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I. Introduction

Let X ⊂ P
n be a reduced, irreducible, and non-

degenerate projective variety.

Definition: Let r ≤ n, then:
1) a secant Pr to X is any linear subspace Pr of

P
n for which there are P0, . . . , Pr ∈ X for which

〈P0, . . . , Pr〉 = P
r;

2) Secr(X) :=
⋃
{ all secant P

r’s to X}
(also sometimes written Xr+1)

Basic Question:

How big is Secr(X)? i.e. what is its dimension?

There is an expected dimension by counting pa-
rameters:

min{n, (r + 1) dim X + r}.

When X has a secant variety whose dimension
is less than expected we say that the secant variety
is deficient, and the difference between the expected
and actual dimension is denoted the deficiency of
that secant variety.
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Today I want to consider the Basic Question
for the case of the Segre Varieties with their usual
embedding in projective space.

I will use these examples as the “playing field”
on which to explain our approach to the general
problem of dealing with secant varieties. As you
will see, our approach contrasts with that (say) of
Chiantini and Ciliberto in that we are able to deal
only with very special families of varieties: ratio-
nal and strongly algebraically defined! in fact, in-
timitely connected to three of the most basic func-
tors of algebra – the formation of the polynomial
algebra (the Veronese varieties), the tensor product
(the Segre Varieties) and the Exterior Algebra (the
Grassmann variety) as well as various combinations
of these functors. One advantage of our approach,
for these special varieties, is that we are often able
to find deficient varieties and (perhaps more signifi-
cantly) can often say with certainty that certain va-
rieties are NOT deficient.

In the particular case of the Segre varieties you
will be able to see the two main aspects of our ap-
proach: the combinatorial and the algebraic.
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The combinatorial aspect will be present in our
study of particular monomial ideals in polynomial
rings.

The algebraic aspect will be evident when we
translate the secant variety problem into one which
requires that we deal with the Hilbert function of
certain ”fat point” schemes in projective space, or
products of projective spaces. The algebra here is
mainly in the study of the cohomology of these fat
point schemes.

II. Notation and First Results

Let’s begin by setting up the basic notation. If
we set n = (n1, . . . , nt), recall that the Segre Vari-
eties are the varieties Pn1 ×· · ·×Pnt = Pn embedded
in P

Nn , Nn = Π(ni + 1) − 1. Let me recall how the
embeddings are defined.

Let V1, . . . , Vt be vector spaces over the field k =
k where dim Vi = ni + 1. Think of Pni = P(Vi).
Then, the Segre embedding is based on the canonical
multilinear map:

V1 × · · · × Vt → V1 ⊗ · · · ⊗ Vt
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i.e.
[v1] × · · · × [vt] −→ [v1 ⊗ · · · ⊗ vt].

and we are thinking of the enveloping P
Nn as

P(V1 ⊗ · · · ⊗ Vt).

Denote the embedded Segre Variety above by
Xn.

With this point of view:

i) Xn is the set of all classes of decomposable

tensors, i.e. classes of tensors in P(V1 ⊗ · · · ⊗ Vt) of
the form [v1 ⊗ · · · ⊗ vt].

ii) the secant variety, Secr(Xn), is the closure
of the set of classes of those tensors which can be
written as the sum of ≤ r +1 decomposable tensors.

III. Two Factors

The case when n = (n1, n2).
After choosing bases for the underlying vector

spaces we can identify

V1 ⊗ V2 ↔ (n1 + 1) × (n2 + 1) matrices,
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decomposable vectors ↔ matrices of rank 1.

With this point of view, the enveloping space for
Xn is the space of all these matrices (under projective
equivalence) and the Segre variety consists of the
classes of matrices of rank 1.

It is a standard fact of linear algebra that a
matrix has rank ≤ r + 1 if and only if it is a sum of
≤ r + 1 matrices of rank 1.

Thus, if n = (n1, n2) the secant varieties of Xn

are the rank varieties of the generic (n1+1)×(n2+1)
matrix.

Example: Consider the embedding of P2×P2 in P8,
where P8 is the projective space of 3 × 3 matrices
under projective equivalence.

The ideal of 2 × 2 minors of the generic matrix
of size 3×3 defines X(2,2) and the determinant of the
generic matrix gives the equation of Sec1(X(2,2)).

