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Abstract

This paper is concerned with the numerical solution of a Karush-Kuhn—
Tucker system. Such symmetric indefinite system arises when we solve
a nonlinear programming problem by an Interior—Point (IP) approach.
In this framework, we discuss the effectiveness of two inner iterative
solvers: the method of multipliers and the preconditioned conjugate gra-
dient method. We discuss the implementation details of these algorithms
in an IP scheme and we report the results of a numerical comparison on a
set of large scale test—problems arising from the discretization of elliptic
control problems.
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1 Introduction

The aim of this paper is to discuss the effectiveness of some iterative algorithms
for solving the symmetric indefinite system that arises when we solve by an
Interior—Point (IP) approach a large scale nonlinear programming (NLP) prob-
lem, of the form

min f(x)

gi(x) =0 (1)

g2 (:E) Z 07
where z € R", f(x) : R" - R, g;(z) : R" —» R"¢?, g,(x) : R” — R™ are twice
continuously differentiable and the first and second derivatives of the objective
function and constraints are available.
The idea of IP methods is based on the introduction of a slack vector s € R™
and on the transformation of the original problem in to a sequence of problems
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with logarithmic barrier function, depending of a positive penalty parameter p
that asymptotically goes to O:

min f(2) — pr S, In s,
g:(x) =0 (2)
go(x) —5 =0.

The basic step of an IP scheme is to determine by one Newton—type iteration
an approximate solution of the nonlinear system that gives the Karush—-Kuhn—
Tucker (KKT) optimality conditions of the problem (2)

Vf(x) = Vgi(x) A\ — Vga(T)A2

—g1(x) & (3)
—gs(x) + 8 .
AgSem

with

or, in a more concise notation,
H (v) = pe

SZO AQZO,

where A; € R™7 and Ay € R™ are vectors of Lagrange multipliers, Ay =
diag(A2), S = diag(s), v = (27,A],A2,s7), e,, indicates the vector of m
components whose values are equal to 1 and & = (07 +neq tm-€l)T. For a
detailed explanation of an IP scheme see [11], [26], [22, Section 14].

The more time—consuming task of the k—th iteration of an IP method consists
in applying a step of the Newton algorithm to system (3), determining the

numerical solution of the following Newton linear equation
H (v®)Av = —H(v®) 4 pre, (4)

where, omitting the index iteration k, the jacobian matrix of H (v) is given by

Q B C 0
B 0 0 O

Hl(v): CT 0 0 T ) (5)
0 0 S A

with Q = V2f(x) — X1 M.iV3g1i(x) — X1 A, V3gai(x), B = —Vg,(x)
and C = —Vg,(x). Here Q) is the Hessian matrix of the Lagrangian function
of the problem (2), V2f(z), V2g1.:(x), V2gs,i(x) are the Hessian matrices of
the function f(x) and of the i—th component of the constraints g,(x), and
g-(x) respectively; then, A1 ; and Ao ; are the i—th component of A; and A
respectively.



Let assume H'(v) be a nonsingular matrix. The strategy used in the IP method
updates the iterate by a convenient damping parameter which guarantees that
Ao and s are preserved strictly positive at any iteration.

From the last block of equations of (4), we can deduce

As = AJ'[=SAX; — 6 + pe,],

where 8 = Ay Se,, and, then, the system (4) can be rewritten in reduced form

Q B C Ax -«
BT 0 0 A | = -3 ; (6)
cT 0 —A;'S ANz g-(z) — pAy e

with o = Vf(z) — Vg ()M — Vg, (z)A2 and B = —g, ().
By a further substitution from the third block equation, we have

AXy = S7HALCTAzx + Aagy () + pen).

Then, the system can be written in condensed form

(o 0 )(ax)-(5) @

and
A= Q+CS1ACT
c= —a—CS 1 —NAg,(x)+ pey)
qg= -p

Both the systems (6) or (7) are symmetric and indefinite and they can be solved
by the sparse Bunch—Parlett triangular factorization ([4]), that combines dy-
namic reordering for sparsity preserving and pivoting technique for numerical
stability (see routine MA27 of HSL Library ([10])).

