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This work deals with special decomposition techniques for the large quadratic program arising in training Support Vector
Machines. These approaches split the problem into a sequence of quadratic programming subproblems which can be
solved by efficient gradient projection methods recently proposed. By decomposing into much larger subproblems than
standard decomposition packages, these techniques show promising performance and are well suited for parallelization.
Here, we discuss a crucial aspect for their effectiveness: the selection of the working set, that is the index set of the
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1 Introduction

We consider the numerical solution through decomposition techniques of the convex quadratic programming

(QP) problem arising in training the learning methodology named Support Vector Machines (SVMs) [4, 25].

The main difficulties in solving this problem are the density and the large size of the matrix of the objective

function. In fact, the SVM quadratic program has the form

min F(x) =
1

2
xT Gx −

n
∑

i=1

xi

sub. to
∑n

i=1 yixi = 0,
0 ≤ xi ≤ C, i = 1, . . . , n,

(1)

where the size n is the number of labelled examples of the given training set

D = {(zi, yi), i = 1, . . . , n, zi ∈ R
m, yi ∈ {−1, 1}} ,

and the entries of G are defined by

Gij = yiyjK(zi,zj), i, j = 1, 2, . . . , n,
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FIRB2001/RBAU01877P).
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in which K : R
m ×R

m → R is a special kernel function. Examples of widely-used kernel functions are the linear

kernels (K(zi,zj) = zT
i zj), the polynomial kernels (K(zi,zj) = (1 + zT

i zj)
d, d ∈ N) and the Gaussian kernels

(K(zi,zj) = exp(−‖zi − zj‖2
2/(2σ2)), σ ∈ R ). Since these kernel functions make the matrix G dense and in

many real life applications the size of the training set is very large (n ≫ 104), problem (1) cannot be generally

solved by traditional approaches based on explicit storage of G. The main strategy proposed to overcome this

drawback consists in splitting the problem into a sequence of smaller QP subproblems that can be stored in

the available memory and efficiently solved. At each step of the iterative procedure, a subset of the variables,

sized as the subproblems and identified by a set of indices named working set, is optimized through the solution

of the subproblem, in order to produce a progress towards the minimum of F(x). Based on this simple idea,

many effective decomposition techniques have been developed in the last years. In spite of the same basic

idea, these techniques present remarkable differences, the most important of which can be considered the size

chosen for the working set, i.e., the size of the subproblems. In fact, the decomposition schemes designed for

working sets sized 2 can solve the subproblems analytically [2, 6, 10, 21], while the techniques that use larger

working sets need an inner numerical QP solver [3, 8, 9, 18, 27]. Both the frameworks have been explored

and have given rise to decomposition packages widely-used within the SVM community. However, from both

theoretical and computational viewpoint, many issues about these approaches are currently investigated, for

better understanding their behavior and for improving their performance.

In this paper, we present a computational study on the working set selection for special decomposition

techniques based on large-sized working sets. We analyse some practical versions of the well known selection

strategy proposed by Joachims in [9]. This analysis emphasizes some crucial issues that we have improved

in a new working set selection. A wide numerical experimentation shows that the proposed strategy yields a

better convergence rate in decomposition schemes based on large working sets. Thus, by using the new selection

strategy, we can significantly improve the performance of the decomposition technique introduced in [27], that

is appropriately designed for decomposing into large subproblems. The main feature of this technique consists

in using a very efficient gradient projection method for solving the inner QP subproblems [24, 26], in such a way

that subproblems with size up to O(103) can be managed without excessive overhead. This feature, combined

with the new working set selection, allows to fully exploit the benefits, in terms of convergence rate, arising

from the possibility to optimize many variables at each iteration. The promising performance of the proposed

gradient projection-based decomposition technique is evaluated by a comparison with the Joachims’ SVMlight

software [9] on large-scale benchmark problems. Furthermore, as observed in [27], the possibility to decompose

into large subproblems makes the scheme well suited for an easy and effective parallelization; the behavior

of a parallel version of the decomposition technique is shown by solving the same benchmark problems on a

multiprocessor system.

