) reads like: lm = 4(a + b) − 14 + l. Since m = ab/4, we

get: b(la− 16) = 16a− 56+ 4l, hence la = 16+ 16a/b− (56− 4l)/b. Since a ≤ b, we

get: a < 32/l. Now for each l, 1 ≤ l ≤ 7 and for each a, 3 ≤ a < 32/l, we compute

b = (16a − 56 + 4l)/(la − 16) (n.b. the case la− 16 = 0 is impossible). This can be

done by hand but it is faster with a computer. �

Remark 5. Proposition 3 and Lemma 4 were first proved by Jaffe in [3] by a

different method.

2. Singularities and normal bundle.

Let C ⊂ S ⊂ P3 be a smooth curve on the surface S of degree s. Assume

dim(C ∩ Sing(S)) = 0. The inclusion C ⊂ S yields O(−s) → IC , which, by

restriction to C, gives σ : OC → N∗
C(s). The section σ vanishes on C ∩ Sing(S).

More precisely we have an exact sequence:

0 → OC(−s) → N∗
C → L∗ ⊕ T → 0

where L is locally free of rank one and where T is a torsion sheaf with support on

C ∩ Sing(S). This exact sequence defines a surjection N∗
C → L∗ → 0 which in

turn defines a double structure on C; this double structure is nothing else than C

"doubled on S" (i.e. the greatest locally Cohen-Macaulay subscheme of C(1) ∩ S

or, equivalently the subscheme of S defined by I(2) (symbolic power) where I is the

ideal of C in S).

From the exact sequence above we get: deg(T ) = deg(L) − (2g − 2 + d(4 − s)).

Notice that: deg(T ) = deg(L)− deg(ωC (4− s)) and that if S were smooth we would

have NC,S ≃ ωC(4 − s); in this sense we can think to L as the "normal bundle"

of C in S, with respect with the smooth case, deg(L) gets a contribution from the

singularities of S lying on C.

Definition 6. In the above situation we define n(S,C), the contribution of the

singularities of S to the normal bundle of C, by: n(S,C) := deg(L)+d(s−4)−2g+2.

Remark 7. In the terminology of [3], n(S,C) = p1(S,C). Of course, the

computation of n(S,C) is a local problem: n(S,C) =
∑

p∈Sing(S)∩C n(S,C)p.

Definition 8. Following [3], a surface-curve pair (S,C) is a surface S with a

curve C ⊂ S such that C is a regular scheme not contained in Sing(S). Given a

surface-curve pair, one may consider, for every p in C the local pair (S,C)p; this

amounts to give the data (A, I) where A = OS,p and where I ⊂ A is the ideal of C.

Assume p is a singularity of type An. Let E1, ..., En (with the natural numbering)

denote the exceptional curves over p in the minimal resolution f : S′ → S. Then C,
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the strict transform of C, meets a unique exceptional curve Ek and C.Ek = 1. In

this case we will say that (S,C)p is a singularity of type Ak
n.

If p is an An singularity, every (S,C)p is analytically isomorphic to some Ak
n for

some k ≤ n+1
2 ([4]).

Lemma 9. Assume (S,C)p is an Ak
n singularity, then C.E =

k(n+ 1− k)

(n + 1)
.

Proof. We have f∗(C) = C +
∑n

i=1 fiEi (E =
∑n

i=1 fiEi), writing f∗(C).Ej = 0 =

δjk +
∑n

i=1 fiEiEj , for 1 ≤ j ≤ n, we get a linear system in the fi’s; solving this

system, we get fk = k(n+1−k)
(n+1) . See [3] Prop.5.8 for more details. �

Lemma 10. If (S,C)p is an Ak
n singularity with k ≤ n+1

2 , then n(S,C)p = k.

Proof. Since the question is local we may assume S given by xy+yzk+xzn−k+1 = 0

and C given by I = (x, y) (cf [3]). Looking at the equation of S mod.I2, we get

n(S,C)p = min{k, n− k + 1} = k under our assumption. �

We will need also the following

Lemma 11. Let C ⊂ Fb. Assume that Fb is normal with only rational double

points (A, D, E double points). Let f : F → F be the minimal resolution and let

f∗C = C + E where C is the strict transform of C and where E is an effective Q

divisor supported on the exceptional locus. With notations as above, if C is a set

theoretic complete intersection on Fb, then C.E = d(b− 4) +
d2

b
+ 2− 2g.

Proof. Since Fb has only rational singularities, ωF = f∗(ωFb
) ≃ f∗(OFb

(b − 4)).

