
An Improved Gradient Projection-based Decomposition

Technique for Support Vector Machines∗

L. Zanni

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Modena, Italy.

Abstract

In this paper we propose some improvements to a recent decomposition technique for the large
quadratic program arising in training Support Vector Machines. As standard decomposition
approaches, the technique we consider is based on the idea to optimize, at each iteration,
a subset of the variables through the solution of a quadratic programming subproblem.
The innovative features of this approach consist in using a very effective gradient projection
method for the inner subproblems and a special rule for selecting the variables to be optimized
at each step. These features allow to obtain promising performance by decomposing the
problem into few large subproblems instead of many small subproblems as usually done by
other decomposition schemes. We improve this technique by introducing a new inner solver
and a simple strategy for reducing the computational cost of each iteration. We evaluate
the effectiveness of these improvements by solving large-scale benchmark problems and by
comparison with a widely used decomposition package.

Keywords: support vector machines, quadratic programs, decomposition techniques, gradient
projection methods, large-scale problems.

1 Introduction

We consider the numerical solution of the convex quadratic programming (QP) problem arising

in training Support Vector Machines (SVMs) [7, 33]:

min F(x) =
1
2
xT Gx−

n∑

i=1

xi

sub. to
∑n

i=1 yixi = 0,
0 ≤ xi ≤ C, i = 1, . . . , n,

(1)

where the size n is the number of labelled examples of the given training set

D = {(zi, yi), i = 1, . . . , n, zi ∈ Rm, yi ∈ {−1, 1}} ,

∗This work was supported by the Italian Education, University and Research Ministry via the FIRB Projects
“Statistical Learning: Theory, Algorithms and Applications” (grant RBAU01877P) and “Parallel Algorithms and
Numerical Nonlinear Optimization” (grant RBAU01JYPN).

1

and the entries of G are defined by

Gij = yiyjK(zi,zj), i, j = 1, 2, . . . , n,

in which K : Rm×Rm → R is a special kernel function. Examples of widely used kernel functions

are the linear kernels (K(zi, zj) = zT
i zj), the polynomial kernels (K(zi, zj) = (1 + zT

i zj)d, d ∈
N) and the Gaussian kernels (K(zi, zj) = exp(−‖zi − zj‖2

2/(2σ2)), σ ∈ R). Since these kernel

functions make the matrix G dense and in many real life applications the size of the training set

is very large (n À 104), problem (1) cannot be generally solved by traditional approaches based

on explicit storage of G.

This paper deals with the most popular strategies to overcome this drawback: the decompo-

sition techniques. In short, these techniques split the problem into a sequence of smaller QP

subproblems that can be stored in the available memory and efficiently solved [4, 23]. At each

decomposition step, a subset of the variables is optimized through the solution of the subproblem

in order to obtain a progress towards the minimum of F(x). One of the main differences among

the various decomposition approaches proposed in literature is given by the size chosen for the

subproblems. In fact, if the subproblems are sized 2, they can be solved analytically [5, 16, 26],

while an inner numerical QP solver is necessary in decomposition schemes that use subproblems

of larger size [6, 14, 15, 23, 31, 34]. Both the frameworks have been explored and have given

rise to decomposition packages widely used within the SVM community.

Here we are interested to introduce some improvements to the decomposition technique recently

proposed in [31]. This technique belongs to the class of decomposition schemes based on a

numerical solution of the inner subproblems. It uses as inner QP solver the special gradient

projection method introduced in [32] and for this reason it is called Gradient Projection-based

Decomposition Technique (GPDT). The gradient projection method used by GPDT exhibits high

performance on SVM-type QP problems and enables the decomposition technique to manage

efficiently much larger subproblems in comparison to standard decomposition packages. This

ability, combined with an appropriate selection of the variables to optimize at each step and a

standard caching strategy for reducing kernel evaluations, allows GPDT to achieve promising

performance with respect to the SVM light algorithm, one of the most used and efficient decom-

position packages. Furthermore, the possibility to decompose into large subproblems makes the

scheme well suited for an easy and effective parallelization; the numerical experiments carried

2

out in [31] with a parallel version of GPDT give evidence of the importance of this approach in

training SVMs on multiprocessor systems.

The improvements to GPDT introduced in this work concern the subproblems solution and a

simple trick for a further reduction of the kernel evaluations. For the subproblems solution

we consider the recent gradient projection method proposed in [9] and we show that it can be

more efficient than the inner solver currently used by GPDT. The GPDT kernel evaluations are

reduced by introducing an alternative formula for defining the data of the subproblem at each

iteration. Numerical evidence of these improvements are given by solving well known benchmark

problems and by comparison with the SVM light package.

The paper is organized as follows: section 2 gives the decomposition technique, section 3 states

and analyses the new inner solver, section 4 evaluates the effectiveness of the formula proposed

for reducing the kernel evaluations, section 5 deals with the accuracy of the decomposition

technique and, finally, section 6 reports the main conclusions.

2 A gradient projection-based decomposition technique

In this section we recall the special version of the decomposition technique proposed in [31]

named GPDT2.

By following the classical notation, we split the indices of the variables xi, i = 1, . . . , n, into the

set B of basic variables, called the working set, and the set N =
{
1, 2, . . . , n

} \ B of nonbasic

variables. Furthermore, we denote by x∗ a solution of (1) and arrange x and G with respect to

B and N as follows:

x =
[

xB
xN

]
, G =

[
GBB GBN
GNB GNN

]
.