The paper is organized as follows: section 2 states a decomposition framework including the SVMlight and

the other schemes discussed in the work, section 3 analyses several existing working set selections and presents

the new selection strategy, section 4 shows the behavior of a gradient projection-based decomposition technique
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that uses the proposed working set selection, both in serial and parallel environments and, finally, section 5

draws some conclusions.

2 The decomposition technique

We present a general iterative decomposition scheme for problem (1) that includes the techniques we are going

to discuss about. We start by introducing some essential notations.

At each iteration of the decomposition scheme, the indices of the variables x =
[

x1, x2, . . . , xn

]T
are split

into the set B of basic variables, referred as the working set, and the set N =
{

1, 2, . . . , n
}

\ B of nonbasic

variables. Consequently, arrays x and G are arranged with respect to B and N as follows:

x =

[

xB

xN

]

, G =

[

GBB GBN

GNB GNN

]

.

If x∗ denotes a solution of (1) and x(k) is the approximation of x∗ at the beginning of the k-th iteration, the idea

behind the decomposition technique consists in progressing towards the minimum of F(x) by substituting x
(k)
B

with the vector x
(k+1)
B obtained by solving (1) with respect to the variables in the working set only. This leads

to a sequence of QP subproblems with size nsp equal to the working set size: nsp = #B. Of course, in order to

achieve a rapid decrease in the objective function, an appropriate choice of the working set is required. Since

among existing decomposition approaches [2, 3, 8, 9, 18, 21, 27] the best results are obtained with working set

selections similar to the strategy implemented in SVMlight, we consider selection rules that follow the Joachims’

idea. The main steps of our decomposition scheme are stated in Algorithm DT and discussed in the following

of this section.

First of all we examine how to solve the QP subproblem in step 2. In some popular techniques [2, 6, 10, 21],

the choice nsp = 2 enables an analytical solution of (2) while in the schemes that work with nsp > 2 a numerical

QP solver is required [8, 9, 18, 27]. The former techniques try to keep the minimal computational cost per

iteration while the latter exhibit more expensive iterations, but can achieve a much better convergence rate.

For these last approaches, the choice of the inner QP solver is crucial. Recently, very efficient gradient projection

methods for problem (2) are developed [5, 24, 26]. They are able to fully exploit the special structure of the

constraints, by performing the projection onto the feasible region with nonexpensive algorithms [5, 20], and

to exhibit good convergence rate due to appropriate linesearch strategies and/or new selection rules for the

steplength parameter. A first decomposition approach based on such kind of QP solvers is proposed in [27]; in

this case, the gradient projection method used as inner solver is a special Variable Projection Method (VPM)

developed in [26] (see also [7, 22, 23]). By using the VPM as inner solver, the decomposition techniques in

[27] can split the problem into sufficiently large subproblems (O(103)) without making the cost for the inner

optimization task excessively dominant. This feature gives rise to new promising decomposition frameworks that

are not previously explored. In fact, other popular decomposition techniques based on standard QP packages

are generally used with very small subproblems and their behavior for increasing nsp is not deeply investigated,

since the overhead due to the inner solver makes them completely not appealing in these situations. In [24] an
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improved VPM version, named Generalized VPM (GVPM), has been compared with the solvers MINOS and

pr LOQO used in the decomposition technique [18] and in the package SVMlight respectively. On test problems

with size up to 3200, the GVPM has shown much better performance than MINOS and pr LOQO, and when

used within the decomposition technique [27] with sufficiently large nsp has implied significant improvements

with respect to the best SVMlight results. In the following, the decomposition technique [27] equipped with

the GVPM as inner solver will be referred as Gradient Projection-based Decomposition Technique (GPDT).

During the completion of this work, another gradient projection method, well suited for the subproblems (2),

is proposed by Dai and Fletcher in [5]. By exploiting new ideas for the steplength selection and the linesearch

strategy, it exhibits better convergence rate than the GVPM. For this reason, it will be interesting to explore

the benefits that the new solver can introduce in decomposition techniques like GPDT. We think to deal with

this topic in a future work.