Nevertheless, for large scale NLP problems, the size of these systems is large
and, even if the coefficient matrices are sparse and the sparsity is exploited,
the computation of the exact solution by direct methods can be very expensive
in terms of CPU time and storage requirements. In Table 1 we report the
numerical results, in terms of number of iterations (it.) and execution time (in
seconds), of the IP method that uses the routine MA27 for solving (7), obtained
on a subset of test—problems described in Table 2. Only the test—problems
of smallest size (n+neq up to 100000) can be solved, but the execution time
very quickly increases. For larger test—problems (not reported in Table 1), we
observed a failure after a few iterates, due to fill-in of the factor which exceeds
the available memory. Indeed, the Gauss factor computed by the routine MA27
does not depend only on the matrix structure and at each iteration the fill-in
can change.

For the above reasons, in the framework of direct methods, much efforts have
been performed to avoid the use of MA27 for large scale NLP problems. Some



IP-MA27
Prob. iter time | Prob. iter.  time
TPB1-99 29 27.38 | TPB6-99 24 23.1
TPB1-199 37 349.66 | TPB6-199 26 258.7
TPB2-99 TPB7-99 26 22.1
TPB2-199 35 339.1 | TPB7-199 31 269.1
TPB3-99 24 2252 | TPB&-99 27 229

TPB3-199 | 27 250.28 | TPBS8-199 33 285.1
TPB4-99 25 22.7 | TPB9-119 31 48.1
TPB4-199 | 30  269.7 | TPB9-179 34 406.7
TPB5-99 24 21.7 | TPB10-119 35 54.6
TPB5-199 | 26 370 | TPB10-179 40 581.5
TPD6- 99 25 2471
TPD6-199 | 26 304.11

Table 1: Control problems with direct inner solver

IP solvers transform the symmetric systems (6) or (7) into a quasidefinite form?!
([25]), so that a Cholesky-like factorization can be obtained. At the start of the
IP scheme, the a—priori determination of a sparsity preserving reordering of the
coefficient matrix (taking into account only of its structure) and of the symbolic
Cholesky factor is carried out. Then, at each iteration the factor is computed,
without using pivoting technique, saving a lot of CPU time. The reduction
of a coefficient matrix into a quasidefinite form is obtained by a regqularization
technique, consisting in to perturb this matrix by adding a convenient diagonal
matrix R. Different ways to construct R are proposed: see, for example, [26],
[24], or [1]. In this last paper, R is dynamically computed by a very simple
procedure, that can be easily included in the implementation of the Cholesky
factorization: when a critical pivot is reached, this is perturbed by a small
quantity with a convenient sign.

Nevertheless, the use of regularization requires additional recovery procedures
and several factorizations (for example to individuate a perturbation as small as
possible ([26]) or to implement an iterative refinement if the computed solution
of the perturbed system is not satisfactory ([1]), etc.).

A different approach that avoids modifications of the matrices of the subprob-
lems is to use iterative inner solvers for (6) or (7), that exploit the sparsity
of the involved matrices, solving approzimately the inner subproblems, so that
unnecessary inner iterations can be avoided when we are far from the solution.
In some recent papers, the IP scheme combined by an inexact inner solver can

LA matrix < ‘}S‘T 7VU > is quasidefinite if S and U are symmetric positive definite matri-

ces. A quasidefinite matrix is strongly factorizable, i. e. a Cholesky-like factorization LDL™T
(with a diagonal matrix D and a lower triangular matrix L with diagonal elements equal to
one) exists for any symmetric permutation of the quasidefinite matrix. The diagonal matrix
D has a number of positive (negative) diagonal entries equal to the size of S (U respectively).



be viewed as an Inexact Newton method scheme ([9], [7], [3]). From this inter-
pretation, it is possible to deduce a suitable adaptive stopping rule for the inner
solver that assures the global convergence and the local superlinear convergence
of the whole outer—inner scheme.

In this paper we discuss about the effectiveness of two iterative methods for
the solution of symmetric indefinite systems, that allow an a priori symbolic
factorization avoiding the pivoting technique needed in the MA27 subroutine. In
particular, in Section 2, we consider the iterative Hestenes’ multipliers scheme.
This algorithm leads the solution of the system (7) to that of a sequence of
smaller symmetric positive definite systems, so efficient sparse Cholesky codes
can be used.

In Section 3, we propose two different implementations of the preconditioned
conjugate gradient (PCQG) algorithm for (7) with the preconditioner described
in [16] (see also [17]). The solution of the systems related to the preconditioner
is performed by a sparse Cholesky factorization in the first case and by a sparse
Cholesky-like factorization in the second version. This last version does not
require the computation of matrix—matrix products as in the first version and
in the Hestenes’ multipliers scheme. By using a regularization technique, we dy-
namically compute a preconditioner that admits a Cholesky-like factorization,
maintaining the well known features of the efficient sparse Cholesky codes.

