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Overview

GPDT is a C++ software designed to train Support Vector Machines (SVMs) for binary classification problems
in both scalar and distributed memory parallel environments. It solves the SVM convex quadratic programming
(QP) problem by a decomposition technique and uses gradient projection methods for the inner QP subproblems.

Some important features are:

• designed to decompose into medium-to-large (O(102) ÷ O(103)) QP subproblems

• two gradient projection methods for the inner QP subproblems are available

• caching of kernel evaluations

• supports standard kernel functions and lets you define your own

• folding in the linear case

• sparse vector representation

• good efficiency with both small (O(10)) and large (O(103)) subproblems (medium-large subproblems are
preferable)

• full SVMlight-compliant I/O

Moreover, the parallel version supplies:

• parallel implementation of the two gradient projection inner QP solvers

• parallel updating of the objective gradient

• distributed caching of kernel evaluations

• standard MPI communication routines

Algorithm

The decomposition technique implemented by GPDT follows the Joachims’ SVMlight algorithm [1]. The main
difference consists in the solver used for the inner QP subproblems. GPDT solves the subproblems by special
gradient projection methods [3, 5, 6], which are very effective also on large subproblems (O(103)). This ability
gives the chance to solve the whole problem in few decomposition iterations. To make effective such an approach,
an appropriate working set selection is introduced [4]. Furthermore, to reduce kernel evaluations, special strategies
are used for both gradient updating and kernel caching.

The parallel implementation is developed by distributing the main tasks of each decomposition iteration [2, 7]:

• building the subproblem Hessian;

∗This software was developed with the support of the Italian Education, University and Research Ministry (grants
FIRB2001/RBAU01JYPN and FIRB2001/RBAU01877P).
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• solving the subproblem;

• updating the objective gradient.

For the first item, computation and storage of the needed entries are distributed block columnwise among the
available processors. On such a distribution is also based the parallel inner QP solver, where the main task per
iteration is given by a matrix-vector product involving the subproblem Hessian. In order to update the objective
gradient some columns of the objective Hessian are required: these computations (requiring potentially expensive
kernel evaluations) are distributed among the processors. Moreover, a given part of each processor memory is
reserved as a caching area, where some Hessian columns are stored in order to avoid their recomputation in
subsequent iterations.

Source Code

The program is distributed under the General Public License and available at

http://dm.unife.it/gpdt

also reachable starting from

http://dm.unife.it/pn2o/software

or

http://slipguru.disi.unige.it/ASTA

The sources for both the serial and the parallel versions are available to download. Binaries have presently been
tested on the following systems:

• PC with all major Linux distributions (kernel 2.4 or higher, gcc 2.95 or higher): serial.

• PC with Windows ME, 2000, XP: serial.

• HP or DEC UNIX workstations: serial.

• Intel-based IBM Linux cluster (Xeon): serial and parallel.

• Power4- and Power5-based IBM AIX cluster: serial and parallel.

Building the program

To compile the sources you need a C++ compiler for your platform and a UNIX-like make command. Most
Windows-targeted C/C++ programming IDE provide the GNU-like gmake command that can be called from the
DOS prompt. Make the source directory your current directory, then edit the Makefile file and set the environment
variable $CPP to the name of your C++ compiler command: for instance, type

$CPP = gcc

if you will use the standard GNU compiler. Then set the optional compiler command line arguments in the
$CPPFLAGS environment variable. This is the right place where to put platform-specific code optimization options
such as -O3 or -Ofast. The variable $SLIB is mainly intended for expert users and shouldn’t typically need any
change from the provided defaults. Type in this variable the list of additional libraries that you want to be linked
with the serial executable, in the standard way -llibname. Notice that you always need to link the standard math
library by -lm.

All binaries will be created by default in the current directory, but you have a chance to change this behavior
by setting the $BINDIR environment variable to provide a different directory (under UNIX-like systems you must
previously check to have writing rights to that directory).

The compilation process should be quite fast and normally you shouldn’t get errors. Eventually warning
messages could be issued by the compiler if strict compliant controls are activated.