The decomposition techniques for problem (1) are iterative procedures that, at each step, solve

(1) with respect to the basic variables only. This leads to a sequence of QP subproblems simpler

than the original problem since their size nsp is equal to the size of the working set (nsp = #B),

that can be chosen much smaller than n. At each iteration, the subproblem solution is used

to improve the current approximation of x∗ and an appropriate updating of the working set is

required in order to obtain the convergence.

The special decomposition technique given in [31] can be described as in Algorithm GPDT2.

3

Algorithm GPDT2 (Gradient Projection-based Decomposition Technique)

1. Initialization. Let x(1) be a feasible point for (1), let nsp and nc be two integer values
such that n ≥ nsp ≥ nc > 0, nc even; let L be the largest even number such that L ≤ nsp

10 .
Arbitrarily choose nsp indices for the working set B and set k ← 1.

2. QP subproblem solution. Compute by a Gradient Projection Method the solution x
(k+1)
B of

min
1
2
xT
BGBBxB +

(
GBNx

(k)
N − 1B

)T
xB

sub. to
∑

i∈B yixi = −∑
i∈N yix

(k)
i ,

0 ≤ xi ≤ C ∀i ∈ B,

(2)

where 1B is the nsp–vector of all ones; set x(k+1) =
(

x
(k+1)
B

T
, x

(k)
N

T)T .

3. Gradient updating. Update the gradient

∇F(x(k+1)) = ∇F(x(k)) +
[

GBB
GNB

] (
x

(k+1)
B − x

(k)
B

)
(3)

and terminate if x(k+1) satisfies the KKT conditions.

4. Updating of B.

4.1. Find the indices corresponding to the nonzero components of the solution of

min ∇F(x(k+1))T d
sub. to yT d = 0,

di ≥ 0 for i such that αi = 0,
di ≤ 0 for i such that αi = C,
−1 ≤ di ≤ 1,
#{di | di 6= 0} ≤ nc.

(4)

Let B̄ the set of these indices.

4.2. Fill B̄ up to nsp entries by adding the most recent indices j ∈ B satisfying 0< x
(k+1)
j < C;

if these indices are not enough, then add the most recent indices j ∈ B such that
x

(k+1)
j = 0 and, eventually, the most recent indices j ∈ B satisfying x

(k+1)
j = C.

4.3. Set nc = min{nc, max{10,L, nnew}}, where nnew is the largest even number such that
nnew ≤ #{j, j ∈ B̄, j /∈ B}; set B = B̄, k ← k + 1 and go to step 2.

The GPDT2 scheme is similar to the well known SVM light algorithm but presents an essential

difference in the choice of the inner QP solver. In fact, GPDT2 uses a gradient projection

method, the Generalized Variable Projection Method (GVPM) proposed in [32], that is much

more effective than the inner solvers (the pr LOQO or the Hildreth and D’Esopo method) on

4

which SVM light is based. Thus GPDT2 is able to efficiently solve large subproblems that are

hardly managed by SVM light due to the inner optimizer overhead. As a consequence, while

SVM light has been designed and very well optimized for decomposition processes in which nsp

is very small (generally less than 102), GPDT2 is appropriately developed for decomposing

into large subproblems (generally nsp > 103) in order to exploit the high performance of the

inner solver. The new GPDT2 approach introduce some implementative difficulties but opens

interesting scenarios. On one hand, since the entries of GBB and GNB are not in memory, large

values of nsp increase the request of kernel evaluations per iteration. This means that special

strategies for computing the kernels (exploitation of sparseness in training examples) and for

reducing their evaluations (caching of G entries and sparseness exploitation in the matrix-vector

product (3)) become crucial tricks for the GPDT2 performance. On the other hand, the ability

to work with large nsp allows to explore the benefits, in terms of convergence rate, arising from

the possibility to optimize many variables at each decomposition iteration. To this end, an

effective rule for updating the working set B is the essential key. Unfortunately, for the case

of large sized working sets, this topic is not widely investigated in literature since the most

popular decomposition approaches are commonly used with very small nsp or they are designed

for nsp = 2 only, in order to solve the subproblems analytically. The working set selection

described in step 4 of Algorithm GPDT2 has been recently introduced in [31]; it follows the

classical SVM light selection rule but introduces new devices useful in case of large working sets.

By proceeding as in SVM light , step 4.1 finds at most nc ≤ nsp indices for the new working set

by solving the linear problem (4); the aim is to define basic variables that make possible a rapid

decrease of the objective function in the new iteration. This selection idea is exploited by many

decomposition approaches and is at the basis of the main theoretical studies on the convergence

properties of decomposition techniques [17, 19, 20, 21, 24]. Since the parameter nc is usually

recommended to be less than nsp in order to reduce zigzagging phenomena, (nsp−nc) indices are

required to fill up B. The filling criterion used in step 4.2 is similar to that introduced in [34] but

it takes into account also how long a variable is in the working set (see also [19] for a discussion

about the importance to retain free variables of the previous B). The last step 4.3 introduces

an adaptive reduction of the parameter nc. For large nsp, this trick allows the decomposition

procedure to start with large nc (e.g. nc = nsp/2), so many new variables can be optimized in

the first iterations, but avoids zigzagging through the progressive reduction of nc. More details

5

on the above working set selection can be found in [31] where its effectiveness is evaluated by

an extensive computational study on well known benchmark problems. In [31] a comparison

between GPDT2 and SVM light is also performed. The two solvers exhibit opposite behaviour:

GPDT2 gets its best performance for large nsp and shows low sensitivity to nsp variations while

SVM light is competitive only for very small nsp; if the best performances are compared, GPDT2

is preferable. Finally, one of the most important aspects of GPDT2 needs to be recalled: its

easy parallelization. By decomposing into large subproblems, GPDT2 generally requires very few

decomposition iterations in which the most expensive tasks are the solution of the subproblem

(2) and the kernel evaluations required in step 3. These tasks can be easily performed on a

multiprocessor system by using a parallel version of the GVPM and by distributing the kernel

evaluations among the available processors. A parallel version of GPDT2, derived by following

these ideas and the implementative framework introduced in [34], has been tested in [31] showing

promising speedups respect to the serial GPDT2 and the SVM light .