In the Section 4, numerical results obtained by a code implementing the IP
method combined with Hestenes’ multipliers scheme or PCG algorithm, are
given for a selection of very large test—problems, arising from the discretization
of semielliptic control problems in [19], [20], [21]. In this case, we deal with
NLP problems with equality and simple box constraints, with very sparse and
structured matrices in (5). The IP method combined with the PCG algorithm
that uses the second version of the preconditioner (IP-PCG2) enables us to
efficiently solve semielliptic control problems with size n+neq up to 700000.

2 The Hestenes’ multipliers scheme for the so-
lution of the condensed KKT system

When we have to solve NLP problems as those in [19], [20], [21], where the
inequality constraints are simple box constraints, it is convenient to reduce the
inner linear system (4) in the form (7); indeed, in this case, the term CTS~1A,C
of the matrix A is easily computable since it is a diagonal matrix.

It is well known that, if BT is a full row-rank matrix, the coefficient matrix of

(7)
w=(sr 7))

is nonsingular if and only if the matrix A is nonsingular on the null space of BT
([12]), i.e. ZT AZ is a nonsingular matrix, where Z is the n x (n — neq) matrix
such that BTZ = 0 and Z7Z = I. In particular, a sufficient condition for the
nonsingularity of M is that the matrix Z7 AZ is positive definite (see also [15,



p. 424]). This condition holds if the hessian matrix of the lagrangian function
of the problem (1) is positive definite on the null space of BT. Note that this
assumption is also the one required for the local SQP method (][22, p. 531]).

Setting y; = Az and y, = Ay, the system (7), can be viewed as the Lagrange
necessary conditions for the minimum point of the following quadratic problem

min 3yl Ay, —cl'y,
By, —q=0.

This quadratic problem can be solved efficiently by Hestenes’ multipliers scheme
([13, p. 308]), that consists in updating the dual variable by the rule

1 . .
v =y + (BT — a),

where x is a positive parameter (penalty parameter) and y(lj ) minimizes the

augmented lagrangian function of the quadratic problem

1 X
Ly ys) = 5yi Ay —yie+y: (B'y — @) + 5 (B - @) (B'y, - a).

This means that y(lj ) is the solution of the linear system of order n

(A+xBBT)y, = -ByY + ¢+ xBq (8)

Note that, since BT has full row-rank, the null space of BBT is equal to the
null space of BT then the matrix A is positive definite on the null space of
BBT. Then, it is immediate the following theorem.

Theorem 2.1 ([15, p. 408]) There exists a positive parameter x* such that for
all x > x*, the matrix A + yBBT” is positive definite.

This result enables us to solve the system (8) by applying a Cholesky factoriza-
tion.

In order to choose the parameter x, we observe that, for any « # 0, we must
have 7 (A + xBBT)x > 0. When BTz = 0, we have 7 Az > 0. If BTz # 0,
2TBBTx > 0. Then, it follows that

—zT Ax
max —————
xeN(BT) T BBTx

)

X > max(0,

Since ||A|| > (—z® Az) /(T ) for any natural norm and also for the Frobenius
norm || - ||, and ®T BBTz /(2T x) > Tnin, where 7., is the minimum nonzero
eigenvalue of BBT or of BT B, we can choose as  the following value:

A
g IE

Tmin



In general it is difficult to determine an estimate of 7,,,;,. Numerical evidence
shows that a good approximation of 7, is min(1, ¢4, ), where t,,;y, is the min-
imum diagonal entry of the matrix BT B, although ,in > Tmin. Furthermore,
in order to avoid that the value of x is too small (the matrix is not positive
definite) or too large (too ill-conditioned system), it is convenient to use safe-
guards. In the numerical experiments of the last section, the following value of
x produced good results:

107, maX{HA”Fvl})’IOB). (9)

X = min(max( min (b, 17

Now, we discuss the implementation of the method. We assume that the hessian
matrix @ of the lagrangian function and the jacobian matrix BT of the equality
constraints are stored in a column compressed format ([23]). The matrices A and
(@ have the same structure and are different only for the diagonal entries, since
we assume that the inequality constraints are box constraints and, consequently,
CS~1A,CT is a diagonal matrix.