This shows that dimSec1(X(2,2)) = 7. The ex-
pected dimension was:

min{8, 2(4) + 1} = 8,
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i.e. we expected the secant variety to fill the envelop-
ing space – but it does not. This is an example of a
deficient Segre Variety.

In fact, if we assume that n1 ≤ n2 then: for
all r, 1 ≤ r < n1 the secant varieties Secr(Xn) all
have dimension less than the expected dimension.
Moreover, the least integer r for which Secr(Xn) fills
its enveloping space is r = n1.

So, for two factors everything is pretty much
known. One has a nice description of the varieties
in question. One knows they are all arithmetically
Cohen-Macaulay and one even has a description of
the minimal free resolution of the defining ideal.

IV. More than Two Factors

For simplicity in notation, today I will mostly
concentrate on the case of three factors (although
almost everything I say is true for any number of
factors ≥ 3). In fact, even for three factors there are
many open problems; with some of the very inter-
esting applications in this special case.

As mentioned earlier, we are interested in writ-
ing tensors as the sum of decomposable tensors. In
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particular we would like to know when the generic
tensor is in Secr(Xn), i.e when this secant variety
fills the enveloping space.

E.g. if A is some finite dimensional algebra over
k the multiplication map in A is a bilinear map

A × A → A.

As such it gives rise to a particular tensor in

A∗ ⊗ A∗ ⊗ A.

If we knew how to express this tensor as a (short)
sum of decomposable tensors, this would give us an
algorithm for the multiplication in A.

For example, it has been shown that for the al-
gebra of 2 × 2 matrices the tensor in question is the
sum of 7 (and no fewer) decomposable tensors. This
has resulted in a cheaper way to do matrix multipli-
cation than the way we ordinarily do it. So, solutions
to this sort of problem, even for the case of 3×3 ma-
trices would actually make money!! In this case the
tensor in quesion is in P

8∗ ⊗ P
8∗ ⊗ P

8 ⊂ P
728!
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V. The Basic Geometric Result

Lemma: (Terracini) Let X ⊂ Pn be as above. The
dimension of X

r+1 is the same as the dimension of
the linear span of the tangent spaces to r+1 general
points of X.

(...because that linear space IS the tangent space to
Secr(X) at a general point of the secant Pr generated
by those r + 1 general points.)

From Terracini’s Lemma, the obvious first step
is to try and see if we can recognize the tangent space
at a point on the Segre Variety.

In order to do that we have to introduce some
(hideous) notation.

Choose bases for the three vector spaces as:

Vi = 〈x0,i, x1,i, . . . , xni,i〉.

Consider the three polynomial rings

Si = k[x0,i, x1,i, . . . , xni,i],

and the N3 graded polynomial ring

A = k[x0,1, . . . , xn1,1; x0,2, . . . , xn2,2; x0,3, . . . , xn3,3],
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where
deg xi,1 = (1, 0, 0),

deg xi,2 = (0, 1, 0)

deg xi,3 = (0, 0, 1)

.

Note that V = V1 ⊗ V2 ⊗ V3 is being identified
with A(1,1,1) and we are embedding the product Pn,
n = (n1, n2, n3) in P(A(1,1,1)).

Consider the image of the point

P = [1 : 0 : . . . : 0] × [1 : 0 : . . . : 0] × [1 : 0 : . . . : 0]

in Xn and the tangent space to it. It is not difficult
to show that the (affine cone on the) tangent space
at that point (viewed in the polynomial ring A) is

[(S1)]1(x0,2x0,3) + [(S2)]1(x0,1x0,3) + [(S3)]1x0,1x0,2

:= W(1,1,1).

If we form the polynomial ring, B,

B = k[y0,1, . . . , yn1,1; y0,2, . . . , yn2,2; y0,3, . . . , yn3,3],

10



where
deg yi,1 = (1, 0, 0),

deg yi,2 = (0, 1, 0)

deg yi,3 = (0, 0, 1)

.

then there is a natural duality between the two rings,
where

ya,j ◦ xb,` = (∂/∂xa,j)(xb,`).

Under this duality we have a perfect pairing

B(1,1,1) × A(1,1,1) → k.