3 An improved inner QP solver for GPDT2

The inner QP subproblems (2) have the following general form:

min
w∈Ω

f(w) =
1
2
wT Aw + bT w (5)

where A ∈ Rnsp×nsp is symmetric and positive semidefinite, w, b ∈ Rnsp and the feasible region

Ω is defined by

Ω = {w ∈ Rnsp , 0 ≤ w ≤ C, cT w = d}. (6)

We recall that now the size nsp allows the matrix A to be stored in memory.

The special gradient projection method used by GPDT2 for solving these subproblems is re-

ported in Algorithm GVPM. Gradient projection methods are appealing approaches for prob-

lems (5) since they consist in a sequence of projections onto the feasible region, that are non-

expensive due to the special constraints (6). In fact, a projection onto Ω can be performed by

efficient O(nsp) algorithms like those in [9] and [25].

GVPM is characterized by the use of a standard limited minimization rule as linesearch tech-

nique [2] and a special selection strategy for the steplength parameter. The steplength selec-

tion consists in an adaptive alternation of the two well known Barzilai-Borwein (BB) rules [1]

6

Algorithm GVPM (Generalized Variable Projection Method)

1. Initialization. Let w(0) ∈ Ω, iα ∈ {1, 2}, 0 < αmin < αmax, α0 ∈ [αmin, αmax],
nmin, nmax ∈ N, 0 < nmin ≤ nmax, λ` ≤ 1 ≤ λu; set nα = 1, k = 0.

2. Projection. Terminate if w(k) satisfies a stopping criterion; otherwise compute the descent
direction

d(k) = PΩ(w(k) − αk(Aw(k) + b))−w(k).

3. Linesearch. Compute

w(k+1) = w(k) + λkd
(k), with λk = arg min

λ∈[0,1]
f(w(k) + λd(k)).

4. Update. If ∗ d(k)T Ad(k) ≤ 0 then
set αk+1 = αmax;

else

compute α
(1)
k+1 =

d(k)T d(k)

d(k)T Ad(k)
, α

(2)
k+1 =

d(k)T Ad(k)

d(k)T A2d(k)
, λopt = arg min

λ
f(w(k)+λd(k)).

If (nα ≥ nmin) and
(

(nα ≥ nmax) or (α(2)
k+1 ≤ αk ≤ α

(1)
k+1)

or
(
(λopt < λ` and αk = α

(1)
k) or (λopt > λu and αk = α

(2)
k)

))
then

set iα ← mod(iα, 2) + 1, nα = 0;
end.
Compute αk+1 = min

{
αmax, max

{
αmin, α

(iα)
k+1

}}
;

end.
Set k ← k + 1, nα ← nα + 1 and go to step 2.

∗Since A is positive semidefinite, the condition may reduce to an equality test.

(α(1)
k+1 = d(k)T

d(k)

d(k)T
Ad(k)

, α
(2)
k+1 = d(k)T

Ad(k)

d(k)T
A2d(k)

); this alternation avoids the typical slow convergence

exhibited by gradient projection methods with monotone linesearches. Furthermore, this se-

lection rule doesn’t introduce expensive operations since it involves the matrix-vector product

Ad(k) already required for computing λk in step 3. The stopping criterion used in GVPM is

based on the fulfilment within a prefixed tolerance of the KKT conditions, with the equal-

ity constraint multiplier computed as suggested in [15]. In this way, the main task of each

iteration remains the computation of Ad(k) (remember that t = Aw(k) can be updated by

t ← t+λkAd(k) = Aw(k+1)), whose cost can be substantially reduced by exploiting the sparsity

of d(k). A convergence analysis of GVPM is presented in [32] where, for convex QP problems,

7

the R-linear convergence is derived by proceeding as in [29] for standard variable projection

methods. The analysis developed in [32] has shown that GVPM is very effective on the SVM

QP subproblems, outperforming QP solvers widely used in this application (e.g. pr LOQO and

MINOS) as well as other gradient projection methods [3, 28, 29].

Algorithm Alg. 2

1. Initialization. Let w(0) ∈ Ω, 0 < αmin < αmax, α0 ∈ [αmin, αmax], L ∈ N;
set fref = ∞, fbest = fc = f(w(0)), l = 0, k = 0, s(k−1) = y(k−1) = 0.

2. Projection. Terminate if w(k) satisfies a stopping criterion; otherwise compute the descent
direction

d(k) = PΩ(w(k) − αk(Aw(k) + b))−w(k).

3. Linesearch.
If

(
k = 0 and f(w(k) +d(k)) ≥ f(w(k))

)
or

(
k > 0 and f(w(k) +d(k)) ≥ fref

)
then

w(k+1) = w(k) + λkd
(k), with λk = arg min

λ∈[0,1]
f(w(k) + λd(k));

else
w(k+1) = w(k) + d(k).