Then, at any step of the IP method, the implementation of Hestenes’ multipliers
scheme requires the computation of the matrix 7' = A+xBB” and its Cholesky
factorization T = L, LL. The other operations related to each iteration (i. e.
sparse matrix—vector products B (fyéj ) 4 xq) and BTy(lj ) and solution of the
triangular systems equivalent to (8)) have a negligible computational complex-
ity. In order to execute only necessary operations to form 7', it is convenient
to execute a preprocess procedure that builds a data structure which stores the
indices of the nonzero entries of the lower triangular part of the symmetric ma-
trix T'. For any nonzero entry t;;, ¢ < j of T', in the same data structure we
also store the pairs of indices of the elements of B and BT that give a nonzero
contribution in the scalar product forming the entry, as depicted in Figure 1.
The preprocess routine also computes the symbolic Cholesky factorization of
the sparse, symmetric and positive definite matrix 7. To exploit the sparsity
of T, its factorization can be obtained by a very efficient Fortran package (ver-
sion 0.3) of Ng and Peyton (included in the package LIPSOL, downloadable
from www.caam.rice.edu/ zhang/lipsol). This package a priori computes the
symbolic factor of T' (i.e. the indices of the nonzero entries of L, and the in-
formation to form these entries), using the multiple minimum degree ordering
of Liu to minimize the fill-ins in L,, and the supernodal block factorization to
take advantage of the presence of the cache memory in modern computer ar-
chitectures ([14]). The a priori procedure of Liu for the reordering of 7' and
the computation of its symbolic factorization is executed only one time in the
preprocess routine.

In conclusion, the time for solving an NLP problem by the IP method combined
with Hestenes’ multipliers method is subdivided in two part, the preprocess time,
that is the time needed to determine the data structure of the nonzero entries
of T and to compute the symbolic Cholesky factorization of T', and the time for
computing the solution (solution time). We observe that the preprocess time is
dependent on the strategy used to perform the matrix—matrix products needed
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Figure 1: Preprocess phase: save the indices of the nonzero contribution of
the scalar product for determining ¢4 2 (and 3 4) in the matrix—matrix product
BBT. We save the couples of indices of the vectors containing the nonzero
entries of the matrices B and BT related to the elements denoted by a circle.

in the method for computing T'. Following our approach, the time needed for
building the data structure of indices described above and in Figure 1 is the
99% of the whole preprocess time. Then, exploiting the data structure, the
matrix—matrix product performed at each iteration has a cheap computational
cost, at most the 15% (the 5% for the larger problem sizes) of the whole solution
time.

3 The Preconditioned Conjugate Gradient method
for the solution of the KKT system

A different approach for solving the inner system arising at each step of an IP
scheme uses a Preconditioned Conjugate Gradient (PCG) method, as suggested
in [16] (see also [9], [8], [17], [2], [6]). As in the previous section, we propose to
solve the condensed form of the system (7) instead of the reduced form (6), but,
unlike as it arises for the Hestenes’ multipliers scheme, in this case we can avoid
to explicitly compute the matrix A = Q + CS~'A,CT. Indeed, at any step of
the PCG scheme, the matrix A is required only in the matrix—vector product
t = Mp, where

_ A B _ D1 n neq
M_<BT O>a p—<p2>7 pleRaPQER .



The product Mp can be executed by sparse matrix—vector products only, using
a temporary array t to store the partial results:

t, «— CTp,
t — S7'Ax
t, — Ot
t1 <« t1+Qp,+ Bp,
ty «— BTp1

As preconditioner in the PCG scheme, we can consider the indefinite precondi-
tioner in [16]:

M_(A B)_( I 0>(A 0 )(1 AlB)
“\ BT o0 )\ BTA' I 0 —-BTA-'B 0 1

(10)
where we assume that A is a positive diagonal approximation of A. For sake of

completeness, we report the main theoretical results about the preconditioner
(10)(for further details and proofs of the following theorems, see [16]).

Theorem 3.1 If A is a positive definite matrix , then the matrix M A ~! has at
least 2-neq unit eigenvalues. If AA~! — I is a nonsingular matrix, then only neq
linearly independent eigenvectors corresponding to these eigenvalues exist; the
other eigenvalues of the matrix MM ! are exactly the eigenvalues of the matrix
ZTAZ(ZTAZ)™L. If ZT AZ is a positive definite matrix, all the eigenvalues of
the matrix MM~ are positive. Moreover, if vZT AZv = vTZT AZv for some
v € R™, then all the eigenvalues of the matrix M M ~! are included in the interval
determined by the extremal eigenvalues of the matrix ZTAZ(ZT AZ)~L.

