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ON THE COHOMOLOGY OF RANK TWO VECTOR BUNDLES ON P
2

AND A THEOREM OF CHIANTINI AND VALABREGA.

PH. ELLIA

Abstract. We show that a normalized rank two vector bundle, E, on P
2 splits if and

only if h1(E(−1)) = 0. Using this fact we give another proof of a theorem of Chiantini

and Valabrega. Finally we describe the normalized bundles with h1(E(−1)) ≤ 4.

1. Introduction.

We work over an algebraically closed field of characteristic zero. It follows from a famous

theorem of Horrocks ([9]) that a rank two vector bundle E on P
n, n ≥ 2, splits if and only

if Hi
∗
(E) :=

⊕
k∈Z

Hi(E(k)) = 0, for 0 < i < n. This has been improved: as a consequence

of another famous theorem by Evans-Griffith, under the same assumptions, E splits if and

only if H1

∗
(E) = 0 (see [5]). Along these lines, on P

3, there is a remarkable result:

Theorem 1. (Chiantini-Valabrega [3])

Let F be a rank two vector bundle on P
3.

(1) If c1(F) = 0, then F splits if and only if h1(F(−1)) = 0.

(2) If c1(F) = −1, then F splits if and only if h1(F(−1)) = 0 or h1(F) = 0 or h1(F(1)) = 0.

It is natural to ask if there is a similar result on P
2 and indeed there is: let E be a

normalized (i.e. −1 ≤ c1(E) ≤ 0) rank two vector bundle on P
2, then E splits if and only

if h1(E(−1)) = 0. Furthermore this is the best possible result. Indeed if E = Ω(1), then

h1(E(m)) = 0, ∀m 6= −1, but E is indecomposable. Actually this result follows from a more

general fact: with notations as above, we have h1(E(k)) ≤ h1(E(−1)), ∀k ∈ Z (see Theorem

2). The proof of Theorem 2 is quite easy using standard vector bundles techniques. This

statement has certainly been (unconsciously) known since a long time but, as far as I know,

hasn’t been put in evidence. That’s a pity because it has some interesting consequences.

For example we show how to recover Theorem 1 from it. (For another application see [6].)

In the last section, after some general considerations, we describe rank two vector bundles

on P
2 with h1(E(−1)) ≤ 4.

2. Variations on a theorem of Chiantini and Valabrega.

Let us take some notations and recall some basic facts.
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If F is a rank two vector bundle on P
n, n ≥ 2, then c1(F (m)) = c1(F ) + 2m and

c2(F (m)) = c1(F )m + c2(F ) + m2. A rank two vector bundle E is normalized if −1 ≤

c1(E) ≤ 0. In this case we will denote by c1, c2 its Chern classes.

In the sequel E will always denote a normalized rank two vector bundle with Chern classes

c1, c2.

The integer rE (or just r if no confusion can arise) is defined as follows r = min{k ∈ Z |

h0(E(k)) 6= 0}. In other words r is the least twist of E having a section. Let s ∈ H0(E(r)).

If s does not vanish, then E ≃ O(−r) ⊕ O(r + c1). If s vanishes, by minimality, its zero

locus (s)0 = Z, has codimension two and we have an exact sequence: 0 → O → E(r) →

IZ(2r + c1) → 0. The subscheme Z is l.c.i. and deg(Z) = c2(E(r)).

The bundle E is said to be stable if r > 0. If r ≤ 0 we will say that E is not stable (it

can be semi-stable if c1 = 0).

If E is not stable and indecomposable, then h0(E(r)) = 1, hence Z is uniquely defined.

Finally we recall Riemann-Roch theorem: If F is a rank two vector bundle on P
2 with

Chern classes c1, c2, then

χ(F ) = 2 +
c1(c1 + 3)

2
− c2.

In particular if E is a normalized rank two vector bundle on P
2 with Chern classes ci, then:

(1) χ(E(k)) =
c1
2
(c1 + 2k + 3) + (k + 1)(k + 2)− c2.

If F is a rank two normalized vector bundle on P
3 with Chern classes ci, then:

If c1 = 0 : χ(F(k)) = −c2(k + 2) +
1

3
(k + 1)(k + 2)(k + 3)

If c1 = −1 : χ(F(k)) =
1

6
(k + 1)(k + 2)(2k + 3)−

c2
2
(2k + 3)

(2)

Now we can prove the main result of this section:

Theorem 2. Let E be a rank two normalized vector bundle on P
2. Then:

(1) h1(E(k)) ≤ h1(E(−1)), ∀k ∈ Z.