4. Update. Compute s(k) = w(k+1) −w(k); y(k) = A(w(k+1) −w(k)).
If s(k)T y(k) ≤ 0 then

set αk+1 = αmax;

else
If s(k−1)T y(k−1) ≤ 0 then

set αk+1 = min
{

αmax, max
{

αmin,
s(k)T

s(k)

s(k)T
y(k)

}}
;

else
set αk+1 = min

{
αmax, max

{
αmin,

s(k)T
s(k) + s(k−1)T

s(k−1)

s(k)T
y(k) + s(k−1)T

y(k−1)

}}
;

end.

end.
If f(w(k+1)) < fbest then

set fbest = f(w(k+1)), fc = f(w(k+1)), l = 0;

else
set fc = max

{
fc, f(w(k+1))

}
, l = l + 1;

If l = L then
set fref = fc, fc = f(w(k+1)), l = 0;

end.

end.
Set k ← k + 1, and go to step 2.

8

Recently, Dai and Fletcher [9] have proposed a new gradient projection method for singly linearly

constrained QP problems subject to lower and upper bounds. In the computational experiments

reported in [9], this method has exhibited promising behaviour and, in particular, has shown

better results in comparison to GVPM on some medium-scale SVM test problems. Thus, the

Dai and Fletcher method can be a valid alternative to GVPM as the inner solver within GPDT2.

Here we are interested to evaluate the GPDT2 performance improvements due to this new inner

solver. We recall the Dai and Fletcher method in Algorithm Alg. 2. The method can be

described within a scheme similar to GVPM, and the same considerations on the computational

cost per iteration still hold. Nevertheless, the linesearch step and the steplength selection rule

are very different.

Alg. 2 uses an adaptive nonmonotone linesearch in order to allow the objective function value

f(w(k)) to increase on some iterations. This is an important strategy for exploiting the benefits

in terms of convergence rate given by BB-like steplengths, that typically imply nonmonotone

behaviour [10]. The special linesearch strategy used in Alg. 2 has been recently suggested in [8]

and its main feature is the adaptive updating of the reference function value fref . The purpose

of the updating rule is to cut down the number of times the linesearch is brought into play

and, consequently, to frequently accept the iterate w(k+1) = w(k) + d(k) obtained through an

appropriate steplength αk. The numerical experience in [8, 9] shows that this technique can

perform better than the classical nonmonotone linesearch [12] used by Birgin-Mart̀ınez-Raydan

in their gradient projection methods [3].

For the steplength updating in Alg. 2, Dai and Fletcher propose the general rule

αk+1 =
∑m−1

i=0 s(k−i)T s(k−i)

∑m−1
i=0 s(k−i)T y(k−i)

, m ≥ 1,

and suggest the choice m = 2 as the better for the SVM QP problems (observe that the case

corresponding to m = 1 reduces to the standard BB rule α
(1)
k+1). In particular, in [9] the above

steplength is discussed in comparison with a selection rule based on simple alternations of the

two standard BB rules (α(1)
k+1 and α

(2)
k+1). While in different contexts the idea to combine the

alternation technique of the two steplengths and a nonmonotone linesearch has given promising

results [8, 13, 32], this approach seems useless on the SVM QP problems. On the other hand,

a sophisticated alternation technique of the two BB rules is crucial for the effectiveness of

a monotone scheme like the GVPM. All these considerations suggest that further study on

9

the relationship between the steplength selection and the linesearch technique is required for

improving existing gradient projection schemes. Nevertheless, this interesting topic is beyond

the aim of this work and in the sequel we will concentrate only on the behaviour of GVPM

and Alg. 2 within GPDT2. We conclude the introduction to Alg. 2 by recalling that its global

convergence in real arithmetic can be proved through a simple argument presented in [8].

In order to analyze the behaviour of the two solvers within GPDT2 we consider three large test

problems of the form (1) derived by training Gaussian SVMs on the well known UCI Adult data

set [22], WEB data set [26] and MNIST data set [18]. A detailed description of the test problems

generation is reported in the Appendix. All the experiments are carried out with standard C

code running on a single processor of an IBM SP4 equipped with Power4 1.3GHz CPUs.

We compare GVPM and Alg. 2 on the subproblems (2) that arise when GPDT2 is applied

to the above test problems with starting point x(1) = 0 and tolerance 0.001 for the stopping

rule. The parameters nsp (the subproblems size) and nc differ for each test problem and will be

reported in the sequel.

GVPM and Alg. 2 solve each GPDT2 subproblem with the same w(0) (w(0) = PΩ(x(k)
B) when

the GPDT2 stopping rule is nearly satisfied or w(0) = PΩ(0) otherwise) and stopping rule

(KKT fulfilment within 0.001). For the other parameters the following setting is used: αmin =

10−30, αmax = 1030, α0 = ‖PΩ(w(0) − (Aw(0) + b)) − w(0)‖−1∞ ; moreover, iα = 2, nmin =

3, nmax = 10, λ` = 0.5, λu = 5, in GVPM and L = 2 in Alg. 2. The parameters setting used in

GVPM is derived by the wide experimentation developed in [32]; for Alg. 2, the results obtained

with different values of L between 1 and 10 suggest that L = 2 is preferable on these problems.

We have also tested the version Alg. 2∗ proposed in [9], for different values of its parameter M ,

but we have obtained worse results in comparison with Alg. 2 with L = 2. In these experiments,

both GVPM and Alg. 2 compute the projection onto Ω by the algorithm described in [25]. In

future versions of the solvers, we will compute this projection with the more efficient Alg. 1

given in [9]; however, remember that the cost of the projection is not relevant with respect to

the cost of the matrix-vector multiplication Ad(k) and the use of Alg. 1 will not significantly

change the subsequent numerical results.