Using this pairing one obtains:

(W(1,1,1))
⊥ =

[(y1,1, .., yn1,1; y1,2, . . . , yn2,2; y1,3, . . . , yn3,3)
2](1,1,1).

I.e. the degree one piece of the ideal I2
P , considered

in B.
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Putting together the various pieces we have:
the dimension of the tangent space at a point P

in Xn is:

dimk(B(1,1,1)/(I
2
P )(1,1,1))−1 = (n1 +n2 +n3 +1)−1

= n1 + n2 + n3.

(which we already knew! it’s the dimension of Xn).

We shall call a subscheme of Pn defined by an
ideal of the form I2

P a 2-fat point in P
n.

Since ⊥ converts +’s into ∩’s we obtain:
let Pi = pi1 × pi2 × pi3 (i = 1, . . . , s) be generic

points in Pn. Let IPi
⊂ B be the defining ideal of Pi

and set

I = I2
P1

∩ . . . ∩ I2
Ps

⊆ B.

Let Pi be the images of Pi in Xn and let Wi be the
affine cone over the tangent space to Pi.

Then

(W1 + · · ·Ws)
⊥ = (I)(1,1,1)
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and so (by Terracini)

dim Secs−1(Xn) = dimk(B(1,1,1)/I(1,1,1)) − 1.

All of what I said above is true also in any di-
mension, so the question of determining the dimen-
sion of X

s
n is completely dependent on finding the

Hilbert function (in degree (1, . . . , 1)) of s generic
2-fat points in P

n.
There are two ways to approach this problem:

1) You think that dim X
s
n is the expected one! In

that case, it is enough to find ANY set of s 2-fat
points which impose the correct number of indepen-
dent conditions to the forms of degree (1, . . . , 1). I.e.
you try to prove that they impose

min{ s(n1+ . . .+nt+1), (n1+1)(n2+1) · · · (nt+1) }

conditions to the forms of degree (1, . . . , 1) in A.

OR

2) You think that the dimension of Xs
n is not the

expected one. In that case, you have to prove that
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for ANY set of s 2-fat points there are more forms
of degree (1, . . . , 1) vanishing on that scheme than
there should be.

We can, in certain cases, do both of these things
combinatorially. Today I’ll only consider times when
the combinatorial approach shows that the expected

dimension of the secant varieties is the actual dimen-
sion. (For simplicity in the notation I’ll go back to
the case of three factors)!

Let P ∈ Pn, n = (n1, n2, n3) and write P =
(p1, p2, p3).

Def. P is a coordinate point of P
n if each pi is a

coordinate point in Pni .

There are Π3
i=1(ni + 1) coordinate points in Pn

and we can think of them as corresponding to places
on a 3-dimensional chessboard; where the position
(i1, i2, i3) on the chessboard corresponds to the prod-
uct of the i1 coordinate point in P

n1 , the i2 coordi-
nate point in Pn2 and the i3 coordinate point in Pn3 .
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It is easy to see that the ideal of B correspond-
ing to the coordinate point P ↔ (i1, i2, i3) is IP =

(y0,1, . . . , ŷi1,1, . . . , yn1,1; y0,2, . . . , ŷi2,2, . . . , yn2,2;

y0,3, . . . , ŷi3,3, . . . , yn3,3).

IP is a monomial ideal and hence so is I2
P . Let’s

try to describe this latter ideal, at least in degree
(1, 1, 1).

A monomial of degree (1, 1, 1) looks like

M = yj1,1 yj2,2 yj3,3.

Such a monomial is in I2
P ⇔ at least 2 of the entries

in (j1, j2, j3) are different from (i1, i2, i3).
Put another way, M is not in I2

P ⇔ at most one
of (j1, j2, j3) is different from (i1, i2, i3).

It is easy to picture this situation on the chessboard!

Place a rook at the point (i1, i2, i3) on the chess-
board. The places that rook can attack correspond
precisely to the places (j1, j2, j3) which are different
from (i1, i2, i3) in at most one place. How many
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such places are there? exactly (n1 + n2 + n3) + 1
(the “1” coming from the place where the rook is
sitting already!).