(2) E splits if and only if h1(E(−1)) = 0.

Proof. (1) We may assume E indecomposable. If E is not stable we have an exact sequence:

0 → O → E(r) → IZ(2r + c1) → 0, with r ≤ 0 and Z ⊂ P
2 a non-empty zero-dimensional

subscheme. Twisting by O(−r− 1) and taking cohomology we get: h1(E(−1)) = h1(IZ(r−

1+c1). Since r−1+c1 < 0, h1(IZ(r−1+c1)) = h0(OZ) =: deg(Z). Now for any k, the exact

sequence above shows that h1(E(k)) ≤ h1(IZ(k + r + c1)). Since h1(IZ(m)) ≤ h0(OZ), ∀m

(consider 0 → IZ(m) → O(m) → OZ → 0), we are done.

Now assume E is stable. Let L ⊂ P
2 be a general line and consider the exact sequence

0 → E(m − 1) → E(m) → EL(m) → 0. Since EL = OL ⊕ OL(c1) (Grauert-M’́ulich

theorem, see [9]), if m ≤ −1, h0(EL(m)) = 0 and h1(E(m− 1)) ≤ h1(E(m)). It follows that

h1(E(m)) ≤ h1(E(−1)) if m ≤ −1. If m ≥ 0, by Serre duality h1(E(m)) = h1(E∗(−m −

3)) = h1(E(−m− 3− c1)) and again h1(E(m)) ≤ h1(E(−1)).
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(2) Of course (2) follows from (1) and Horrocks’ theorem, but let us give a simpler

argument. If E is not stable arguing as in (1), we get degZ = 0, hence Z = ∅ and E splits.

It remains to show that h1(E(−1)) > 0 if E is stable. By stability χ(E(−1)) = −h1(E(−1)).

By Riemann-Roch, if h1(E(−1)) = 0, we get c2 = 0. Now χ(E) = 2 if c1 = 0 (resp. 1 if

c1 = −1). It follows that h2(E) > 0. But h2(E) = h0(E∗(−3)) = h0(E(−c1 − 3)) = 0, by

stability. Hence h1(E(−1)) 6= 0. �

Remark 3. This is the best possible result in the sense that for any m 6= −1, there exists

an indecomposable rank two vector bundle, E, with h1(E(m)) = 0: just take E = Ω(1).

Remark 4. Let’s consider an unstable rank two vector bundle, E, with c1(E) = −1.

Arguing as above we see that h1(E) = 0 implies that E splits.

Assume now h1(E(1)) = 0. We have 0 → O → E(r) → IZ(2r − 1) → 0. Twisting by

O(−r + 1) we get: 0 → O(−r + 1) → E(1) → IZ(r) → 0 it follows that h1(IZ(r)) = 0.

Now consider 0 → IZ(r) → O(r) → OZ → 0. Since r ≤ 0, the only possibility is r = 0 and

degZ = 1. In conclusion, if E doesn’t split, we have: 0 → O → E → IP (−1) → 0, where P

is a point. Such bundles do exist.

Remark 5. One can show the following: let E be a stable, rank two vector bundle on

P
2, with c1(E) = −1.

If h1(E) = 0 then there exists an exact sequence: 0 → O → E(1) → IZ(1) → 0, where Z

is a set of three non collinear points. We have c2(E) = 3.

If h1(E(1)) = 0 then there exists an exact sequence: 0 → O → E(2) → IZ(3) → 0, where

Z is a set of six points not lying on a conic. We have c2(E) = 4.

Let us recover Theorem 1.

Lemma 6. (1) Let F be a stable, normalized, rank two vector bundle on P
3. Then

h1(F(−1)) 6= 0.

(2) Moreover if c1(F) = −1, we have h1(F).h1(F(1)) 6= 0.

Proof. (1) Let H ⊂ P
3 be a general plane and consider the exact sequence 0 → F(−2) →

F(−1) → FH(−1) → 0. Assume h1(F(−1)) = 0. By Barth’s restriction theorem ([1])

h0(FH(−1)) = 0. It follows that h1(F(−2)) = 0 and then h1(F(−m)) = 0,m ≥ 1. Now we

have h2(F(−2)) = h1(F(−c1 − 2)) = 0. This implies h1(FH(−1)) = 0 and by Theorem 2,

FH splits. This implies that F also splits (see [9]), a contradiction. Hence h1(F(−1)) 6= 0.