Algorithm DT (SVM Decomposition Technique)

Step 1. Initialization. Let x(1) be a feasible point for (1), let nsp and nc be two integers such that n ≥ nsp ≥
nc > 0, nc even; set k ← 1. Arbitrarily choose nsp indices for the working set B.

Step 2. QP subproblem solution. Compute the solution x
(k+1)
B of

min
1

2
xT
BGBBxB +

(

GBNx
(k)
N − (1, 1, . . . , 1)T

)T

xB

sub. to
∑

i∈B yixi = −∑

i∈N yix
(k)
i ,

0 ≤ xi ≤ C ∀i ∈ B,

(2)

and set x(k+1) =
(

x
(k+1)
B

T

, x
(k)
N

T )T
.

Step 3. Gradient updating. Update the gradient

∇F(x(k+1)) = ∇F(x(k)) +

[

GBB

GNB

]

(

x
(k+1)
B − x

(k)
B

)

(3)

and terminate if x(k+1) satisfies the KKT conditions.

Step 4. Updating of B.

Step 4.1. Find the indices corresponding to the nonzero components of the solution of

min V (d) = ∇F(x(k+1))T d

sub. to yT d = 0,

di ≥ 0 for i such that x
(k+1)
i = 0,

di ≤ 0 for i such that x
(k+1)
i = C,

−1 ≤ di ≤ 1,
#{di | di 6= 0} ≤ nc.

(4)

Step 4.2. Update B by first including the indices found in step 4.1 and then by filling the set
up to nsp entries with indices from the previous working set; set k ← k + 1 and go
to step 2.

The third step of Algorithm DT concerns the computation of ∇F(x(k+1)) = Gx(k+1) − 1. The updating

formula (3) gives ∇F(x(k+1)) by involving only the columns of G corresponding to the indices of B for which
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(x
(k+1)
i −x

(k)
i ) 6= 0, i ∈ B. Since for large problems the matrix G can not fit in the memory, this formula is useful

for reducing the computations of G entries, i.e., for avoiding kernel evaluations that in many applications can be

very expensive. To this end, another crucial trick consists in using an area of the available memory as a caching

area, where some of the most recently used columns of G can be stored in order to avoid their recomputation

in the next iterations. Caching strategies are commonly adopted in many decomposition techniques and will be

used by SVMlight and GPDT in all the subsequent experiments, together sparse representation of the training

examples, useful for optimizing kernel evaluations and for reducing memory consumption. When ∇F(x(k+1)) is

obtained, the same stopping criterion proposed in [9, 21] is checked; it is based on the fulfilment of the Karush-

Kuhn-Tucker (KKT) conditions within a prefixed tolerance (the equality constraint multiplier is computed as

in [9]). Of course other stopping rules could be used but, since we are interested in a comparison with SVMlight,

we prefer to adopt the stopping criterion of this package.

Finally, step 4 needs to be discussed. The working set selection described in this step is very general and

includes as special cases the strategies implemented in the main decomposition schemes [2, 8, 9, 10, 27]. In

fact, at most nc ≤ nsp entries of the new working set are selected by following the well known strategy first

proposed in [9], that consists in choosing the indices of nonzero components of the solution of (4). Precisely,

in [9] the constraint #{di | di 6= 0} = nc = nsp instead of #{di | di 6= 0} ≤ nc was proposed. We use the

inequality constraint since, as pointed out in [1, 13], in theory nc nonzero elements may not be always available.

Furthermore, we allow to select by this strategy at most nc ≤ nsp indices, as actually done by SVMlight and as

recommended in [8, 27], in order to exploit the benefits arising from including in B some indices of the previous

working set. We solve the linear problem (4) by the nonexpensive algorithm described in [13] and will focus on

some ideas for selecting indices from the previous working set in the next section.

