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Abstract

This work is concerned with the solution of the convex quadratic programming problem

arising in training the learning machines named support vector machines. The problem is sub-

ject to box constraints and to a single linear equality constraint; it is dense and, for many prac-

tical applications, it becomes a large-scale problem. Thus, approaches based on explicit

storage of the matrix of the quadratic form are not practicable. Here we present an easily par-

allelizable approach based on a decomposition technique that splits the problem into a se-

quence of smaller quadratic programming subproblems. These subproblems are solved by a

variable projection method that is well suited to a parallel implementation and is very effective

in the case of Gaussian support vector machines. Performance results are presented on well

known large-scale test problems, in scalar and parallel environments. The numerical results

show that the approach is comparable on scalar machines with a widely used technique and

can achieve good efficiency and scalability on a multiprocessor system.
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1. Introduction

This work proposes a parallel solver for the large-scale quadratic programming

(QP) problem arising in training the learning machines named support vector ma-

chines (SVMs) [3,4,30].
The main idea behind the pattern classification algorithm SVM is to separate two

point classes of a training set,

D ¼ fðxi; yiÞ; i ¼ 1; . . . ;N ; xi 2 Rm; yi 2 f�1; 1gg;
with a surface that maximizes the margin between them. This separating surface is

obtained by solving a convex quadratic program of the form

min f ðaÞ ¼ 1

2
aTQa�

XN
i¼1

ai

s:t: yTa ¼ 0; 06 aj 6C; j ¼ 1; . . . ;N ;

ð1Þ

with y ¼ ½y1; y2; . . . ; yN 	T and a ¼ ½a1; a2; . . . ; aN 	T. The entries Qij of the symmetric
positive semidefinite matrix Q are defined as

Qij ¼ yiyjKðxi; xjÞ; i; j ¼ 1; 2; . . . ;N ;

where Kð
; 
Þ denotes a kernel function depending on the type of the surface con-

sidered. Interesting choices for the kernel function are the polynomial kernel

Kðs; tÞ ¼ ð1þ sTtÞd

and the Gaussian kernel

Kðs; tÞ ¼ e
�ks�tk2

2

2r2 ; r 2 R:

The nonzero components in the solution of (1) correspond to the training examples

that determine the separating surface; these special examples are called support

vectors (SVs) and their number is usually much smaller than N . Since the matrix Q of

the quadratic form is dense, being equal in size to the total number of training ex-
amples, the quadratic program (1) may be considered a challenging large-scale

problem (N 
 10000) in many real life applications of the SVMs.

The various approaches proposed in the last years to overcome the difficulties in-

volved in this large and dense optimization problem fall into two main categories.

The first category includes algorithms that exploit the special structure of the prob-

lem, while the second collects the techniques based on different formulations of the

optimization problem that gives rise to the separating surface. The latter reformula-

tions lead to more tractable optimization problems, but use criteria for determining
the decision surface which, in some cases, are considerably different from that of the

standard SVM [7,10,11,14–16]. Since the numerical results show a remarkable reduc-

tion in training time (with test set correctness statistically comparable to that of stan-

dard SVM classifiers), these approaches appear an important tool for very large data

sets. Among the methods of the first category we recall the interior point method

proposed in [5] for training linear SVMs and the decomposition techniques
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[8,21,23]. The method in [5] is suitable for both the special definition of Q in the

linear case (Qij ¼ yiyjxT
i xj) and the simple structure of the SVM constraints. This ap-

proach, by using an appropriate implementation of the linear algebra and out-of-

core computations, can handle massive problems in which the size of the training

set is of the order of millions. On the other hand, the decomposition techniques
are based on the idea of splitting the problem (1) into a sequence of smaller QP sub-

problems that can fit into the available memory (first proposed in [1]). The various

techniques differ in the strategy employed for identifying the variables to update at

each iteration and in the size chosen for the subproblems. In [23] the subproblems

have size 2 and can be solved analytically, while in [8,21] the subproblem size is a

parameter of the procedure and a numerical QP solver is required.