At the system prompt, simply type

make

or

make gpdt

to get the serial executable gpdt in the current directory. Analogously, the command

make pgpdt

will build the parallel version from the corresponding sources.
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How to use

GPDT can be called by the following command line:

./gpdt [options] example_file model_file

The available options are:

option argument meaning
-? this help
-h display help message
-v [0..2] verbosity level (default 1)
-t [0..2] type of kernel function (default 2):

0: linear (xT y)
1: polynomial (s(xT y) + r)d

2: radial basis function (rbf): exp(−g||x − y||2)
-s float parameter s in polynomial kernel (default 1.0)
-r float parameter r in polynomial kernel (default 1.0)
-d int parameter d in polynomial kernel (default 3)
-g float parameter g in rbf kernel (default 1.0)
-c float parameter C for SVM classification: trade-off between

training error and margin (default 1.0)
-q int size of the QP-subproblems: q ≥ 2 (default 400)
-n int maximum number of new indices entering the working set

in each iteration: 2 ≤ n ≤ q, n even (default q/3)
-e float tolerance for termination criterion (default 0.001)
-a [0, 1] gradient projection-type inner QP solver:

0: Generalized Variable Projection method [3]
1: Dai-Fletcher Projected Gradient method (default) [5]

-f [0, 1] projector type [7]:
0: bisection-like algorithm (default if q <= 20)
1: secant-based method (default if q > 20)

-m int cache size in MB (default 40)
-u float parameter for proximal point modification [7] (default 0):

u > 0: modification at each iteration
u < 0: modification, with parameter abs(u), only as emergency step

Remember that different actions will be automatically taken if you provide invalid parameter values. Anyway, at
the end of the run you will be informed on the values actually used by the code.

Testing the program

Here we provide some execution examples. Three test sets are available:

• a 10000 samples subset of the MNIST handwritten digits database (http://yann.lecun.com/exdb/mnist):
it is constituted by 5000 samples of the digit “8” and 5000 samples of the other digits (file mnist8n8_10k);

• the 11220 samples set “adu6” of the UCI Adult database at http://www.research.microsoft.com/~jplatt
(file uciadu6);

• the 17188 samples set “web-6a” of the Web database at http://www.research.microsoft.com/~jplatt

(file web6a).

In what follows we show a sample command line typed at the system prompt and the training results.

Scalar tests

The following tests are carried on an HP zx6000 workstation (CPU Intel Itanium 2 at 1.3GHz, 2GB RAM).
For instance, the command line

./gpdt -t 2 -g 1.54e-7 -c 10 -q 1000 -n 400 -m 300 mnist8n8_10k mnist8.model

will train a Gaussian SVM (in this case the option -t 2 can be omitted, since it is the default) with σ = 1800 ⇒
g = 1.54 ·10−7 and C = 10 on the 10000 samples MNIST data set, using a working set sized 1000, allowing at most
400 new variables entering the working set at each decomposition iteration and requiring a 300 MB caching area.
The classifier will be stored in the file mnist8.model.

Table 1 shows the training reports on the three data sets with different decomposition subproblem sizes.
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Data set -q -n obj b SV BSV iter. ker. (×106) sec.

MNIST
(rbf kernel with

σ = 1800, C = 10)

2 2 −2083.574 6.4389 1589 39 10263 17.032 41.7
40 20 −2083.575 6.4399 1591 39 760 18.289 21.0

400∗ 132∗ −2083.576 6.4400 1590 39 55 19.105 20.6
1000 400 −2083.576 6.4401 1591 39 14 21.224 24.4

UCI Adult
(rbf kernel with

σ =
√

10, C = 1)

2 2 −3750.461 −0.0897 4212 3741 6752 50.946 28.2
40 20 −3750.461 −0.0901 4219 3723 559 51.826 11.9

400∗ 200 −3750.462 −0.0900 4226 3715 35 54.664 11.1
1000 500 −3750.461 −0.0889 4226 3715 15 58.476 13.0

Web
(linear kernel

with C = 1)

8 4 −536.967 1.0269 820 475 16437 0.493 113.0
40 20 −536.968 1.0268 814 474 3024 1.905 21.2

200 100 −536.969 1.0268 809 478 114 1.422 4.3
800 400 −536.967 1.0277 792 479 13 1.572 11.7

∗ Predefined default values.