Based on special versions of this general working set selection, convergence proves for Algorithm DT can be

obtained. The asymptotic convergence of Algorithm DT with nc = nsp is first proved in [13] under a suitable

strict block-wise convexity assumption. If G is assumed positive definite (this is the case of Gaussian kernels and

all zi 6= zj) the linear convergence is ensured in [14]. Convergence results without the above assumptions on G

are available in [11, 15] for the case nc = nsp = 2 only. How to extend these results to the general case of nsp ≥ 2

is a current interesting research issue and only recently some suggestions are appeared. In [19], the asymptotic

convergence for the case nc = nsp ≥ 2, without assumptions on G, is proved by a proximal point modification

of the subproblem (2). However, computational results about this approach are not available and, in particular,

the way in which this modification affects in practice the convergence rate is not still explored. We don’t deal

with this new scheme in the present paper and all the subsequent considerations on working set selections will

concern decomposition schemes based on the standard subproblem formulation given in Algorithm DT.

3 On the working set updating

In this section we analyse the working set selection of Algorithm DT, with special attention to the cases where

nsp is assumed large. It is well known that a careful choice of B is crucial for reducing the number of iterations
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in the above decomposition schemes. Here, starting from an analysis of the classical working set selection

used in SVMlight and the suggestions in [8, 27], we develop a new improved selection strategy and evaluate

its effectiveness on large-scale benchmark problems. All the subsequent computational results are obtained by

training Gaussian SVMs on the well known UCI Adult, Web and MNIST data sets [9, 21]; we describe in detail

the test problems and the IBM SP4 testing platform in the Appendix.

As already observed, the original selection strategy described in [9] falls within Algorithm DT by assuming

nc = nsp. Nevertheless, in the technical documentation of the package, the number nc of new variables entering

the working set in each iteration is recommended to be less than nsp in order to avoid zigzagging. When

nc < nsp, the nc indices entering the working set substitute the oldest elements of B, and in this way a dramatic

reduction of the SVMlight iterations can be obtained.

We give evidence of this behavior in Table I, where, for a given nsp, we show the number of decomposition

iterations (it) and the elapsed time in seconds (time) required by SVMlight with nc =
nsp

2 and nc = nsp. For each

test problem, we denote by NSV the number of Support Vectors (SVs), i.e., the training examples corresponding

to the nonzero components of x∗ (x∗
i > 0), and by NBSV the number of Bound Support Vectors (BSVs), i.e., the

training examples corresponding to the components of x∗ at the upper bound (x∗
i = C). SVMlight (version 5.0)

is run with pr LOQO as inner QP solver, a caching area of 512 MB and default setting for other parameters

(this means that the tolerance for the stopping rule is 0.001 and the shrinking is enabled). The results in Table

I emphasize the importance of using nc < nsp for reducing the iterations when the number of free variables

(unbound support vectors) is much larger than nsp. As observed also in [8], these situations are the most

difficult for the decomposition method since the values of many variables need to be decided by processing only

a small part of them at each step. On the other hand, when nsp is larger than the number of free variables,

a very good convergence of the decomposition scheme is also observed with nc = nsp. However, in practical

large-scale applications this last assumption is unrealistic and generally it is advisable to use SVMlight with

nc < nsp. For what concern the computational time observed in these experiments, we remark that SVMlight is

not designed to work efficiently with large subproblems and the poor performance observed when nsp increases

is not surprising at all. In particular, due to the huge computational time expected, we don’t run SVMlight on

the largest data sets with the largest values of nsp. We evaluate also the behavior of SVMlight for many other

small values of nsp and nc but, for each test problem, the values reported in Table I have implied the best

computational time.

The use of nc < nsp and consequently the possibility to keep indices of the previous working set into the

new one is also investigated in [8] and [27]. In these papers, similar strategies for choosing indices from the

previous working set are presented.

In [8], by studying decomposition methods for the simpler bound-constrained QP problem arising in the

nonstandard SVM formulation proposed by [16], a working set selection is suggested in which some indices

of free variables in the previous iteration are kept in the new working set, together with the indices coming

from a step like step 4.1. The aim of this strategy is to keep the number of free variables as small as possible
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during the iterative procedure, in order to simplify the decision of their values. In fact, a larger number of

free variables causes more difficulty to the decomposition scheme that is not able to consider all these variables

together in each iteration. Since, in this way, the convergence rate of the decomposition procedure is markedly

improved, the proposed selection strategy is also tested within the decomposition method for the standard

SVM formulation (1). Some numerical experiments on small test problems indicate that the selection strategy

performs well also in this framework and it is an useful tool for reducing the number of iterations required by

SVMlight in difficult cases. The experiments in [8] are carried out by running SVMlight with nsp = nc = 10 and

the proposed working set selection with nsp = 10, nc = 4.