In this work, following the decomposition scheme named SVMlight and proposed

in [8], we develop a parallel solver for problem (1). In Section 2, we analyze the
SVMlight technique and focus on the choice of the subproblem size and on the inner

QP solver, which are crucial questions for the effectiveness of the method. We intro-

duce an iterative solver for the inner QP subproblems well suited to a parallel imple-

mentation. The solver is a variable projection method [26,27] that is very efficient in

the case of Gaussian SVMs and able to exploit the structure of the constraints. By

using this inner solver, the SVMlight technique may be appropriately implemented

to work efficiently with large QP subproblems and few decomposition steps. In Sec-

tion 3, we describe how this version of the decomposition technique can be easily
parallelized and we evaluate its effectiveness by solving several large-scale benchmark

problems on a multiprocessor system.

2. Decomposition techniques

In order to describe our parallel implementation more clearly we need to recall in

detail the main ideas underlying the decomposition techniques for problem (1).
At each step of the decomposition strategies proposed in [8,21,23], the variables ai

of (1) are split into two categories:

• the set B of free (or basic) variables,

• the set N of fixed (or nonbasic) variables.

The set B is usually referred to as the working set. Suppose we arrange the arrays a, y
and Q with respect to B and N :

a ¼ aB
aN

� �
; y ¼ yB

yN

� �
; Q ¼ QBB QBN

QNB QNN

� �
:

Given a generic �aa ¼ ½�aaT
B; �aa

T
N 	

T
, the idea behind the decomposition techniques consists

in progressing toward the minimum of f ðaÞ by substituting �aaB with the vector ~aaB
obtained by solving (1) with respect only to the variables in the working set. Of

course, in order to achieve a rapid decrease in the objective function, an appropriate

choice of the working set is required. One of the main contributions in this respect is
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afforded by the effective updating rule, based on Zoutendijk�s method, introduced by

the SVMlight algorithm of Joachims [8].

The SVMlight decomposition technique can be stated in this way:

Step 1. Let að1Þ be a feasible point for (1), let Nsp and Nc be two integer values such
that N PNsp PNc; arbitrarily choose Nsp indices for the working set B and

set k ¼ 1.

Step 2. Compute the elements of QBB, q ¼ QT
NBa

ðkÞ
N � ½1; 1; . . . ; 1	

T
and e ¼ �yTN a

ðkÞ
N .

Step 3. Solve the subproblem

min gðaBÞ ¼
1

2
aT
BQBBaB þ qTaB

s:t: yTBaB ¼ e; 06 ai 6C; for i 2 B;
ð2Þ

and let a
ðkþ1Þ
B denote an optimal solution. Set aðkþ1Þ ¼ a

ðkþ1Þ
B
a
ðkÞ
N

" #
.

Step 4. Update the gradient

rf ðaðkþ1ÞÞ ¼ rf ðaðkÞÞ þ QBB
QNB

� �
a
ðkþ1Þ
B

�
� a

ðkÞ
B

�
ð3Þ

and terminate if aðkþ1Þ satisfies the KKT conditions.

Step 5. Find the indices corresponding to the nonzero components of the solution of

the following problem:

min rf ðaðkþ1ÞÞTd;

s:t: yTd ¼ 0;

di P 0 for i such that ai ¼ 0;

di 6 0 for i such that ai ¼ C;

� 16 di 6 1;

#fdijdi 6¼ 0g6Nc:

ð4Þ

Update B to include these indices; set k  k þ 1 and go to step 2.

We refer to [8,12,13] for a discussion about the convergence properties of the

scheme and about other important aspects, such as how to solve the nonexpensive li-

near program (4) and how to check the KKT conditions for this special QP problem.

Here we concentrate on steps 2, 3 and 4, which require the main computational re-

sources and on which is based the proposed parallel implementation. These steps in-

volve kernel evaluations (for computing the elements of QBB and QNB) that may be

very expensive if the dimension of the input space is large and the training examples
have many nonzero features. Furthermore, we have to solve the QP subproblem (2)

of size Nsp at each iteration. Various efficient tricks are used in the implementation of

Joachims to reduce the computational cost of these tasks. In particular, a caching
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strategy to avoid recomputation of elements of Q previously used and a shrinking

strategy for reducing the size of the problem are implemented. For the size Nsp of

the working set, very small values are suggested in [8]. As a result, the subproblem

(2) can be efficiently solved by many QP packages, does not increase significantly

the cost of each iteration and, in addition to the caching and shrinking strategies, re-
duces the total number of kernel evaluations required by the scheme. On the other

hand, in general, small values for Nsp imply many iterations of the SVMlight technique.