Let’s introduce some chessboard notation:

a set R = {P1, . . . , Ps} of coordinate points in P
n will

be called a rook set and let 〈R〉 denote all the points
on the chessboard which can be attacked by rooks
placed at the points on the chessboard corresponding
to the Pi. If we let Z ⊂ Pn be the scheme of 2-fat
points whose support is R then

H(Z, (1, 1, 1)) =| 〈R〉 | .

We say that a rook set is perfect if every element
in 〈R〉 is attacked by exactly one member of R.

Notice that there are no perfect rook sets on a
two dimensional chessboard but there is an easy one
to see on a 2 × 2 × 2 chessboard!
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Theorem: Let n = (n1, n2, n3). If the (n1 + 1) ×
(n2 + 1) × (n3 + 1) chessboard supports a perfect
rook set with s rooks then dim Xs

n is the expected
dimension.

Corollary: If s ≤ n1 + 1 then Xs
n has the expected

dimension.
(place the rooks on the diagonal!).

So, (roughly speaking) the “small” secant vari-
eties for Segre’s are never deficient. In particular:

Corollary: The secant line variety for any Segre va-
riety has the expected dimension.

Remarks:

1) It’s clear that the discussion above is ok for any
n, not just for three factors.

2) If all the ni + 1 = q, a fixed value, then problems
about rook sets can be translated into problems in
coding theory. In this case, a perfect rook set with
s rooks is a 1-correcting code with s words and an
alphabet of q letters. (explain!).
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3) Perfect rook sets R for which 〈R〉 is the entire
chessboard correspond to perfect codes. There has
been a long and difficult search for perfect codes.
They are known to exist only for the following pa-
rameters:

q a prime power , t =
qk − 1

q − 1
(k ≥ 2), s = qt−k.

(One proves the existence of such codes using the
existence of finite fields with q elements. I.e. the
theory of finite fields is useful for us in studying the
algebraic geometry of high dimensional complex pro-
jective spaces!!!!)

But, that is very interesting for us, since we can
use their existence to make assertions about secant
varieties of Segre varieties.
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Example:

1) Let k be any positive integer, q = 2, t = 2k − 1,
s = 2t−k. For these numbers we find that for the
Segre embedding

Xt = P
1 × · · · × P

1

︸ ︷︷ ︸
t=2k−1 -times

→ P
22k−1

−1 = P
2t

−1

we have Secs−1(Xt) = P
2t

−1 and these secant vari-
eties fit “exactly” into their enveloping space.

It follows that all the secant varieties of Xt have
the expected dimension.

It is worth noting here that the t’s above are the
only ones with the property that the generic tensor
in the tensor product of t copies of a 2-dimensional
vector space should be expressible in only a finite
number of ways as a sum of s decomposable tensors.
One wonders if it is true that for any of these values
of t there is a unique such decomposition for a generic
tensor. I.e. is it true that a generic member of the
envelopping P2t

−1 lies on exactly one secant Ps−1 to
Xt?
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2) We can make families of similar examples for
products of P

2, P
3, P

4, P
7, P

8, . . . , Pq−1 where q is
a prime power.

Given such a q, for any integer k ≥ 1 we take t =
(qk −1)/(q−1) copies of P

q−1, which gets embedded

in Pqt
−1. Then, for s = qt−k we get

Secs−1(P
q−1 × · · · × P

q−1)︸ ︷︷ ︸
t -times

= P
qt

−1

exactly!.

Question: It would be very nice if, in the family of
all products of a fixed P

n, there were only a finite
number of deficient secant varieties. Is that true?

I’ll come back to this question shortly for prod-
ucts of P1’s, the first case to consider.
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The Simultaneous Homogenization Method

Apart from the cases where we could deal with
fat point schemes by looking at monomial ideals, try-
ing to understand the multigraded Hilbert functions
of generic 2-fat point schemes in Pn seems very dif-
ficult.

This fact forced us to search for other methods
for trying to deal with 2-fat point schemes.

One method which we have found that does
some cases very well is the one I want to briefly ex-
plain now. Roughly speaking we look at P

n and
then “dehomogenize” each factor Pni to Ani . Since
we have only a finite number of points, we consider
them as lying in this affine piece of P

n, which is an
affine space An1+...+nt . Now homogenize and keep
track of things in this new P

n1+...+nt .
Recall: if n = (n1, . . . , nt) then Xn is the image

of
τn : P

n → P
Nn

(the Segre embedding). Let P1, . . . , Ps be s generic
points in P

n and let Z be the scheme defined by

IZ = (IP1
)2 ∩ . . . ∩ (IPs

)2 ⊂ B
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where

B = k[y0,1, . . . , yn1,1; y0,2, . . . , yn2,2;

. . . ; y0,t, . . . , ynt,t].