Table I Number of SVMlight iterations for different nsp and nc.

nsp nc it time it time

UCI Adult data set

n = 32561 n = 3185

NSV = 11698 NSV = 1299

NBSV = 10605 NBSV = 1112

20 10 4407 278.7 337 3.0

20 20 8546 363.8 418 3.1

600 300 125 505.2 11 22.6

600 600 2707 6315.7 8 19.5

1300 650 48 1703.4 5 127.7

1300 1300 320 7552.0 4 119.1

Web data set

n = 49749 n = 9888

NSV = 3199 NSV = 1111

NBSV = 919 NBSV = 179

8 4 7235 184.6 2276 11.4

8 8 10174 232.4 2882 12.7

600 300 137 580.2 33 84.4

600 600 4057 11044.8 50 129.5

1500 750 40 1932.4 9 293.8

1500 1500 7 287.0

MNIST data set

n = 60000

NSV = 3159

NBSV = 160

8 4 9226 901.6

8 8 10869 1247.8

200 100 320 1723.1

200 200 3252 4436.1

In [27], a decomposition scheme for (1) that uses large values of nsp is developed. The working set selection

designed for this case, described in Algorithm WSS1, exploits the above ideas and another trick. In fact, besides

the selection of nc < nsp indices as in SVMlight and the choice of indices of previous free variables as in [8],

this selection also manages a situation typical when nsp is large: how to fill the current working set when the

previous free variables are not enough. For this situation, in [27] it is suggested to keep into the new working set
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first the indices of null variables and then, if these are not enough, the indices of variables at the upper bound

C. Of course, this distinction is effective only for noisy problems, i.e., problems with a sufficiently large number

of BSVs. By trying to leave out the variables at the upper bound from the working set, the aim of the proposed

criterion is to quickly increase the number of these variables and consequently, since many of them will be often

BSVs at the end of the optimization process, to produce a faster approximation of the final set of SVs. On

the other hand, when the problems have few BSVs the implementation of this trick doesn’t produce significant

differences respect to other criteria for selecting null or upper bound variables (after the free variables) in step

4.2 of Algorithm WSS1.

Algorithm WSS1 (Working set selection used in [27])

Step 4. Updating of B.

Step 4.1. Find the indices corresponding to the nonzero components of the solution of (4).
Let B̄ be the set of these indices.

Step 4.2. Fill B̄ up to nsp entries by adding the indices j ∈ B satisfying 0 < x
(k+1)
j < C; if these

indices are not enough, then add those such that j ∈ B, x
(k+1)
j = 0 and, eventually,

those satisfying j ∈ B, x
(k+1)
j = C; set B = B̄, k ← k + 1 and go to step 2.

The above considerations are confirmed by the numerical results reported in Table II and Figure 1. In these

experiments we test two versions of the GPDT proposed in [27]: the original version with the working set

selection described in Algorithm WSS1 and the version that uses a modified working set selection in which,

after the indices of free variables, the indices j ∈ B such that x
(k)
j = C are selected before the indices j ∈ B

satisfying x
(k)
j = 0. We denote by GPDT(C, 0) the modified GPDT version. In order to standardize the

comparison with SVMlight, all the subsequent GPDT codes are executed with the same stopping tolerance and

caching area size previously used.