In short, the implementation proposed by Joachims is organized to produce better

performance when it works with small values of Nsp, that is, with many nonexpensive

iterations.

In order to develop a parallel implementation of this decomposition scheme it is

useful to analyze its behavior also for large values of Nsp. In fact, in this case we ex-

pect few expensive iterations whose complexity may be reduced by facing in parallel
their expensive tasks. To this end, the choice of the solver for the QP subproblems (2)

is crucial. The solver must be efficient for this dense problem when the size is medium

or large and well suited to parallel implementations. The robust solvers suggested in

the machine learning literature [3,8,21], like MINOS [19] and LOQO [28,29], are not

designed for the special characteristics of problem (2) and appear hardly paralleliz-

able. In the case of SVMs with Gaussian kernels, an iterative solver suited to exploit

both the structure of the constraints and the particular nature of the Hessian matrix

is introduced in [31]. The method is the variable projection method (VPM) [26,27]
with a special updating rule for its projection parameter, appropriately studied for

the QP problem of this application.

The VPM for the subproblem (2) consists in the following steps: 1

Step I. Let S ¼ diagfs1; . . . ; sNsp
g, si > 0 8i, zð0Þ 2 RNsp arbitrary, q1 > 0, ~‘‘ 2 Nn

f0g, ‘ 1.

Step II. Compute the unique solution �zzð‘Þ of the subproblem

min
1

2
zT

S
q‘

zþ q

�
þ QBB

�
� S

q‘

	
zð‘�1Þ

	T

z

s:t: yTBz ¼ e; 06 zj 6C; j ¼ 1; . . . ;Nsp:

ð5Þ

Step III. If ‘ 6¼ 1, compute the solution h‘ of

min
h2ð0;1	

gðzð‘�1Þ þ hdð‘ÞÞ where dð‘Þ ¼ �zzð‘Þ � zð‘�1Þ

else h‘ ¼ 1.

Step IV. Compute zð‘Þ ¼ zð‘�1Þ þ h‘d
ð‘Þ:

1 Here, as usual, diagfa1; . . . ; ang denotes a diagonal matrix with entries ai, i ¼ 1; . . . ; n and modðm; nÞ is
the remainder of the integer ratio m=n.
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Step V. Terminate if zð‘Þ satisfies a stopping criterion, otherwise update q‘þ1 by the

rule

q‘þ1 ¼

q‘ if kQBBdð‘Þk2 6 �kdð‘Þk2;
dð‘ÞTQBBd

ð‘Þ

dð‘ÞTQBBS�1QBBd
ð‘Þ if modð‘; ~‘‘Þ < ~‘‘

2
;

dð‘ÞTSdð‘Þ

dð‘ÞTQBBd
ð‘Þ otherwise;

8>>><
>>>:

8>>>>><
>>>>>:

where � > 0 is a prefixed small tolerance; then ‘ ‘þ 1 and go to step II.

Each iteration of this scheme essentially requires the matrix-vector product QBB�zzð‘Þ

and the solution of the separable QP problem (5) with the same constraints as (2).

The vector QBB�zzð‘Þ is necessary for computing h‘ in step III, q‘þ1 in step V and for

updating the vector in which is stored QBBzð‘Þ:

tð‘Þ  QBBzð‘Þ ¼ QBBðzð‘�1Þ þ h‘d
ð‘ÞÞ ¼ tð‘�1Þ þ h‘ðQBB�zzð‘Þ � tð‘�1ÞÞ:

Because of the special structure of the constraints, for the solution of (5) very effi-

cient algorithms are available, suitable for both scalar and parallel computation

[2,20,22]. Currently, we are using the OðNÞ algorithm proposed in [22]. Thus, since

the matrix QBB is dense, the main computational cost of each iteration is due to the

matrix-vector product QBB�zzð‘Þ. However, when Nsp is large and the solution a
ðkþ1Þ
B of