(2) Assume h1(F) = 0. By stability we have h3(F) = h0(F(−3)) = 0. It follows that

χ(F) = h2(F) ≥ 0. By Riemann-Roch we get 1− 3c2/2 ≥ 0. This is impossible since c2 > 0

and c2 is even.

Assume h1(F(1)) = 0. We have h3(F(1)) = h0(F(−4)) = 0. It follows that χ(F(1)) ≥ 0.

By Riemann-Roch this yields: 5 − 5c2/2 ≥ 0. Since c2 is even and c2 > 0, it follows that
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c2 = 2. Stable rank two vector bundles on P
3 with c1 = −1, c2 = 2 have been classified ([7])

and they all have h1(F(1)) = 1. �

Lemma 7. Let F be a non-stable, normalized, rank two vector bundle on P
3. If

h1(F(−1)) = 0, then F splits.

Proof. Since F is not stable we have an exact sequence: 0 → O → F(r) → IC(2r +

c1) → 0 (∗), where r ≤ 0 and where C is either empty or a l.c.i. curve with ωC(4 −

2r − c1) ≃ OC (∗∗). Assume h1(F(−1)) = 0 and C non empty. Twisting by O(−r − 1)

and taking cohomology, we get h1(IC(r − 1 + c1)) = 0. Since r − 1 + c1 < 0 this implies

h0(OC(r − 1 + c1)) = 0. It follows from (∗∗) that h0(ωC(−r + 3)) = 0. Now consider

the exact sequence: 0 → IC(r − 2 + c1) → IC(r − 1 + c1) → IC∩H(r − 1 + c1) → 0,

where H is a general plane. If h2(IC(r − 2 + c1)) = 0, then h1(IC∩H(r − 1 + c1)) = 0.

Restricting (∗) to H and twisting by −r − 1, we get h1(FH(−1)) = 0. By Theorem 2,

FH splits, hence F also splits, which contradicts the minimality of the twist r (C should

be empty). So h2(IC(r − 2 + c1)) = h1(OC(r − 2 + c1)) 6= 0. By Serre duality on C:

h1(OC(r − 2 + c1)) = h0(ωC(−r + 2 − c1)) 6= 0. But this contradicts h0(ωC(−r + 3)) = 0.

We conclude that C is empty and that F splits. �

Lemma 8. Let F be a non stable rank two vector bundle on P
3, with Chern classes

c1 = −1, c2. If h1(F) = 0 or h1(F(1)) = 0, then F splits.

Proof. Since F is not stable we have an exact sequence: 0 → O → F(r) → IC(2r− 1) → 0,

with r ≤ 0. Twisting by O(m) and taking cohomology, we see that h0(F(m+r)) = h0(O(m))

as long as m ≤ −2r+ 1 (since then h0(IC(m+ 2r− 1)) = 0). Twisting by OH , H a general

plane, we get 0 → OH → FH(r) → IC∩H(2r − 1) → 0. Arguing as above we get that

h0(FH(m + r)) = h0(OH(m)) if m ≤ −2r + 1. We conclude that the exact sequence

0 → F(k − 1) → F(k) → FH(k) → 0 is exact on H0 if k ≤ −r + 1. In particular we

have 0 → H1(F(k − 1)) → H1(F(k)), if k ≤ −r + 1. If h1(F(t0)) = 0 with t0 ≤ −r + 1,

then h1(F(m)) = 0 for m ≤ t0. So if h1(F).h1(F(1)) = 0, then h1(F(−1)) = 0. Since

h2(F(−2)) = h1(F(−1)), we get h1(FH(−1)) = 0. By Theorem 2 we conclude that FH

splits, hence F also splits. �

Putting every thing together we get:

Proposition 9. Theorem 2 implies Theorem 1.

Remark 10. The original proof in [3] has been worked out in the framework of sub-

canonical space curves.

Let us conclude this section with a last remark:
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Proposition 11. Let E be an indecomposable rank two vector bundle on P
2. Then

the module H1

∗
(E) is connected (i.e. if h1(E(t)) 6= 0 and h1(E(m)) 6= 0 with t < m, then

h1(E(k)) 6= 0 for t < k < m).