In Table 1 the behaviour of the two solvers is shown in terms of total number of inner iterations

(total it.) and total optimization time in seconds (total time) needed to solve the subprob-

lems. For each test problem, we report also the values used for the parameters nsp, nc and the

10

corresponding GPDT2 decomposition iterations (decomp. it.). From Table 1 we can observe

that, in each test problem, Alg. 2 shows a reduced number of inner iterations; this reduction

is more evident in case of Web and MNIST data sets where it implies a significant time saving.

The behaviour of the two solvers is better emphasized by Figure 1-3 where the inner iterations

required for each decomposition step are plotted. Finally, for the MNIST problem only, in Table

2 the number of step reduction (w(k+1) = w(k)+λkd
(k) with λk < 1) produced by the linesearch

techniques is reported in the column denoted by “ls.”. The two linesearches behave in a similar

way: on average the ratio between it. and ls. is 5.1 for GVPM and 6.5 for Alg. 2. However, the

linesearches exhibit this similar behaviour by working in combination with different steplength

selection rules, that imply remarkable differences in the convergence rate. In particular, we can

conclude that the adaptive nonmonotone linesearch and the steplength selection used by Alg.

2. combine successfully on these test problems.

Table 1: Total inner iterations and total optimization time given by GVPM and Alg. 2.

GVPM Alg. 2

Test problems nsp nc
decomp.

it.
total
it.

total
time

total
it.

total
time

UCI Adult
n = 32561

1300 650 30 8482 20.3 6820 17.9

Web
n = 49749

1500 750 24 17844 84.9 12587 61.2

MNIST
n = 60000

2000 300 22 10228 82.9 6623 52.0

4 Reducing kernel evaluations in GPDT2

As observed in section 2, the main tasks of each GPDT2 iteration are to solve the QP subproblem

and to compute the kernels for updating the gradient (remember that we are considering the

case in which G is not in memory). Thus, the decomposition scheme can benefit not only from

an effective inner QP solver but also by optimizing the kernel computation and by reducing the

number of kernel evaluations.

In order to optimize the kernel computation, GPDT2 uses sparse representation of the training

examples and exploits their sparseness during the computation, as commonly done by other

decomposition approaches [15, 27].

11

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

decomposition iterations

inn
er

so
lve

r it
era

tio
ns

GVPM
Alg. 2

Figure 1: Inner solvers behaviour: UCI Adult test problems (n = 32561, nsp = 1300, nc = 650).

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

decomposition iterations

inn
er

so
lve

r it
era

tio
ns

GVPM
Alg. 2

Figure 2: Inner solvers behaviour: WEB test problems (n = 49749, nsp = 1500, nc = 750).

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

decomposition iterations

inn
er

so
lve

r it
era

tio
ns

GVPM
Alg. 2

Figure 3: Inner solvers behaviour: MNIST test problems (n = 60000, nsp = 2000, nc = 300).

12

Table 2: Inner solvers behaviour on the MNIST test problem (n = 60000, nsp = 2000, nc = 300).

decomposition GVPM Alg. 2
iterations it. ls. time it. ls. time

1 223 41 0.6 212 23 0.7
2 561 93 2.7 402 54 1.9
3 526 105 2.6 413 62 2.3
4 578 111 3.5 477 71 2.9
5 762 156 4.8 498 73 3.3
6 621 129 4.8 434 68 3.3
7 627 123 5.5 394 62 3.2
8 632 118 5.1 347 49 2.9
9 769 151 6.4 482 81 4.0
10 754 147 7.0 377 53 3.2
11 652 132 6.2 412 68 4.0
12 531 103 4.6 387 54 3.7
13 681 136 6.9 418 68 4.1
14 589 124 5.3 347 54 3.0
15 607 124 6.1 380 68 3.3
16 317 63 3.1 234 40 2.2
17 273 56 2.6 109 21 1.1
18 280 48 2.7 112 17 1.0
19 107 24 0.9 84 13 0.8
20 78 14 0.8 59 11 0.6
21 47 4 0.5 30 3 0.3
22 13 3 0.2 15 4 0.2

Concerning the reduction of kernel evaluations, the crucial trick consists in using an area of the

available memory as a caching area, where some elements of G can be stored in order to avoid

their recomputation in the subsequent iterations. The caching strategy used in GPDT2 is based

on the simple idea to fill the caching area with the columns of G involved in the updating formula

(3), that is the columns of G corresponding to the indices of B for which (x(k+1)
i −x

(k)
i) 6= 0, i ∈ B.

When the cache is full, the current columns substitute those that have not been used for the

greatest number of iterations. This strategy, combined with the working set updating used in

step 4 which forces some indices of B to remain in the new working set, seems enough to avoid

an undesirable increase in the number of kernel evaluations.

The entries of G stored in the caching area are exploited by GPDT2 not only for the gradient

13

updating in step 3 but also for the computation of GBB and GBNx
(k)
N in step 2.

Here we are interested to show that a simple alternative way to derive the coefficients of the

linear terms in (2) can reduce, sometimes significantly, the number of kernel evaluations. In

fact, taking into account that

GBNx
(k)
N − 1B = ∇FB(x(k))−GBBx

(k)
B , (7)

with ∇FB(x(k)) coming from the gradient computed in the previous iteration and GBB already

computed in the current step 2, we can obtain the required coefficients without additional kernel

evaluations (the same trick is used also in [5]).