(2) has few nonzero components, this cost may be significantly reduced by exploiting

the expected sparsity of �zzð‘Þ. Finally, as numerically shown in [31], the particular

updating rule for the projection parameter q‘ implies a remarkable increase in the

linear convergence rate of the scheme, when the Hessian matrix QBB derives from

training SVMs with Gaussian kernels. Unfortunately, the proposed updating rule in

not so effective in the case of polynomial kernels. The reader is referred to [31] for a

detailed analysis of VPM performance in this kind of problems and to [25,26] for

VPM behavior in more general QP problems.
By using the VPM as efficient inner solver, we can test the SVMlight decomposition

technique with large values of the subproblem size. We develop an implementation

of the SVMlight algorithm appropriately designed for large values of the parameter

Nsp and with the further aim of obtaining an easily parallelizable scheme. For this

reason, we use a very simple caching strategy suitable for implementations on dis-

tributed memory systems and avoid other sophisticated tricks like those proposed

by Joachims. In practice, we fill the caching area with the columns of QNB involved

in (3), that is, the columns corresponding to the nonzero components of

a
ðkþ1Þ
B � a

ðkÞ
B

� �
. This simple strategy is justified by the fact that, in the updating of

the working set at the end of each decomposition iteration, a part of the nonzero

variables of the current working set will be included in the new one. In detail, in
our updating procedure we first include in the new working set the indices given

by (4), then, to fill the set up to Nsp entries, we add the indices satisfying

0 < aðkþ1Þj < C, j 2 B. If these indices are not enough, we then add those such that
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aðkþ1Þj ¼ 0, j 2 B, and, eventually, those satisfying aðkþ1Þj ¼ C, j 2 B. Of course, this

procedure may not be optimal for all problems; sometimes, for example, we find con-

venient to exchange the last two criteria.

In the following numerical experiments we evaluate the behavior of this imple-

mentation named variable projection decomposition technique (VPDT). The VPDT al-
gorithm is coded in standard C and the experiments are carried out on a workstation

Compaq XP1000 at 667 MHz with 768 MB of RAM. We consider two real-world

data sets: the MNIST database of handwritten digits from AT&T Research Labs

[9] and the UCI Adult data set [18]. In the MNIST database the inputs are 784-

dimensional nonbinary sparse vectors; the sparsity level of the inputs is 81% and

the size of the database is 60 000. For these experiments we construct a reduced test

problem of size 20 000 by considering the first 5000 inputs of the digit 8 and the first

15 000 of the other digits. The UCI Adult data set allows us to train a SVM to pre-
dict whether a household has an income greater than $50 000. After appropriate dis-

cretization of the continuous attributes [23], the inputs are 123-dimensional binary

sparse vectors with a sparsity level equal to 89%. We use the version of the data

set with size 16101. For both the data sets we train a Gaussian SVM, with

C ¼ 10, r ¼ 1800 for the MNIST data set and with C ¼ 1, r2 ¼ 10 for the UCI

Adult data set.

In Tables 1 and 2 we compare the results obtained by training the SVM with

Joachims� package SVMlight (version 3.50) and the VPDT algorithm. The methods
use the same stopping rule, based on the fulfillment of the KKT conditions within

a tolerance of 0.001, the same size for the caching area (500 MB) and sparse vector

representation, crucial for optimizing kernel evaluations [24] and for reducing mem-

ory consumption. The VPM is used with S equal to the identity matrix, the null vec-

tor as zð0Þ, q1 ¼ 1, ~‘‘ ¼ 6 and a stopping rule based on the fulfillment of KKT

conditions with the same tolerance used for the VPDT. In the SVMlight package

Table 1

MNIST data set, N ¼ 20000

Nsp Nc Iter. Sec. SV BSV errð~aaÞ errðf ð~aaÞÞ

SVMlight 10� 10� 6719 562.8 2235 83 1.73e)3 8.08e)7
4 2 11 449 529.4 2234 83 1.74e)3 7.09e)7
8 4 6066 516.5 2235 83 1.64e)3 6.23e)7
30 10 1935 525.7 2233 83 1.25e)3 3.93e)7
42 14 1337 527.8 2234 83 1.13e)3 3.16e)7
90 30 556 548.9 2235 83 9.64e)4 2.27e)7
240 80 167 611.4 2235 83 7.42e)4 1.56e)7