It follows that C.K = d(b − 4). By adjunction: C
2
+ CK = 2g − 2 and we get

C
2
= 2g − 2 − d(b − 4). If C is a set theoretic complete intersection on Fb, then

f∗(mC) = f∗(OFb
(a)). It follows that f∗(C) =

a

(b− 4)m
K, as Q-divisor. Now, on

the one hand: f∗(C).C = (C + E)C = 2g − 2 − d(b − 4) + C.E and on the other

hand f∗(C).C =
a

(b− 4)m
C.K =

d2

b
(using md = ab). Combining the two we get

the result. �

3. A uniformity result.

Assume X is a primitive multiple structure on C which is a complete intersection:

X = Fa ∩ Fb, a ≤ b. If a < b, Fa is uniquely defined, but Fb moves: we may replace

it by FaP + λFb. For instance X is cut-off schematically by the surfaces of degree

b. In particular the general G ∈ H0(IX(b)) is smooth outside of C. We want to
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use this freedom to control the singularities of G along C, where G ∈ H0(IX(b)) is

general. We have:

Theorem 12. Let C ⊂ P3 be a smooth, irreducible curve. Assume there exists

a primitive structure, X, on C such that X = Fa ∩Fb, with a ≤ b. Then the general

surface, G, of degree b containing X is normal with at most rational singularities

along C. More precisely, G is smooth outside of C and there exist integers n, k such

that for every p ∈ Sing(G), (G,C)p is a singularity of type Ak
n.

Proof. Since IX(b) is generated by global sections, by Bertini’s theorem, the general

surface of degree b containing X is smooth outside of C, so we may assume that Fb

is smooth out of C. Consider a general pencil, ∆, of degree b surfaces containing

X: λFa.P + µFb. As already observed, the general surface of this pencil is smooth

outside of C. Moreover, since X is primitive, for every x ∈ C there exists a surface

of the pencil which is smooth at x, by [5] this implies that the general surface, S,

of the pencil has at most singularities of type An. Indeed by [5] Theorem 4.4 S has

only cA singularities. But normal cA singularities are canonical and since we are

dealing with normal singularities of surfaces, they are rational (see Theorem 3.6 of

[5]). Finally since the quadratic part of a local equation has rank at least 2, they are

of type An.

The pencil ∆ ≃ P1 gives a family F ⊂ P3
∆ → ∆ of degree b surfaces with only ratio-

nal singularities. We may consider (after a base-change if necessary) a simultaneous

resolution of the singularities, this resolution is obtained by successive blow-ups ([7]).

After a certain number of blow-up, the general fiber of F → ∆ is smooth; this shows

that there exists n such that the general member of ∆ has only An singularities.

We have a morphism g : C → ∆ : x → Fx where Fx is the unique surface of ∆

which is singular at x. Let Y ⊂ C × ∆ be the graph of g. Then Y is a unisecant

on the ruled surface p : C × P1 → C, (we have identified ∆ to P1) hence Y is

smooth, irreducible. In P3 × P1 consider the incidence S = {(x, t) | x ∈ Ft}. The

inclusion C = C × P1 ⊂ S gives a morphism IS → IC. Restricting to C, we get:

ϕ : p∗(O(−b))⊗q∗(O(−1)) → p∗(N∗
C), when restricted to a fiber of q : C×P1 → P1,

this morphism is the morphism O(−b) → N∗
C induced by Ft. The cokernel of ϕ has

a torsion subsheaf, T , supported on Y . Since T is locally free on an open subset of

Y , we conclude (using Lemma 10) that there exists k such that the general member

of ∆ has at most Ak
n-singularities along C. �

A first consequence:

Lemma 13. Let X be a primitive structure of type L on a smooth, irreducible

curve C, of degree d, genus g. Assume X = Fa ∩ Fb, a ≤ b. Assume Fb is general

in the sense of Theorem 12, i.e. there exist n, k such that Fb has α singularities of

type Ak
n on C and is smooth outside of C. Then αk = d(b− 4)− 2g + 2 + l.
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Proof. We have n(Fb, C) = deg(L) − degωC(4 − b) = l − 2g + 2 + d(b − 4) and the

conclusion follows from Lemma 10. �

We have other numerical conditions:

Proposition 14. Assume X is a multiplicity m primitive structure of type L on

a smooth, irreducible curve C such that X = Fa ∩ Fb with a ≤ b, b > 4. Then there

exist positive integers α, n, k with k ≤ n+1
2 satisfying the following conditions:

(1) αk = d(b− 4)− 2g + 2 + l

(2) n+ 1 =
αbk2

lb− d2

(3) αn <
αn(n+ 2)

n+ 1
≤

2b(b− 1)2

3

(4) In particular:
(A+ l)(bA+ d2)

lb− d2
<

2b(b− 1)2

3
, where: A := d(b− 4)− 2g+2.