Then
dim X

s
n = dim Secs−1(Xn) =

= dimk

(
B

IZ

)

(1,...,1)

− 1

ut
So, if Z is a scheme of s generic 2-fat points in

P
n there is no loss in assuming that Z is contained

in the affine chart defined by y0,1 · · · y0,t 6= 0. Let
n = n1 + · · · + nt. We seek a scheme W ⊂ Pn such
that

dim(IW )t = dim(IZ)(1,...,1).

Without going into the details (which are sim-
ple, but notationally messy) we obtain the following:
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let

S = k[z0, z1,1, . . . , zn1,1, . . . , z1,t, . . . , znt,t]

be the homogeneous coordinate ring of P
n and let

Q0, Q1,1, . . . , Qn1,1, . . . , Q1,t, . . . , Qnt,t

be the coordinate points of Pn. Set

Πi = 〈Q1,i, . . . , Qni,i〉

and let Wi be the subscheme of P
n which is (t−1)Πi

(i.e. if IΠi
is the prime ideal of S corresponding to

Πi, then Wi is the subscheme of Pn defined by It−1
Πi

).

If we let Z ′ be a subscheme of s generic 2-fat
points in Pn, then:

Theorem: If W = Z ′ + W1 + . . . + Wt ⊂ P
n,

dimk(IW )t = dim(IZ)(1,...,1).

The key point is: we replaced a scheme in a
multiprojective space by a scheme in standard pro-
jective space. Consequently, all the machinery in
dealing with such schemes is now available to us.
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Example: Let me illustrate the importance of this
switch in a very particular case: the product of P

1

t-times (which I’ll write (P1)t). We’ll denote by Xt

its embedding in P2t
−1.

The method says that we can replace a scheme
Z of s generic 2-fat points in (P1)t with the following
scheme in P

t:

the union of
i) s generic 2-fat points in Pt;
ii) t other schemes, W1, . . . , Wt; where if Q0, . . . , Qt

are the coordinate points in P
t, then

Wi = (t − 1)Qi.

E.g. for t = 4 we have X4 = X(1,1,1,1) ⊂ P15,
then dimk[X3

4 = Sec2(X4)] is

(24 − 1) − dimk(℘2
1 ∩ ℘2

2 ∩ ℘2
3 ∩ q3

1 ∩ q3
2 ∩ q3

3 ∩ q3
4)4

where the qi are the prime ideals of coordinate points
in P4 and the ℘i are the prime ideals of general
points. There are, then, 7 general points of P

4.
Since 7 points of P4 are always on a rational

normal curve, the dimensions of all the pieces of such
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ideals are known and have been computed in a paper
by Catalisano, Ellia, and Gimigliano. One expects
this ideal to contain only one form of degree 4 but
they show it has two. This has, as a consequence,
that X4 has a deficient secant plane variety.

This appears to be the only deficient secant va-
riety in the entire family of products of P

1’s.
In fact, in a paper by Catalisano, Gimigliano

and I we showed (using the ideas above):

Theorem:

Let Xt be the Segre embedding of (P1)t in PN ,
N = 2t − 1.

Let et = [2t/(t + 1)] ' δt(mod 2) and define

st = et − δt.

If s 6= st + 1 then

dim X
s
t = min{s(t + 1); N}

i.e. the secant variety has the expected dimension in
all these cases.
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Indications of the Inductive Proof:

Special Case of (P1)5 ⊂ P31 as X5.

Need to show: for

s5 = 4 and s5 + 2 = 6

dim Sec3(X5) = 23 and dim Sec5(X5) = 31

the expected dimensions.

Note that the Theorem makes no statement about
the dimension of Sec4(X5), which has expected di-
mension 29. (We’ve verified, using CoCoA, that this
dimension is also correct.)