VPDT 2000 400 12 672.1 2234 83 7.66e)4 1.76e)7
2100 500 9 539.7 2234 83 6.70e)4 1.73e)7
2200 700 7 504.4 2234 83 6.54e)4 1.68e)7
2300 750 6 468.7 2235 83 9.11e)4 1.59e)7
2400 800 6 495.1 2234 83 4.76e)4 1.93e)7
2500 800 6 515.6 2233 83 8.41e)4 6.11e)8
2600 700 6 520.4 2235 83 7.44e)4 2.26e)7
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two solvers are available for the inner QP subproblems: the first is based on the

method of Hildreth and D�Esopo, the second is a version of the primal-dual infeasi-

ble interior point method of Vanderbei [29], named pr_LOQO and implemented by

Smola [28]. On these test problems, the performance of the solvers differ slightly for

very small values of Nsp, while pr_LOQO appears more effective when Nsp increases.

The reported results concern SVMlight combined with pr_LOQO. In the Tables we

show the number of iterations, the training time in seconds, the number of support
vectors and bound support vectors (BSV) (i.e. support vectors with ai ¼ C) corre-
sponding to different values of the subproblem size. Furthermore, in order to eval-

uate the numerical accuracy of VPDT in comparison to SVMlight, besides the

number of SVs and BSVs, we report the relative errors errð~aaÞ ¼ k~aa� a�k2=ka�k2
and errðf ð~aaÞÞ ¼ jf ð~aaÞ� f ða�Þj=jf ða�Þj, where ~aa denotes the solution provided by

the decomposition techniques with the above stopping rule and a� is the solution ob-

tained by running SVMlight with default settings, but tolerance 10�6 in the stopping

rule. For SVMlight, Nsp and Nc indicate the values assigned to its optimization options
q and n, respectively, while the marker ‘‘*’’ denotes the default parameter setting.

For each value of Nsp we report the results corresponding to an empirical approxi-

mation of the optimal value of Nc, that is, the value of Nc that gave us the lowest

computational time.

The first conclusion that can be drawn from these experiments concerns the be-

havior of the SVMlight. The results confirm that the best performances are obtained

when SVMlight works with QP subproblems of small size. On the other hand, the

VPDT allows comparable performances and numerical accuracy with larger values
of Nsp and very few iterations. This means that VPDT can be considered a strategy

as efficient as SVMlight, but easily parallelizable. In fact, as discussed in the next sec-

tion, the few iterations of the VPDT are suited to being performed on multiprocessor

systems using a parallel version of the VPM and distributed kernel evaluations. Fi-

nally, we recall that VPDT does not benefit from an efficient caching strategy, but

Table 2

UCI adult data set, N ¼ 16101

Nsp Nc Iter. Sec. SV BSV errð~aaÞ errðf ð~aaÞÞ

SVMlight 10� 10� 4175 120.9 5943 5349 2.28e)2 2.74e)7
20 10 1877 114.0 5949 5363 3.37e)2 1.20e)7
28 14 1403 114.3 5958 5365 3.42e)2 1.29e)7
40 20 1072 115.7 5957 5353 3.86e)2 1.03e)7
80 40 502 121.7 5963 5344 3.27e)2 7.33e)8
160 80 240 133.1 5947 5350 3.37e)2 4.87e)8
280 140 124 158.3 5968 5337 3.42e)2 2.14e)8

VPDT 600 250 46 121.7 5956 5343 3.65e)2 1.13e)8
700 400 35 111.9 5960 5351 3.63e)2 3.70e)8
800 500 31 125.2 5967 5358 3.17e)2 3.44e)8
900 450 28 135.0 5964 5354 3.68e)2 2.96e)8
1000 550 27 143.7 5962 5353 3.27e)2 1.95e)8
1100 500 27 150.4 5965 5351 3.45e)2 3.66e)8
1200 700 23 159.8 5960 5343 3.58e)2 1.24e)8
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simply exploits the effectiveness of the VPM as inner QP solver. Of course, better

performances can be expected by improving the caching strategy.

3. A parallel decomposition technique

In this section we will see how a parallel version of the VPDT works in practice.

Our implementation is designed for a distributed memory system, is coded in stan-

dard C and uses standard MPI communication routines [17], hence it is easily por-

table on many multiprocessor systems.