Proof. We may assume that Fb is general in the sense of Theorem 12, hence there

exist n, k such that Fb is normal and has α singularities of type Ak
n on C; this defines

the numbers α, n, k.

Condition (1) is Lemma 13.

By Lemma 11, C.E = A+(d2/b) (A := d(b− 4)− 2g+2). Under our assumption

and using Lemma 9 we get C.E = αk(n+1−k)
n+1 . It follows that A+(d2/b) = αk(n+1−k)

n+1

(*). The difference (1)-(*) yields (αk2)/(n + 1) = (bl − d2)/b and (2) follows.

From Miyaoka’s inequality ([6] Cor.1.3 with D = 0) we get
∑

p∈Sing(Fb)
ν(p) ≤

c2(F̃b)−
c21(F̃b)

3 . For an An singularity, ν = (n+1− 1
n+1) (the Euler number is n+1

and | G |= n+ 1). Since c21(F̃b) = b(b− 4)2 and since c2(F̃b) = b3 − 4b2 + 6b, we get
αn(n+2)

n+1 ≤ 2b(b−1)2

3 and (3) follows.

From (2) n + 1 = (αbk2)/(lb − d2). From (1) αk = A + l. It follows that

n = bk(A+l)
lb−d2

− 1. Hence αn = αbk(A+l)
lb−d2

− α. From (1), α ≤ A + l. This implies

αn ≥ αbk(A+l)
lb−d2

−(A+ l) = (A+ l)[b(αk− l)+d2]/(lb−d2) = (A+ l)[bA+d2]/(lb−d2).

We conclude with (3). �

Gathering everything together:

Theorem 15. Let C ⊂ P3 be a smooth, irreducible curve of degree d, genus

g. If C is a primitive set theoretic complete intersection, then there exist integers

a, b, l,m, α, n, k such that:

(1) md = ab

(2) 2g − 2 + l(m− 1) = d(a+ b− 4)

(3) αk = A+ l, where A := d(b− 4)− 2g + 2

(4) αn < 2b(b− 1)2/3

(5) 3(A + l)(bA+ d2) < 2b(lb− d2)(b− 1)2
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Applying this to the case d = 4, g = 0 we get:

Corollary 16. Let C ⊂ P3 be a smooth rational quartic curve. If C is a

primitive s.t.c.i. of type (a, b,m, l), then (a, b,m, l) is one of the following ten cases:

(a, b, l) ∈ {(4, 7, 5), (6, 26, 3), (12, 18, 2), (10, 28, 2), (9, 48, 2), (22, 50, 1), (20, 67, 1),

(19, 84, 1), (18, 118, 1), (17, 220, 1)}.

Proof. We take the list of Lemma 4 and we apply Theorem 15. Thanks to condition

(5) we can exclude five cases: (a, b) = (3, 4), (3, 8), (4, 4), (13, 16), (28, 33). �

Remark 17. The cases with a = 3 were already excluded in [3] in a different way,

so our improvement is limited to the exclusion of three cases ((4, 4), (13, 16), (28, 33)).

Remark 18. Although for given (d, g) we know that there is a finite number of

possible (a, b,m, l) (see Proposition 3) it turns out that for every (d, g), the numerical

conditions of Theorem 15 are always fulfilled. Indeed let us set l = 1. From (2) we

get: m = d(a + b − 4) − 2g + 3. Since m = ab/d by (1), it follows that: b =

(d2a− 4d2 − 2gd+3d)/(a− d2). Set a = d2 +1, then b = d4 − 3d2 +3d− 2gd. Since

g ≤ (d− 2)2/4 by Castelnuovo’s bound, we have 0 < a ≤ b. Now take k = 1, so that

α = A+1 by (3). Condition (4) is fulfilled by n = 1 (and also by many other values

of n since 2b(b− 1)2/(A+ 1) ∼ 2d7/3). Finally to check (5) first observe that under

our assumptions: A+ 1 ≤ db so it is enough to show that:

0 < 2b3 − b2(4 + 5d2) + 2b(1 + 4d2)− 2d2 − 3d3

Now since b ≥ d4−d3 we have 2b(1+4d2)−2d2−3d3 > 0 and 2b3− b2(4+5d2) > 0.
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