*******
Some simple algebraic facts we will need are:

if ℘ = (x1, . . . , xn) ⊂ R = k[x0, . . . , xn] then

i) ℘` is a ℘-primary ideal (Macaulay);
ii) (℘` : x0) = ℘`;
iii) (℘` : x1) = ℘`−1.
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Also: let I = IZ be the (saturated) ideal of R
defining the subscheme Z ⊂ P

n. Let F be a homo-
geneous form of degree d. Then:

i) the scheme defined by (I : F ) (automatically
saturated) is called the residual of Z with respect to
D = V (F ) and denoted

ResD(Z) = Z ′.

ii) The subscheme of D defined by the ideal
(I, F )/(F ) in R/(F ) (not necessarily saturated) is
called the trace of Z on D and denoted

TrD(Z) = Z
′′.

For t ≥ d we have the Castelnuovo Inequality:

dimk(IZ,Pn)t ≤ dimk(IZ′,Pn)t−d + dimk(IZ′′,D)t

which is an immediate consequence of the exact se-
quence

0 → (I : F )(−d)
×F
−→ I →

I

F (I : F )
→ 0
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and the observations:

a) F (I : F ) = (F ) ∩ I and

b) I
F (I:F ) = (I,F )

(F ) .

Now,taking cohomology, and noting that (I,F )
(F )

need not be saturated, the inequality follows.

The major algebraic fact we will use is the in-
credible ”Differential Horace Lemma” of J. Alexan-
der and A. Hirschowitz.
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Lemma: Let H ⊂ Pn be a hypersurface, P1, . . . , Pr

generic points of P
n.

Consider a zero dimensional scheme Z ⊂ Pn,

Z = Z̃ + 2P1 + · · · + 2Pr.

Form ResH(Z̃) = Z̃ ′ and TrH(Z̃) = Z̃ ′′.
If P ′

1, · · · , P
′
r are generic points in H, set

D2,H = 2P ′

i ∩ H( a degree n subscheme of P
n).

Consider the two schemes: (called respectively
Degue and Dime by [A-H]:)

Z
′ = Z̃ ′ + D2,H(P ′

1) + · · · + D2,H(P ′

r) ⊂ P
n

Z
′′ = Z̃ ′′ + P ′

1 + · · · + P ′

r ⊂ P
n−1 = H.

If dimk(IZ′)t−1 = 0 and dimk(IZ′′)t = 0 then

dimk(IZ)t = 0.
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Back to our special case: to use the multiho-
mogenous dehomogenization method to find the di-
mension of Sec3(X5) we must consider the scheme

W = 4Q1 + . . . + 4Q5 + 2P1 + · · · + 2P4 ∈ P
5

(where Q1, . . . , Q5 are the coordinate points of P
5

for which x0 = 0 and P1, . . . , P4 are 4 generic points
of P5) and show that the ideal of this scheme

IW = q4
1 ∩ · · · ∩ q4

5 ∩ ℘2
1 ∩ · · · ∩ ℘2

4

satisfies dim(IW )5 = (25 − 1) − 23 = 8.

***************************
Now, let H be a hyperplane which contains Q2

through Q5 but not Q1; choose P ′
1 and P ′

2 generic in
H and P3 and P4 generic in P

5. Form the (less than
generic) scheme:

Z = 4Q1 + · · · + 4Q5 + 2P ′

1 + 2P ′

2 + 2P3 + 2P4.

It would be enough to show that dim(IZ)5 = 8.
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Now add 8 points to Z, call them {T1, . . . , T8}
- with the first four chosen generically on H and
the last four chosen generically in P5 - and call the
resulting scheme Z+. It will be enough to prove that
dimk(IZ+)5 = 0. We want to apply the Lemma to
this scheme.

To that end, write

Z+ = Z̃ + 2P3 + 2P4 =

(4Q1+· · ·+4Q5+2P ′

1+2P ′

2+T1+· · ·+T8)+2P3+2P4

and calculate ResH(Z̃) and TrH(Z̃). We find,

ResH(Z̃) =

4Q1 +3Q2 + · · ·+3Q5 +P ′

1 +P ′

2 +T5 + · · ·+T8 ⊂ P
5,

T rH(Z̃) =

4Q2+ · · ·+4Q5+2P ′

1+2P ′

2+T1+ · · ·+T4 ⊂ P
4 = H.
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By the Lemma, we choose two generic point
P ′

3, P
′
4 in H and consider the two schemes:

(Z+)′ = ResH(Z̃) + D2,H(P ′

3) + D2,H(P ′

4) ⊂ P
5

and
(Z+)′′ = TrH(Z̃) + P ′

3 + P
′

4 ⊂ P
4.