The aim is to parallelize steps 2–4 of the decomposition technique, which include

the heaviest computations. To this end, we distribute blockwise the rows of the ma-

trices QBB and QBN among the available processors (Fig. 1). This data distribution is
well suited to

• designing a parallel version of the VPM, since its computational core is given by

the matrix-vector product QBB�zzð‘Þ;
• exploiting, through the caching strategy, the large total memory usually available

on multiprocessor systems.

Note that the solution of the separable QP subproblem (5) in the VPM could also be
parallelized [20]; however, as observed in the previous section about the cost of each

VPM iteration, this step is much less time-consuming than the matrix-vector product

and this parallelization is not currently performed. As in the scalar version, the

caching strategy is devoted to the management of QBN . In detail, once all the other

local and global arrays are stored, our parallel caching strategy uses the remaining

memory of each processing element (PE) to store locally as much of the rows of QBN

Fig. 1. Data distribution for the parallel caching strategy. Light lines/points show the current updated ele-

ments.
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as possible, among those used by the PE in the current iteration. If one of these rows

was already in the local memory of the PE, only the elements corresponding to the

new indices of the current set N will be computed (light points in Fig. 1), otherwise

entire computation of new entering rows will be required (light lines in Fig. 1). When

the cache is full, the new rows enter by substituting the least-recently-used rows.
Remark that the total number L of stored rows is both a memory-dependent and

problem-dependent value.

Besides the matrices distribution, local copies of all the vectors involved in the ma-

trix-vector products are maintained on each PE. In this way, the products QT
NBa

ðkÞ
N

and ½QBB QBN 	Tðaðkþ1ÞB � a
ðkÞ
B Þ in the decomposition technique and QBB�zzð‘Þ in the

VPM are computed in parallel in two phases. First, a local computation is performed

by each PE to obtain the local part of the result; this phase does not need any syn-

chronization. Second, a collective operation is performed to update the results on all
the PEs. Of course, this phase involves implicit synchronizations.

We tested the code on the Cray T3E present at CINECA Supercomputing Center

(Bologna, Italy): it is an MPP distributed memory system equipped with 256 DEC

Alpha EV5 processing elements (PEs) at 600 MHz, grouped in two 128-PEs sets:

in the first set there are the ones with 128 MB RAM, while in the other set there

are PEs with 256 MB RAM. To evaluate the effectiveness of the proposed implemen-

tation we solve some test problems derived by the MNIST and the UCI Adult data

sets previously described. The test problems are obtained by training Gaussian
SVMs with the setting for the parameters C and r used in Section 2. In the parallel

VPDT the stopping rule consists again in verifying that the KKT conditions are ful-

filled within 0.001.

Let�s start with the results on the MNIST data set. The graphs in Figs. 2–4 present

the behavior on three test problems of size 20 000, 40 000 and 60 000, respectively,

generated as previously explained. In the graphs, the solid line shows the relative

speedup, while the dashed one is for the overall solution time. The relative speedup

Fig. 2. Relative speedup on Cray T3E for MNIST database with N ¼ 20000.
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reported is computed as the ratio of the time needed by the program in a ‘‘sequen-

tial’’ setting of the parallel machine (Ts) to the time needed by the ‘‘same’’ program

on p PEs (Tp):

sprðpÞ ¼
Ts
Tp

:

Here we note that, for a consistent comparison on the Cray T3E, the sequential

setting is ‘‘simulated’’ by running the program on two processors, one of which does

nothing but the initialization of the parallel environment: this is necessary because

this machine has the so-called ‘‘production PEs’’, which are used to run parallel

Fig. 3. Relative speedup on Cray T3E for MNIST database with N ¼ 40000.

Fig. 4. Relative speedup on Cray T3E for MNIST database with N ¼ 60000.
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programs, and ‘‘command PEs’’, which are used to run pure scalar programs.

However, the latter are also devoted to the external user interface, to the complete

I/O management, and are loaded with compilers and debuggers, hence the timing

on these PEs cannot be considered reliable.