According to Theorem 2 this is equivalent to the following: (a) if h1(E(−t)) = 0 for some

t ≥ 2, then h1(E(−m)) = 0, ∀m ≥ t, and (b) if h1(E(t)) = 0 for some t ≥ 0, then

h1(E(m)) = 0, ∀m ≥ t.

Proof. (1) First assume E stable. Using the exact sequence 0 → E(−t − 1) → E(−t) →

EL(−t) → 0 (L ⊂ P
2 a general line) and the fact that h0(EL(−t)) = 0 if t ≥ 2 (because

EL ≃ OL ⊕OL(c1), by stability), condition (a) follows immediately.

Now (b) follows from (a) by duality, indeed h1(E(t)) = h1(E(−t−c1−3)) and t+3+c1 ≥ 2.

(2) Assume E non stable. Then we have an exact sequence 0 → O → E(r) → IZ(2r +

c1) → 0, with r ≤ 0, Z ⊂ P
2 zero-dimensional. If h1(E(t)) = 0, t ≥ 0, then h1(IZ(2r +

c1 + t)) = 0. Since Z is zero-dimensional we have h1(IZ(k)) = 0, ∀k ≥ 2r + c1 + t, hence

h1(E(m)) = 0, ∀m ≥ t. This proves (b). Now (a) follows by duality: by assumption

0 = h1(E(−t)) = h1(E(t − c1 − 3)). Since t ≥ 2, t− c1 − 3 ≥ 0, except if c1 = 0, t = 2 but

this case cannot occur since h1(E(−1)) = h1(E(−2)) 6= 0 by Theorem 2. So if c1 = 0, we

may assume t ≥ 3. �

Remark 12. (i) This improves Castelnuovo-Mumford’s lemma at least for the vanishing

part.

(ii) It can be shown that the H1-module of an indecomposable rank two vector bundle on

P
3 is connected, but the proof is much more difficult, see [2].

3. Rank two vector bundles on P
2

with h1(E(−1)) ≤ 4 .

In this section we will investigate bundles with h1(E(−1)) =: u small, say u ≤ 4. Let us

start with a useful remark:

Remark 13. Assume E indecomposable, r as usual and consider 0 → O → E(r) →

IZ(2r + c1) → 0, where Z ⊂ P
2, is zero-dimensional. Let 0 → L1 → L0 → IZ → 0 be the

minimal free resolution of IZ . Then we can lift the morphism L0(2r+ c1) → IZ(2r+ c1) to

a morphism L0(2r + c1) → E(r) and then get (after a twist) an exact sequence:

(3) 0 → L1(r + c1) → O(−r)⊕ L0(r + c1) → E → 0

This gives the minimal free resolution of H0

∗
(E). Now by dualizing and taking into account

that E∗ = E(−c1) we get:

(4) 0 → E → O(r + c1)⊕ L∗

0
(−r) → L∗

1
(−r) → 0

Taking cohomology we get the beginning of the minimal free resolution of the S := k[x, y, z]

module H1

∗
(E):

0 → H0

∗
(E) → S(r + c1)⊕ L∗

0
(−r) → L∗

1
(−r) → H1

∗
(E) → 0
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Then combining with (3) we get the whole resolution. By the way we notice a curious fact:

rk(S(r + c1) ⊕ L∗

0
(−r)) = rk(L∗

1
(−r)) + 2. So for a finite length graded module M , to

be the H1-module of a rank two vector bundle on P
2, the number of relations among its

generators must be the number of generators plus two. In fact this is not only necessary but

also sufficient (see [10] for details).

Lemma 14. Let E be a normalized rank two vector bundle on P
2. Assume E inde-

composable, with h1(E(−1)) =: u. Let r be the minimal twist of E having a section. If E

is not stable, then E(r) has a section vanishing on a zero-dimensional subscheme, Z, with

deg(Z) = u.

Proof. We have an exact sequence 0 → O → E(r) → IZ(2r + c1) → 0, with r ≤ 0 since

E is not stable. Twisting by O(−r + 1) and taking cohomology we get: h1(E(−1)) =

h1(IZ(r + c − 1 − 1) = h0(OZ), because r + c1 − 1 < 0 (notice that −r − 1 ≥ −1, hence

h2(O(−r − 1)) = 0). It follows that deg(Z) = u. �

Remark 15. (1) In view of this lemma and on Remark 13 if we know all the possible

minimal free resolutions of u points we get all possible resolutions of H0

∗
(E). Observe that the

minimal free resolution of H0

∗
(E) determines the whole cohomology of E. Indeed if we know

h0(E(k)), ∀k ∈ Z, then by duality we know h2(E(k)), ∀k ∈ Z. Knowing h0(E(k)), h2(E(k)),

we get h1(E(k)) by Riemann-Roch.