The GPDT2 improvements due to the kernel evaluations reduction obtained in this way are

emphasized by the following experiments. We solve the UCI Adult, the Web and the MNIST

test problems on the previously used testing platform by the package SVM light (version 5.0), the

method GPDT2 described in [31] and the modified version of GPDT2 in which GBNx
(k)
N − 1B

is computed as in (7) and the subproblems (2) are solved by the Alg. 2 discussed in section 3.

This new GPDT2 version is called Improved Gradient Projection-based Decomposition Technique

(IGPDT). The three algorithms are run with a caching area of 512MB and a tolerance of 0.001

on the KKT-based stopping rule. The SVM light is used with the pr LOQO inner QP solver

and default setting for other parameters; this means that the shrinking strategy for reducing

the problem size and, consequently, the number of kernel evaluations, is enabled [15]. Many

experiments with different values for the parameters nsp and nc are carried out for each method.

Table 3 shows the results corresponding to some meaningful values of these parameters; in

particular the values for which the methods have given the best computational time are reported.

A more detailed analysis of the SVM light and GPDT2 performance on these test problems is

available in [31]. In Table 3 the behaviour of the three decomposition techniques is shown in

terms of the number of decomposition iterations, the computational time in seconds (without

including the time for data reading) and the number of kernel evaluations in millions; the symbol

“*” means that the 2000 seconds time limit is reached, NSV is the number of support vectors,

i.e. the training examples corresponding to the nonzero components of x∗ and NBSV denotes the

number of bound support vectors, i.e. the training examples corresponding to the components

of x∗ at the upper bound.

We may observe that, for given nsp and nc, IGPDT always outperforms significantly GPDT2,

14

Table 3: SVM light , GPDT2 and IGPDT for different nsp and nc.

SVM light GPDT2 IGPDT
nsp nc it. time kernels it. time kernels it. time kernels

UCI Adult data set (n = 32561, NSV = 11698, NBSV = 10605)
20 10 4407 278.7 415.1 3897 213.2 560.7 3739 175.7 460.4

600 300 125 505.2 444.9 90 202.5 649.8 81 143.0 493.0
1300 650 48 1703.4 468.2 32 215.9 656.3 30 158.5 497.2

Web data set (n = 49749, NSV = 3199, NBSV = 919)
8 4 7235 184.6 188.9 9094 230.7 225.3 8601 217.0 212.9

600 300 137 580.2 432.9 190 207.6 498.8 204 175.8 416.2
1500 750 40 1932.4 512.8 25 168.1 258.4 24 142.8 251.6

MNIST data set (n = 60000, NSV = 3159, NBSV = 160)
8 4 9226 901.6 252.8 10649 1045.5 731.7 10110 966.3 669.0

200 100 320 1723.1 475.3 491 952.6 747.1 542 910.6 714.2
1000 200 ∗ 55 778.7 483.1 55 649.2 474.5
2000 300 ∗ 22 662.8 404.4 22 562.4 403.9
3700 1000 ∗ 8 704.1 443.1 8 630.6 440.8

confirming the effectiveness of the two improvements introduced in this work. In particular,

by considering the columns concerning the kernel evaluations in Table 3 and the total time for

optimization reported in Table 1, it is possible to evaluate the impact of the two improvements

in the different test problems. If the best performance only is considered, the new IGPDT

allows remarkable time reduction in comparison with SVM light , especially on the UCI Adult

and MNIST data sets. Furthermore, it is interesting to observe the lower number of kernel

evaluations exhibited by SVM light when small values of nsp are used; this is due to the default

shrinking strategy that is very effective in these situations (for example, in case of the MNIST

test problems with nsp = 8 and nc = 4, SVM light needs 559.1 × 106 kernel evaluations without

shrinking). On the other hand, IGPDT doesn’t adopt shrinking and further improvements can

be expected by introducing this strategy. Nevertheless, when IGPDT works with sufficiently

large nsp, its caching strategy and kernel optimization avoid unsatisfactory overhead for kernel

management and allow to successfully exploit the high performance of the inner QP solver.

Finally, we remark that, as for previous gradient projection-based decomposition approaches

[31, 34], the IGPDT is very well suited to be efficiently implemented in parallel. We will

15

deal with a parallel version of IGPDT in a future work dedicated to the training of SVMs on

multiprocessor systems.

5 On the accuracy of IGPDT

We now briefly discuss on the accuracy of the approximate solution given by IGPDT. The

IGPDT algorithm, like the SVM light technique, is implemented in double precision, but it keeps

the Gij entries in single precision for memory saving. All the previous numerical experiments are

performed by stopping the decomposition technique when the KKT conditions of (1) are satisfied

within a tolerance of 10−3. This stopping rule is the same used as the default in SVM light and

it is generally considered sufficient to ensure a good performance of the SVM methodology.

In order to study the IGPDT accuracy, we consider a small strictly convex test problem sized

n = 800 generated by training a Gaussian SVM (with the parameters described in the Appendix)

on a subset of the MNIST handwritten digit database, built with the first n/2 inputs of the digit

“8” and the first n/2 inputs of the other digits. A very accurate solution of this small problem

can be obtained by using the QL Fortran routine of Schittkowski [30], that implements, in double

precision, the primal-dual active set method of Goldfarb and Idnani [11]. Denoting by x∗ the

QL solution and by x̄ the solution given by a decomposition technique, we analyse the accuracy

of IGPDT and SVM light by evaluating the errors Erx̄ = ‖x̄−x∗‖2
‖x∗‖2 and ErF = |F(x̄)−F(x∗)|

|F(x∗)| .