In all three graphs, for each fixed number of processors we report the results cor-
responding to the ‘‘optimal’’ values (empirically determined) of the parameters Nsp

and Nc, that is, the values that allow the available computing resources to be best

exploited. These optimal values depend on the number of processors, therefore the

parallel VPDT might require a different number of decomposition iterations and ker-

nel evaluations in comparison with the serial VPDT. This is the reason for the super-

linear speedup, which in turn demonstrates how well the presented implementation

can exploit the available computational resources even with very few PEs.

Consider the smaller case first (Fig. 2). As mentioned, a very good behavior is
shown for 4 and 8 PEs, while it becomes worse for a larger number of processors.

To understand why this happens, recall that the aim of the decomposition technique

is to reduce the problem size; when this size is not large enough, the suitable values

for Nsp may be too small to allow an efficient use of many PEs. This important ob-

servation is confirmed by the graphs in Figs. 3 and 4, where it is clearly evident how,

for increasing problem size, 16 PEs may also be very well exploited (we note that, on

these test problems, the best performance of the parallel VPDT is obtained with val-

ues of Nsp around 2400 for N ¼ 20000, 2800 for N ¼ 40000, 3600 for N ¼ 60000).
The computational time shown by the sequential runs is seen to be quite high, which

is due to two main factors: first, the single processing element of the Cray T3E has at

most 256 MB RAM, which is quite a limited amount of memory for this kind of ap-

plication and severely restricts the performance of our caching strategy; second, the

DEC Alpha EV5 processor mounted on the machine is no longer one of the fastest

available. For instance, the time taken to solve the test problems is about two thirds

less on the more recent DEC Alpha EV6/7 at 667 MHz of a Compaq XP1000 with

768 MB RAM (see Table 1). Nevertheless, the behavior reported is relative, so that
the conclusions are still reliable.

Fig. 5 reports the relative efficiency (eff rðpÞ ¼ sprðpÞ=p), which explains how the

proposed parallel decomposition technique is effective on a small number of proces-

sors and, on the other hand, how much the behavior corresponding to a large num-

ber of PEs improves when the problem size increases.

Moreover, let�s consider the last graph (Fig. 6): here, for all three tested prob-

lems, we report the values of the Kuck�s function, which for p processors is de-

fined as

fKðpÞ ¼ eff rðpÞsprðpÞ ¼
sp2r ðpÞ

p
:

It is well known that fKðpÞ achieves its maximum in the optimal number of pro-

cessors for a given problem. The graph summarizes all the previous observations and

emphasizes that the parallel VPDT may be effective for solving very large problems

on multiprocessor systems, since it appears well suited to exploit efficiently a large

546 G. Zanghirati, L. Zanni / Parallel Computing 29 (2003) 535–551



number of processors as well. Note, in fact, that for all three test problems the fKðpÞ
maximum is obtained for 16 PEs but that, in the largest case, the maximum is close

to the ‘‘optimal’’ one; we may therefore expect that for larger problems more than 16

PEs could be efficiently exploited.

To better analyze the scalability of the parallel VPDT with respect to increasing

computational complexity, we evaluate the scaled speedup of the code on the consi-

dered test problems. Here we use the definition of scaled speedup given in [6]:

Fig. 5. Relative efficiency on Cray T3E for the three tests on the MNIST database.

Fig. 6. Kuck�s function for the three tests on the Cray T3E.

G. Zanghirati, L. Zanni / Parallel Computing 29 (2003) 535–551 547



Ssðc; n;wÞ ¼ c
T ðn;wÞ
T ðcn; cwÞ ; w > 0; nP 1; cP 1; ð6Þ

where T ðn;wÞ is the running time required by a parallel code to solve a problem of
complexity w on n processors, while T ðcn; cwÞ is the running time required by the

program to solve a problem of complexity cw on cn processors. Named w the number

of elementary computations for the problem of size N ¼ 20000, the computational

complexity for the problems of size N ¼ 40000 and 60 000 is about 3w and 7w,
respectively. Thus, we report in Table 3 the scaled speedup (6) for the two cases c ¼ 3

(with running times for the problems of size N ¼ 20000 and 40 000) and c ¼ 7 (with

running times for the problems of size N ¼ 20000 and 60 000).

We recall that a parallel code is scaling well when the scaled speedup is close to c.
Looking at Table 3, the parallel VPDT achieves good scaled speedups as far as the

number of processors cn in Ss does not exceed a critical value that, as also highlighted

by the Kuck�s function, for these test problems is around 16.