(2) If E is non stable, indecomposable, then h0(E(r)) = 1, hence Z = (s)0 is uniquely

defined. So we can define a map, γ, from the set of non stable bundles with h1(E(−1)) = u

to Hilbu(P2), by γ(E) = Z.

Lemma 16. Let E be a stable, normalized, rank two vector bundle on P
2. We have

u := h1(E(−1)) = c2.

Proof. Since h0(E(−1)) = 0 = h2(E(−1)) = h0(E(−c − 1 − 2)), we have χ(E(−1)) =

−h1(E(−1)). By Riemann-Roch χ(E(−1)) = −c2 and the result follows. �

Remark 17. At this point the classification, or better the description, of rank two

vector bundles E with h1(E(−1)) = u can be split into two parts:

(1) for non stable bundles: it is enough to determine all the minimal free resolutions of l.c.i.,

zero-dimensional subschemes of degree u.

(2) classification of stables vector bundles of Chern classes −1 ≤ c1 ≤ 0 and c2 = u. In

particular we want to know the least twist having a section.

Observe that the set of non stable bundles with h1(E(−1)) = u is some kind of counterpart

to the moduli space M(c1, c2) (c2 = u) in the stable case.

Let us start with non stable bundles. To make things manageable we will assume u ≤ 4.
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Lemma 18. Let Z ⊂ P
2 be a closed subscheme of codimension two, with deg(Z) = u ≤

5. There are ten possible minimal free resolutions for the ideal of Z, namely:

(a) Z is contained in a line, in this case Z is a complete intersection (1, u)

(b1) u = 3 and Z is not contained in a line, in this case:

0 → 2.O(−3) → 3.O(−2) → IZ → 0.

(b2) u = 4, h0(IZ(1)) = 0, but Z has a subscheme of length three contained in a line. In

this case: 0 → O(−3)⊕O(−4) → 2.O(−2)⊕O(−3) → IZ → 0

(b3) u = 4 and Z is a complete intersection (2, 2).

(b4) u = 5, h0(IZ(1)) = 0 but Z has a subscheme of length 4 contained in a line. In this

case: 0 → O(−3)⊕O(−5) → 2.O(−2)⊕O(−4) → IZ → 0

(b5) u = 5, h0(IZ(2)) = 1. In this case:

0 → 2.O(−4) → 2.O(−3)⊕O(−2) → IZ → 0

Proof. Well known. �

As explained before this gives us all the possible resolutions (hence all the possible coho-

mologies) of non stable, indecomposable bundles with h1(E(−1)) ≤ 4. We need u = 5 for

the stable case:

Proposition 19. Let E be a stable, normalized, rank two vector bundle on P
2, with

h1(E(−1)) = u ≤ 4. As usual let r denote the minimal twist of E having a section. Then

r = 1 or r = 2, c1 = −1, u = 4. Moreover:

(1) If c1 = 0 we have u ≥ 2 and E(1) has a section vanishing on a subscheme of degree u+1

which is not contained in a line.

(2) If c1 = −1 and r = 1, we have u ≥ 1 and E(1) has a section vanishing on a subscheme

of length u. If r = 2, u = 4, then E(2) has a section vanishing on a degree 6 subscheme, Z,

with h0(IZ(2)) = 0.

Proof. In any case h2(E(1)) = h0(E(−c1 − 4)) = 0 by stability. Since χ(E(1)) = 6 − c2 if

c1 = 0 (resp. 4 − c2 if c1 = −1) and since c2 = u (Lemma 16), we get χ(E(1)) > 0, except

if c1 = −1, u = 4. In this case we have h0(E(1)) = h1(E(1)). Assume h0(E(1)) = 0. Since

χ(E(2)) = 9−c2, we have h0(E(2)) > 0 and an exact sequence 0 → O → E(2) → IZ(3) → 0,

where deg(Z) = c2(E(2)) = 6. We have h0(E(1)) = 0 = h0(IZ(2)). This proves the first

claim.

(1) Assume c1 = 0. We have 0 → O → E(1) → IZ(2) → 0. By stability h0(IZ(1)) = 0. In

particular degZ = c2 + 1 ≥ 3, i.e. u = c2 ≥ 2.