Table 4: IGPDT and SVM light accuracy on an MNIST test problem sized n = 800.

stopping rule SVM light (nsp = 80, nc = 40) IGPDT (nsp = 160, nc = 80)
tolerance NSV NBSV Erx̄ ErF Ner NSV NBSV Erx̄ ErF Ner

10−1 286 1 0.6 e− 1 0.2 e− 03 2540 277 1 0.2 e− 1 0.2 e− 03 2554
10−2 280 1 0.5 e− 2 0.1 e− 04 2510 281 1 0.4 e− 2 0.6 e− 05 2512
10−3 281 1 0.5 e− 3 0.1 e− 06 2510 281 1 0.6 e− 3 0.9 e− 07 2509
10−4 281 1 0.6 e− 4 0.2 e− 08 2508 281 1 0.7 e− 4 0.1 e− 08 2510
10−5 281 1 0.6 e− 5 0.1 e− 10 2509 281 1 0.5 e− 5 0.7 e− 11 2509
10−6 281 1 0.7 e− 6 0.1 e− 12 2509 281 1 0.6 e− 6 0.1 e− 12 2509

In Table 4 the values of Erx̄ and ErF corresponding to different tolerances in the KKT residual

are reported for both SVM light and IGPDT. Furthermore, in order to show how, in this particular

application, the training algorithm accuracy affects the SVM performance, we evaluate the SVM

classifiers trained with different accuracy on a test set of 39200 MNIST examples not included

16

in the training set. The column Ner reports the number of classification errors. The results

corresponding to the QL solution x∗ are: NSV = 281, NBSV = 1 and Ner = 2509. The QL

computational time is about five times the one required by the decomposition techniques.

These experiments show that IGPDT is very well comparable with SVM light in terms of numer-

ical accuracy. The same conclusion held for the first version of the gradient projection-based

decomposition technique introduced and extensively tested in [34]. Finally, the results in Table

4 emphasize that a good performance of the SVM methodology can be reached by stopping the

training algorithm with a sufficiently large tolerance on the KKT residual. This behaviour is

observed in many other SVM applications and suggests the default tolerance of 10−3 commonly

used by the main training algorithms.

6 Conclusions

This work introduces two improvements to the gradient projection-based decomposition tech-

nique proposed in [31] for training Support Vector Machines.

The first improvement consists in a new efficient gradient projection method for the inner QP

subproblems of the decomposition technique. The new method has been recently proposed by

Dai and Fletcher in [9] and first tested in this work as inner solver within the decomposition

technique. By an appropriate parameters setting, this solver has shown a better convergence

rate and, consequently, a significant time reduction in comparison with the gradient projection

method previously used by the decomposition technique.

The second improvement consists in a simple formula for deriving the data of the subproblems.

This formula allows the linear term of the subproblem function to be obtained from quantities

already computed, without requiring additional kernel evaluations. In this way, the total num-

ber of kernel evaluations required by the decomposition technique is generally reduced. Our

numerical experiments have shown that in some situations this simple trick can imply much

better performance.

Finally, a comparison with the SVM light package in terms of both computational time and

numerical accuracy confirms the effectiveness of the improved decomposition technique.

A software based on the proposed approach is available at http://dm.unife.it/gpdt/, for both

serial and parallel architectures.

17

Acknowledgment

The author is most grateful to the referees for their helpful suggestions.

7 Appendix: test problems

All the numerical results of this work are obtained by solving the quadratic programs arising in

training Gaussian SVMs on the following data sets:

• UCI Adult data set

This data set [22], allows to train an SVM to predict whether a household has an income

greater than $50000. After appropriate discretization [26], the inputs are 123-dimensional

binary sparse vectors with sparsity level ≈ 89%. We train a Gaussian SVM with C = 1

and σ =
√

10 on the largest version of the data set, sized 32561.

• Web data set

The data set [26], (available at <http://www.research.microsoft.com/∼jplatt>), concerns

a web page classification problem with a binary representation based on 300 keyword

features. On average, the sparsity level of the examples is about 96%. We use the largest

version of the data set sized 49749. The Gaussian SVM parameters are: C = 5 and

σ =
√

10.

• MNIST data set

The MNIST database of handwritten digits [18] contains 784-dimensional nonbinary sparse

vectors; the size of the database is 60000 and the sparsity level of the inputs is ≈ 81%. A

Gaussian SVM for the class “8” is trained with parameters C = 10 and σ = 1800.

References

[1] J. Barzilai, J.M. Borwein (1988), Two Point Step Size Gradient Methods, IMA Journal of Numerical
Analysis, 8, 141–148.

[2] D.P. Bertsekas (1999), Nonlinear Programming, Athena Scientific, Belmont, MA.

[3] E.G. Birgin, J.M. Mart̀ınez, M. Raydan (2000), Nonmonotone Spectral Projected Gradient Methods
on Convex Sets, SIAM Journal on Optimization, 10(4), 1196–1211.

[4] B.E. Boser, I.M. Guyon, V.N. Vapnik (1992), A Training Algorithm for Optimal Margin Classifiers,
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, D. Haussler,
eds., ACM Press, Pittsburgh, PA, 144–152.

18

[5] C.C. Chang, C.J. Lin (2001), LIBSVM: a library for support vector machines, Software available at
<http://www.csie.ntu.edu.tw/∼cjlin/libsvm>.