Table II Number of iterations for GPDT and GPDT(C, 0)

GPDT GPDT(C, 0)
Data set nsp nc it time it time

1300 300 56 235.1 95 265.2
UCI Adult (n = 32561) 1300 650 45 285.1 65 297.2

1300 1000 49 272.7 60 327.4
1500 500 50 257.1 58 322.8

Web (n = 49749) 1500 750 49 313.5 47 300.6
1500 1000 64 432.6 91 574.8
3000 1000 8 681.4 8 739.1

MNIST (n = 60000) 3000 1500 8 963.8 8 1035.8
3000 2000 8 1047.4 8 1184.0

In Table II the number of iterations required by the two GPDT versions are compared on the three large-scale test

problems already used in the experiments with SVMlight. The GPDT exhibits a significant iterations reduction

on the UCI Adult test problem, where NBSV ≈ 0.9NSV, while less evident benefits can be observed on the Web

data set, where NBSV ≈ 0.3NSV, and the same iterations are required on the MNIST test problem where NBSV
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Figure 1 Free variables and variables at upper bound for the UCI Adult test problem

≈ 0.05NSV. For the run with nc = 650 on the UCI Adult test problem, in Figure 1 the number of free variables

(Nfree) and the number of variables at the upper bound (Nupper) in each iteration are reported. The main

difference is that GPDT shows a faster approximation of the variables at the upper bound, emphasizing in this

way the effectiveness of its working set selection in case of noisy problems. For what concern the computational

time of the two GPDT versions, we remark that different strategies for the working set selection not only affects

the number of decomposition iterations but can imply significant differences both in the data of the subproblem

(2) and in the sparsity of x
(k+1)
B . This explains the different cost per iteration sometimes exhibited by GPDT

and GPDT(C,0) (see for example the results for the MNIST test problems).

Taking into account all the above considerations, in the following we introduce two improvements to the

working set selection WSS1 used by GPDT.

First of all, we improve step 4.2 of Algorithm WSS1 by modifying the criterion for selecting indices from the

previous working set B. We require that, in choosing the indices as specified in step 4.2, the most recent indices

entering B have priority over the oldest (see step 4.2 in Algorithm WSS2 for a detailed description). In this

way, we give more confidence to the variables that have been optimized for a larger number of iterations and

could have already achieved their final optimal values. The effectiveness of this priority criterion, used also in

SVMlight, is clearly shown by the results in Table III where the same test problems of Table II are solved with

a version of GPDT, named GPDT(m.r.), including the new criterion. By comparing the number of iterations

required by GPDT and GPDT(m.r.), we observe that the new criterion implies remarkable improvements for

the Web data set and similar results on the other two test problems.

The second improvement concerns the introduction of an adaptive reduction of the parameter nc. We recall
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Table III Number of iterations for GPDT(m.r.) and GPDT2

GPDT(m.r.) GPDT2
Data set nsp nc it time it time

1300 300 54 232.9 54 237.2
UCI Adult (n = 32561) 1300 650 32 217.7 32 215.9

1300 1000 47 268.5 47 271.5
1500 500 30 191.6 27 187.7

Web (n = 49749) 1500 750 34 258.2 25 168.1
1500 1000 48 353.1 28 177.3
3000 1000 8 685.6 8 680.5

MNIST (n = 60000) 3000 1500 8 972.4 8 984.7
3000 2000 8 1035.2 8 1102.3

that, at each iteration, a new working set is built with at most nc indices selected in step 4.1 and with other

indices from the previous working set; this means that the number nnew of new indices entering the working set

is less than or equal to nc. The adaptive reduction criterion we propose consists in setting nc equal to nnew, if

nnew is not smaller than an empirical threshold given by max{10, L}, where L is the largest even integer such

that L ≤ nsp

10 ; otherwise, the threshold value is used as new nc. The description of this reduction strategy is

given in step 4.3 of Algorithm WSS2.

Algorithm WSS2 (New working set selection)

Step 4. Updating of B.

Step 4.1. Find the indices corresponding to the nonzero components of the solution of (4).
Let B̄ be the set of these indices.

Step 4.2. Fill B̄ up to nsp entries by adding the most recent indices j ∈ B † satisfying

0 < x
(k+1)
j < C; if these indices are not enough, then add the most recent indices j ∈ B

such that x
(k+1)
j = 0 and, eventually, the most recent indices j ∈ B satisfying x

(k+1)
j = C.

Step 4.3. Set nc = min{nc,max{10, L, nnew}}, where L is the largest even number such that
L ≤ nsp

10 and nnew is the largest even number such that nnew ≤ #{j, j ∈ B̄, j /∈ B};
set B = B̄, k ← k + 1 and go to step 2.