(2) Assume now c1 = −1. Since c2(E(1)) = c2 = u, if r = 1, we have 0 → O → E(1) →

IZ(1) → 0, with Z of degree u. If u = 4 and h0(E(1)) = 0, a section of E(2) vanishes along

Z of degree 6 with h0(E(1)) = 0 = h0(IZ(2)). �

Remark 20. (1) By Serre’s construction for any k ≤ 2 and any locally complete

intersection, zero-dimensional subscheme Z ⊂ P
2 there exists a rank two vector bundle, F ,
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with c1(F ) = k, and an exact sequence 0 → O → F → IZ(k) → 0. If k ≤ 0 this is the

least twist of F having a section and F is not stable. In particular all the bundles we have

considered in Proposition 19 do really exist !

(2) We have the list of all possible resolutions for H0

∗
(E), where E is a normalized bundle with

h1(E(−1)) ≤ 4. Indeed the only case not covered by Lemma is when r = 2, but a subscheme,

Z, of degree 6, not on a conic has a resolution like: 0 → 3.O(−4) → 4.O(−3) → IZ → 0.

(2) We observe that if u = 1 we always have that E(r) has a section vanishing at one

point. More precisely:

Corollary 21. Let E be a normalized, indecomposable, rank two vector bundle on P
2.

Let r denote the minimal twist of E having a section.

(1) The following are equivalent:

(i) h1(E(m)) ≤ 1, ∀m ∈ Z

(ii) h1(E(−1)) = 1

(iii) E(r) has a section vanishing at one point

(iv) there is an exact sequence:

0 → O(−b− 1) → O(−a)⊕ 2.O(−b) → E → 0

with a ≤ b (in particular a = r, b = −r − c1 + 1).

(2) A bundle like in (1) is stable if and only if a = b, if and only if E = Ω(1).

Proof. (i) ⇔ (ii), since E is indecomposable, this follows from Theorem 2.

(ii) ⇒ (iii): If E is non stable this follows from Lemma 14. If E is stable this follows from

Proposition 19. More precisely we have c2 = 1 (Lemma 16) and r = 1, c1 = −1 (Proposition

19).

(iii) ⇒ (iv): This follows from Remark 13.

(iv) ⇒ (i): Since a ≤ b, r = a, hence a section of E(a) will vanish in codimension two. Since

c1 = −r − b + 1, we get b = −r − c1 + 1, c1(E(a)) = a − b + 1. We get a commutative

diagram:

0 0

↓ ↓

O = O

↓ ↓

0 → O(a− b− 1) → O⊕ 2.O(−b+ a) → E(a) → 0

|| ↓ ↓

0 → O(a− b− 1) → 2.O(−b+ a) → IZ(a− b+ 1) → 0

↓ ↓

0 0

So we get 0 → O(−2) → 2.O(−1) → IZ → 0 and we conclude that Z is a point p. Since

h1(Ip(m)) is 0 if m ≥ 0 and 1 if m < 0, we conclude that h1(E(k)) ≤ 1, ∀k ∈ Z.

(2) We have already seen ((ii) ⇒ (iii)) that E is stable if and only if c2 = r = 1, c1 = −1.



ON THE COHOMOLOGY OF RANK TWO VECTOR BUNDLES 9

Hence we have 0 → O(−1) → 3.O → E(1) → 0. It follows that E(1) = T (−1) = Ω(2). On

the other hand if r = a = b = −r − c1 + 1, then c1 = −1 and r = 1, in particular E is

stable. �

Remark 22. This result is known in the context of logarithmic bundles, see [4], [8]

In the same vein we have:

Corollary 23. Let E be a normalized, indecomposable, rank two vector bundle on P
2.

Let r denote the minimal twist of E having a section. The following are equivalent:

(i) h1(E(−1)) = 2

(ii) E(r) has a section vanishing along a subscheme of degree two, or E is stable with

c1 = 0, c2 = 2, r = 1 and E(1) has a section vanishing along a subscheme of degree three

not contained in a line.

(iii) there is an exact sequence:

0 → O(−b− 2) → O(−b − 1)⊕O(−b)⊕O(−a) → E → 0

with a ≤ b (in particular a = r, b = −r − c1 + 1), or:

0 → 2.O(−2) → 4.O(−1) → E → 0.

Proof. It is similar to the previous one, so we omit it. �
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