Table 1: numerical results for some serial runs on the three provided test sets.

Parallel tests

To test the parallel version, once the appropriate binary is created by compilation, you can proceed as in two
following examples. Note that the scripting syntax and the job submission system can be quite different on your
specific platform, so in case of troubles please ask the technicians or browse the available system documentation.

Suppose you are a user of a Power4-based IBM cluster and that the executable pgpdt is available. If your
machine supports POE (Parallel Operating Environment), the following line will run the program in interactive
mode on 8 processors of the same node, with the same requirements as for the corresponding scalar test:

poe ./pgpdt -procs 8 -nodes 1 -task_per_node 8 \

-t 2 -g 1.54e-7 -c 10 -q 400 -n 132 -m 300 \

mnist8n8_10k mnist8.model > mnist8n8_10k.out

where the standard output is redirect to the file mnist8n8_10k.out in the current directory.
Since it is often strongly discouraged to run demanding parallel jobs in interactive mode, more reliable tests can

be carried on in batch mode. The following is a sample command script to submit the same test in batch mode:

#!/bin/sh

# @ wall_clock_limit = 0:10:00

# @ network.MPI = csss,shared,US

# @ node = 1

# @ tasks_per_node = 8

# @ resources = ConsumableCpus(1) ConsumableMemory(1500 mb)

# @ shell = /bin/csh

# @ job_name = SVMPAR

# @ job_type = parallel

# @ class = debug

# @ output = svm.out

# @ error = svm.err

# @ notification = never

# @ queue

cd $HOME/pgpdt

./pgpdt -t 2 -g 1.54e-7 -c 10 -q 400 -n 132 -m 300 \

mnist8n8_10k mnist8.model > mnist8n8_10k.out

It should be saved in a file (say mnist8n8_10k.cmd) and submitted to the batch queue. Please, refer to your specific
site documentation for further details on policies, configurations, requirements, script syntax and machine limits.

Conversely, suppose you are a user of a Xeon-based Linux cluster, that the executable pgpdt is available and
that the MPICH library is installed on the system. If your machine supports OpenPBS (Open Parallel Batch
System), then normally the only possibility to run MPI-based parallel programs is through the command mpiexec,
both in a batch interactive and in a batch background sessions.

If you want to run pgpdt interactively on 8 processors then you could use the following sequence of commands:

qsub -l nodes=4:ppn=2,walltime=0:10:00 -I
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Data set Procs obj b SV BSV iter. ker. (×106) sec.

MNIST
(σ = 1800, C = 10
q = 400, n = 132,

cache = 300MB)

1 −2083.575 6.4397 1590 39 57 19.095 28.7
2 −2083.576 6.4403 1589 39 53 19.469 15.1
4 −2083.575 6.4400 1590 39 52 19.878 8.6
8 −2083.576 6.4402 1590 39 54 20.679 5.6

Table 2: numerical results of some parallel runs on a Xeon-based IBM Linux cluster.

At this point (if there are free resources) you enter the batch interactive session and you can run your test with:

mpiexec ./pgpdt -t 2 -g 1.54e-7 -c 10 -q 400 -n 132 -m 300 \

mnist8n8_10k mnist8.model > mnist8n8_10k.out

The same can be done in a non-interactive batch session: you should save in a file, say mnist8n8_10k.sub, a job
script similar to

#!/bin/sh

#PBS -l nodes=4:ppn=2,walltime=00:10:00

cd $HOME/pgpdt

mpiexec -n 8 -no-shmem \

./pgpdt -t 2 -g 1.54e-7 -c 10 -q 400 -n 132 -m 300 \

mnist8n8_10k mnist8.model > mnist8n8_10k.out

and then submit it to the queuing system with the command

qsub mnist8n8_10k.sub

Please, refer to the specific documentation of your parallel Linux system for more detailed information.
Table 2 summarizes the expected results on the MNIST data set by changing the number of processors. We

underline that much better scaling performance can be obtained by training larger data set, as it is shown for
instance in [2].

Also, notice that you could observe a variability in the execution time on repeated runs of the same command
line, due to both the user policy and the machine workload.
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