†We mean the indices that are in the working set B since the lowest number of consecutive iterations.

The aim of this trick is to reduce the zigzagging due to a large nc used in too many iterations. As already

observed in the discussion on the SVMlight, this phenomenon can be reduced by using nc < nsp, but when nsp is

large, a too small nc can vanish the benefits arising from the ability to optimize many new variables in a single

decomposition step. The proposed strategy allows to start the decomposition with a sufficiently large nc and

tries to avoid excessive zigzagging by subsequently reducing this large initial value. Finally, when nc reaches

a very small value or becomes too small in comparison with nsp, the reduction is not generally fruitful and an

empirical threshold value will be assumed for nc from now on. Note that the threshold value is also used to

check if the initial nc is so small as to make its reduction unnecessary.

We call GPDT2 the improved GPDT version that uses the working set selection described in Algorithm WSS2

instead of Algorithm WSS1. The advantages due to the introduction of step 4.3 in the working set selection
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Table IV Number of GPDT2 iterations for different nsp and nc.

nsp nc it time it time

UCI Adult data set

n = 32561 n = 3185

20 10 3689 203.1 258 3.1

600 300 77 198.7 8 2.2

1300 650 32 215.9 5 3.0

Web data set

n = 49749 n = 9888

8 4 6848 221.3 2255 16.4

600 300 190 207.6 30 15.1

1500 750 25 168.1 8 24.7

MNIST data set

n = 60000

8 4 8859 1413.5

200 100 304 1506.1

1000 200 55 778.7

2000 300 22 662.8

3700 1000 8 704.1

can be evaluated by comparing the results concerning GPDT(m.r.) and GPDT2 in Table III. The adaptive

reduction of nc allows a significant reduction of the iterations for the Web test problems without decreasing the

performance on the other data sets. Furthermore, a comparison between the results obtained with GPDT2 and

GPDT highlights the effectiveness of the new working set selection with respect to the selection strategy used

in [27].

4 GPDT2 performance

This section presents computational results obtained by the GPDT2 method both on serial and parallel en-

vironments. The parallel version of GPDT2 is obtained by performing in parallel the steps 2 and 3 of each

decomposition iteration, as explained in [27]: the subproblem (2) is solved by a parallel version of the GVPM

and the gradient updating (3) is obtained by distributing the rows of [GBB GBN ] among the available processors.

We evaluate GPDT2 on the most significant tests of Table I; the cases with nsp = nc are not considered

since, as pointed out before, they lead to useless performance. The results are reported in Table IV and show

that, even if the optimal timings are achieved for large values of nsp, the cases with smaller nsp are generally

executed with comparable times. Significant differences are observed only on the MNIST test problem where,

for small nsp values, the too large number of kernel evaluations, very expensive in this application, reduces the

performance excessively. We will face possible strategies for overcoming this drawback in a future version of

GPDT2. From the results in Table IV we can conclude that GPDT2 is efficient with many different sizes of the

working set and its performance is not strictly dependent on a correct guess of nsp. On the other hand, Table

I shows that the SVMlight effectiveness can markedly decrease if it runs with non optimal values for nsp.

Another important feature of GPDT2 is its good parallel properties. In fact larger decomposition subprob-
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Table V Scaling of GPDT2 in a parallel environment

PE it time spr it time spr

UCI Adult data set, n = 32561

nsp = 200, nc = 100 nsp = 1300, nc = 650

1 420 253.6 32 215.9

2 471 135.6 1.9 31 116.3 1.9

4 388 90.8 2.8 30 65.8 3.3

8 385 59.7 4.2 31 41.5 5.2

Web data set, n = 49749

nsp = 600, nc = 300 nsp = 1500, nc = 750

1 190 207.6 25 168.1

2 241 116.8 1.8 23 88.1 1.9

4 193 78.3 2.7 27 64.7 2.6

8 179 60.4 3.4 23 47.0 3.6

MNIST data set, n = 60000

nsp = 2000, nc = 300 nsp = 3000, nc = 800

1 22 662.8 9 670.6

2 22 375.5 1.8 8 308.3 2.2

4 22 178.4 3.7 8 166.2 4.0

8 23 110.8 6.0 8 108.2 6.2

lems lowers the number of iterations of the decomposition technique, thus reducing the dependencies in the

computation and improving the scalability in a parallel environment. Numerical evidence of this fact is shown

in Table V, where the performance of the parallel GPDT2 on the different data sets is shown. The number

of iterations and the total training time are reported for different numbers of processing elements (PEs) and

decomposition subproblem sizes (nsp and nc). The spr columns indicate the relative speedup of the method