[6] R. Collobert, S. Benjo (2001), SVMTorch: Support Vector Machines for Large-Scale Regression
Problems, Journal of Machine Learning Research, 1, 143–160.

[7] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and other Kernel-
Based Learning Methods, Cambridge University Press, (2000).

[8] Y.H. Dai, R. Fletcher (2003), Projected Barzilai-Borwein methods for Large-Scale Box-Constrained
Quadratic Programming, Research Report NA/215, Department of Mathematics, University of
Dundee.

[9] Y.H. Dai, R. Fletcher (2003), New Algorithms for Singly Linearly Constrained Quadratic Programs
Subject to Lower and Upper Bounds, Research Report NA/216, Department of Mathematics, Uni-
versity of Dundee.

[10] R. Fletcher (2001), On the Barzilai-Borwein Method, Research Report NA/207, Department of
Mathematics, University of Dundee.

[11] D. Goldfarb, A. Idnani (1983), A Numerically Stable Dual Method for Solving Strictly Convex
Quadratic Programs, Mathematical Programming 27, 1–33.

[12] L. Grippo, F. Lampariello, S. Lucidi (1986), A Nonmonotone Line Search Technique for Newton’s
Method, SIAM Journal on Numerical Analysis, 23, 707–716.

[13] L. Grippo, M. Sciandrone (2002), Nonmonotone Globalization Techniques for the Barzilai-Borwein
Gradient Method, Computational Optimization and Applications, 23, 143–169.

[14] C.W. Hsu, C.J. Lin (2002), A Simple Decomposition Method for Support Vector Machines, Machine
Learning, 46, 291–314.

[15] T. Joachims (1998), Making Large-Scale SVM Learning Practical, Advances in Kernel Methods –
Support Vector Learning, B. Schölkopf, C.J.C. Burges and A. Smola, eds., MIT Press, Cambridge,
MA.

[16] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001), Improvements to Platt’s
SMO Algorithm for SVM Classifier Design, Neural Computation 13, 637–649.

[17] S.S. Keerthi, E.G. Gilbert (2002), Convergence of a Generalized SMO Algorithm for SVM Classifier
Design, Machine Learning 46, 351-360.

[18] Y. LeCun, MNIST Handwritten Digit Database, available at
<http://www.research.att.com/∼yann/ocr/mnist>.

[19] C.J. Lin (2001), On the Convergence of the Decomposition Method for Support Vector Machines,
IEEE Transactions on Neural Networks 12, 1288-1298.

[20] C.J. Lin (2001), Linear Convergence of a Decomposition Method for Support Vector Machines,
Technical Report, Department of Computer Science and Information Engineering, National Taiwan
University.

[21] C.J. Lin (2002), Asymptotic Convergence of an SMO Algorithm Without any Assumptions, IEEE
Transactions on Neural Networks 13, 248-250.

[22] P.M. Murphy, D.W. Aha (1992), UCI Repository of Machine Learning Databases, available at
<http://www.ics.uci.edu/∼mlearn/MLRepository.html>.

19

[23] E. Osuna, R. Freund, F. Girosi (1997), Training Support Vector Machines: an application to
face detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR97), Puerto Rico, 130–136.

[24] L. Palagi, M. Sciandrone (2005), On the Convergence of a Modified Version of SVM light Algorithm,
Optimization Methods and Software, 20, 317-334.

[25] P.M. Pardalos, N. Kovoor (1990), An Algorithm for a Singly Constrained Class of Quadratic Pro-
grams Subject to Upper and Lower Bounds, Mathematical Programming 46, 321–328.

[26] J.C. Platt (1998), Fast Training of Support Vector Machines using Sequential Minimal Optimization,
Advances in Kernel Methods – Support Vector Learning, B. Schölkopf, C. Burges and A. Smola, eds.,
MIT Press, Cambridge, MA.

[27] J.C. Platt (1999), Using Analytic QP and Sparseness to Speed Training of Support Vector Ma-
chines, Advances in Neural Information Processing Systems 11, M.S. Kearns et al., eds., MIT Press,
Cambridge, MA.

[28] V. Ruggiero, L. Zanni (2000), A Modified Projection Algorithm for Large Strictly Convex Quadratic
Programs, Journal of Optimization Theory and Applications, 104(2), 281–299.

[29] V. Ruggiero, L. Zanni (2000), Variable Projection Methods for Large Convex Quadratic Programs,
Recent Trends in Numerical Analysis, D. Trigiante, ed., Advances in the Theory of Computational
Mathematics 3, Nova Science Publ., 299–313.

[30] K. Schittkowski (2003), QL: A Fortran code for convex quadratic programming - User’s guide,
Report, Department of Mathematics, University of Bayreuth.

[31] T. Serafini, L. Zanni (2004), On the Working Set Selection in Gradient Projection-based Decomposi-
tion Techniques for Support Vector Machines, Technical Report N. 57, Department of Mathematics,
University of Modena and Reggio Emilia, to appear on Optimization Methods and Software.

[32] T. Serafini, G. Zanghirati, L. Zanni (2005), Gradient Projection Methods for Quadratic Programs
and Applications in Training Support Vector Machines, Optimization Methods and Software, 20,
353-378.

[33] V.N. Vapnik (1998), Statistical Learning Theory, John Wiley and sons, New York.

[34] G. Zanghirati, L. Zanni (2003), A Parallel Solver for Large Quadratic Programs in Training Support
Vector Machines, Parallel Computing, 29, 535–551.

20