Let us now consider the results on the UCI Adult data set. As shown in Tables 1

and 2, the test problems arising in this case are very different from the previous ones.

Here, we have many SVs (about 37% of N ) and many BSVs (about 90% of the num-

ber of SVs). This feature implies that a rapid convergence of the VPDT can be guar-

anteed only with very large QP subproblems, whose solution is expensive even for an
effective solver like the VPM. Thus, to obtain the best performance with VPDT we

are forced to work with suboptimal subproblem sizes and more decomposition ite-

rations than in the case of MNIST data set. In this situation, the parallel VPDT

can efficiently exploit only a small number of PEs. Table 5 reports the best results

obtained on the largest version of the UCI Adult data set for different numbers of

Table 3

Scaled speedup Ssðc; n;wÞ for the MNIST test problems

Number of PEs

n ¼ 2 n ¼ 4 n ¼ 8

c ¼ 3 2.3 2.0 1.8

c ¼ 7 5.2 3.8 2.7

Table 4

Numerics of Fig. 3 and number of support vectors

PEs Nsp Nc Iter. Sec. spr SV BSV

VPDT 1 2800 800 7 4825.6 2717 134

Parallel

VPDT

2 2800 800 7 2547.9 1.9 2717 134

4 2800 800 7 984.7 4.9 2717 134

8 2800 800 7 487.5 9.9 2717 134

16 2800 800 7 337.3 14.3 2717 134

32 4000 1000 6 258.9 18.6 2720 133
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PEs: as expected, we observe a good relative speedup only for 2 and 4 PEs. However,

an appreciable time reduction is also achieved with 8 and 16 PEs.

Finally, we remark that in all the experiments the solution computed by the para-

llel VPDT satisfies the same stopping rule of the serial VPDT, hence it has a compa-

rable numerical accuracy (the number of SVs obtained with the serial and parallel
algorithms are reported in Tables 4 and 5).

Further developments about both the porting of the code and the performance

analysis will be discussed in a future work.

4. Conclusions

In this paper we have proposed a parallel decomposition technique for solving the

large quadratic program arising in training SVMs. The scheme is based on the de-

composition strategy SVMlight of Joachims [8], which requires to solve a sequence

of smaller QP subproblems. In the case of Gaussian SVMs, a very effective and easily

parallelizable solver for these subproblems can be derived by the variable projection
method introduced in [26,27]. By using this method as inner solver, we have deve-

loped an implementation that works efficiently with subproblems large enough to

produce few iterations of the decomposition scheme. Conversely, in Joachims� ap-
proach, the best results are obtained by working in an opposite way, i.e. with very

small QP subproblems and then many decomposition iterations.

The numerical experiments in training Gaussian SMVs on the MNIST and UCI

Adult data sets show that our approach, named variable projection decomposition

technique, has scalar performance comparable with that of the original SVMlight

package. Nevertheless, our approach is better suited to a parallel implementation,

since the expensive tasks of the few iterations can be easily performed in parallel.

In fact, the large QP subproblems may be solved with a parallel version of the vari-

able projection method, while the data updating phase, which requires expensive ker-

nel evaluations, can be performed by distributing the computations among the

available processors. This parallel decomposition technique proves to be well scal-

able and very efficient in the case of MNIST classification, where the solution has

few nonzero components, i.e. there are few support vectors. In the case of UCI Adult
classification, where many support vectors are involved, suboptimal performances

Table 5

Relative speedup on Cray T3E for UCI Adult data set with N ¼ 32562

PEs Nsp Nc Iter. Sec. spr SV BSV

VPDT 1 1300 750 40 2494.9 11 741 10 553

Parallel

VPDT

2 1600 800 31 1358.5 1.8 11 766 10 553

4 1600 800 31 856.9 2.9 11 766 10 553

8 1600 800 31 559.3 4.5 11 766 10 553

16 1600 800 31 412.2 6.1 11 766 10 553
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are observed, since the subproblem size convenient for the decomposition technique

is not so large as to allow a very effective use of the parallel resources.

To sum up, the parallel solver introduced in this work may be an useful tool for

reducing the computational time in training Gaussian SVMs on distributed memory

multiprocessor systems.
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