(spr(q) = t1/tq, where tq is the time needed by the program on q PEs). It can be observed that generally the

runs with larger nsp exhibit a better speedup than the same runs with smaller nsp. This behavior is particularly

evident on the MNIST data set: even if the serial version has a lower execution time with a smaller nsp, all the

parallel runs require less time when larger nsp is used.

Finally, just to emphasize some advantages of the proposed technique over the SVMlight software, we can

observe that, when GPDT2 decomposes in sufficiently large subproblems, an execution time lower than that

given by SVMlight is obtained for all the test problems considered in this work. Besides, no parallel version

of SVMlight is available; this means that great speedups can be obtained if a parallel system is available. For

example, on the considered architecture, when 8 processors are used, one can train on the MNIST data set sized

n = 60000 in 108.2 seconds with the parallel GPDT2 instead of 901.6 seconds needed by the serial SVMlight

software.

5 Conclusions

This work is about decomposition techniques for the large quadratic program arising in training Support Vector

Machines. It is mainly focused on selection rules for updating the working set, which is a crucial step for the
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effectiveness of these techniques. Some of the most popular working set selections [8, 9, 27] are analyzed and

a new selection strategy, able to improve the convergence rate of the decomposition schemes based on large

sized working sets, is developed. The improved strategy is derived by analysing two issues that are essential

in case of large sized working set: how many new components can enter the working set at each iteration and

which components of the previous working set it is convenient to keep. For the former, an adaptive strategy for

reducing the number of new variables entering the working set is proposed while, for the latter, a recent criterion

is improved by taking into account how long a variable remains into the working set. Numerical evidence of

these improvements are given by showing the performance of a decomposition technique based on the new

selection strategy and on a gradient projection method for the inner QP subproblems. Both the number of

decomposition iterations and the execution time have been improved with respect to other existing techniques

on some common large data sets. Finally, the efficient use of large sized working sets has improved the scaling

properties of the decomposition method when executed in a parallel environment.

6 Appendix: test problems and test architecture

All the numerical results of this work are obtained by solving the quadratic programs arising in training Gaussian

SVMs on the following data sets:

• UCI Adult data set

This data set [17], allows to train an SVM to predict whether a household has an income greater than

$50000. After appropriate discretization [21], the inputs are 123-dimensional binary sparse vectors with

sparsity level ≈ 89%. We use the largest version of the data set sized 32561 and a smaller version sized

3185. For both the cases, we train a Gaussian SVM with C = 1 and σ =
√

10.

• Web data set

The data set [21], (available at <http://www.research.microsoft.com/∼jplatt/smo.html>), concerns a web

page classification problem with a binary representation based on 300 keyword features. On average, the

sparsity level of the examples is about 96%. We use two versions of the data set: the largest sized 49749

and a smaller with size 9888. The Gaussian SVM parameters are: C = 5 and σ =
√

10.

• MNIST data set

The MNIST database of handwritten digits [12] contains 784-dimensional nonbinary sparse vectors; the

size of the database is 60000 and the sparsity level of the inputs is ≈ 81%. A Gaussian SVM for the class

“8” is trained with parameters C = 10 and σ = 1800.

All the experiments are carried out with standard C codes running on the multiprocessor IBM SP4 equipped

with 16 nodes of 32 Power4 1.3GHz CPUs each and 64GB virtually shared RAM per node, at CINECA

supercomputing Centre, Bologna, Italy (<http://www.cineca.it>). The serial versions of the decomposition

techniques run on a single processor of the SP4. The parallel GPDT2 version uses standard MPI communication

routines and run on processors within the same node.
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