If we can show that

dimk(I(Z+)′)4 = 0 and dimk(I(Z+)′′)5 = 0

we will be done.
Now, rewrite (Z+)′ = Y + T1 + . . . + T4 ⊂ P5,

where Y =

4Q1+3Q2+· · ·+3Q5+D2,H(P ′

3)+D2,H(P ′

4)+P ′

1+P ′

2.

Any hypersurface of degree 4 containing that scheme
is a cone with vertex Q1. So, enough to consider the
scheme we get by intersecting Y with a hyperplane of
P5 not through Q1 and then counting the hypersur-
faces of degree 4 that contain the resulting scheme.
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We may as well use H. Let Y′ = Y ∩ H ⊂ H,
then

Y
′ = 3Q2+. . .+3Q5+2P ′

3+2P ′

4+P ′

1+P ′

2 ⊂ H = P
4.

We now apply the induction, and consider (P1)4

embedded as X4 ⊂ P
15. We know (by induction)

that Sec1(X
4) has the expected dimension, and so

W̃ = 3Q2 + . . . + 3Q5 + 2P ′

3 + 2P ′

4

satisfies dimk(IW̃ )4 = 6.
Consequently, dimk(IY′)4 = 6−2 = 4, and since

(Z+)′ is obtained from Y by adding the four generic
points T5, . . . , T8, we obtain the desired conclusion
that dimk(I(Z+)′)4 = 0.

To finish using the lemma we have to also prove
that

dimk(I(Z+)′′)5 = 0.

Let’s rewrite this subscheme of P4 as:

(Z+)′′ = Ŵ + (T1 + · · · + T4)

where

Ŵ = 4Q2 + . . . + 4Q5 + 2P ′

1 + 2P ′

2 + P ′

3 + P ′

4.

We may as well consider (I
Ŵ

)5.
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But, for

Ŵ = 4Q2 + . . . + 4Q5 + 2P ′

1 + 2P ′

2 + P ′

3 + P ′

4.

we notice that any form of degree 5 vanishing to
order 4 at the coordinate points Q2, . . . , Q5 of P4

must have the equation of the hyperplane spanned
by those coordinate points as a factor. Call that
hyperplane of P4, H ′. We then have

dimk(I
Ŵ

)5 = dimk(I
Res

H′(Ŵ )
)4.

But

ResH′(Ŵ ) = 3Q2 + · · ·+ 3Q5 + 2P ′

1 + 2P ′

2 + P ′

3 + P ′

4

(where P ′
1, . . . , P

′
4 were generic in P

4, hence not in
H ′).

But, now we are in exactly the same situation
as before and this part of the proof is complete.

For the rest of the argument, we need to show
that Sec5(X5) = P31, i.e. we have to show that for
the scheme

Z = 4Q1 + . . . + 4Q5 + 2P1 + · · · + 2P6

(the Pi generic in P
5) then (IZ)5 = 0.
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Again, we choose P ′
1, P

′
2, P

′
3 generically in H (a

hyperplane containing Q2, . . . , Q5 but not Q1) and
P4, P5, P6 generic in P5. By the same sort of argu-
ment as above (but this time we don’t need any T ’s)
we are reduced to showing that a subscheme of P

4

of the form

Z
′′′ = 3Q2+. . .+3Q5+2R1+2R2+2R3+R4+R5+R6

(the Ri’s generic in P
4) satisfies (IZ′′′)4 = 0.

But, the scheme

Z̃ = 3Q2 + . . . + 3Q5 + 2R1 + 2R2 + 2R3

is exactly the scheme we encounter in finding the di-
mension of Sec2(X4). By induction, we had showed
that this dimension was exactly 2. Since we get
Z
′′′ by adding 3 generic points to Z̃, the result fol-

lows. (Note that in this case there was some “extra”
space!)

With this special case of the Theorem you have
seen all the basic ingredients of the proof.
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