Theorem 3.2 Consider the PCG method with preconditioner (10), where the
matrix A is positive definite, applied to the system

P Yo
If a breakdown does not occur, then we obtain the solution ( :ji ) after at
2

most n — neq + 2 iterations.

Theorem 3.3 Let the matrix Z7 AZ be positive definite. Consider the PCG
method with the preconditioner (10), where A is a positive definite matrix, ap-
plied to the system (7), starting with the initial point v = A=B(BT A=1B)~1ys,
v§ = 0. The PCG method finds the solution of the system after at most n —neq
iterations and the following condition holds

, 1-Vk '
vl — vt < 2Vk o) — vt 11
Joi o] < <1+¢z> o8 — ()
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where k is the spectral condition number of ZTAZ(ZT AZ)~L.

In the implementation of the PCG scheme, we can choose the diagonal matrix
A = diag(a;;) as follows

__Joai=quit Z;nzl C?kAQ’k/Sk if a;; > 1078 .
Giz = { 1.5-1078 otherwise. t=1..m (12)

At any step of the PCG scheme, we have to compute the solution of the system

M(Zl):<”). (13)
zZ2 T2

We can determine the solution of this system in two different ways that produce
a very different performance, especially for large scale problems.

In the first case (IP-PCG1), at the beginning of the PCG method we compute
the symmetric positive definite matrix 7= BT A~!'B and its Cholesky factor-
ization T = LyeqLL, ; then, computing M ~! by means of (10), the solution of

(13) can be determined by the following procedure

zZ1 /71717'1
T

Z9 < T2 — B zZ1

-1
t2 — —LnquQ

=T

Z9 Lneqt2
Z1 — z1— A_lBZQ

where t5 is an neg—vector used to store the partial products.

As in the implementation of Hestenes’ method, a preprocess routine can build
a data structure that stores the information needed to compute the nonzero
contribution to each nonzero scalar product. The preprocess routine can also
determine the minimum degree reordering of the matrix 7" and its symbolic
Cholesky factor. For these last tasks and for computing the elements of L.,
we can use the package of Ng and Peyton. With this approach, the preprocess
phase is generally less expensive than that of the IP method combined with
the Hestenes’ multipliers scheme, even for NLP problems with equality and box
constraints. Indeed, we have to compute the entries of the matrix T and to solve
systems with T' as coefficient matrix, whose size is neq instead of the size n of
the matrix A+ yBBT, where neq < n. Also in this case, the time to determine
the data structure for the indices of the nonzero entries of T is the 99% of the
whole preprocess time.

Now, we discuss the other way to implement the F_’CG algorithm that avoids
the computation of the matrix—matrix product BT A=1B. We call this second
version of the PCG algorithm IP-PCG2.

We observe that the matrix M can be factorized in a Cholesky-like form
LyinegDLY (14)

n+neq’
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where L, | pneq is a lower triangular matrix with diagonal entries equal to one and
D is a nonsingular diagonal matrix. In order to reduce the fill-ins in the lower
triangular factor, we can perform a minimum degree reordering of the matrix
M. But, it is not assured that the symmetrically permuted matrix PM PT can
be factorized in the Cholesky-like form.

Nevertheless, we can obtain a factorization in the form (14) if we use for the
matrix M the regularization technique described in [1]; in other words, instead
of using the preconditioner M, we compute the factorization of

- R 0
= ()

where R; and R, are non negative diagonal matrices such that PMPT ad-
mits a factorization of the form (14). The computation of R; and Ry can
be obtained during the factorization procedure. If a pivot d; is too small
(|di] < 107 max;;|d;]), we put d; = e if 1 < i < n, or d; = — /e if
n+ 1 <1i < n -+ neq, where € is the machine precision.
The dynamic computation of the elements of R; and Rs reduces the pertur-
bation to a minimum. This approach is used in [2] for linear and quadratic
programming problems with equality and box constraints.
The Cholesky-like factorization of M can be obtained by a modification of the
Ng and Peyton package. In particular, we modify the subroutine PCHOL so
that we compute Ln+nquL£ +neq with diagonal elements of L, 4,cq equal to 1.
Consequently, it is necessary to construct suitable subroutines (MMPYM and
SMXPYM) to update the blocks of the factor Lyineq, and to modify the sub-
routine BLKSVT for the computation of the solution of the system
Ln—i—nquLT

n+neqz =T

The routines for performing the minimum degree reordering, for determining
the supernodes and for the computation of the symbolic factor are unchanged.
Consequently, the effectiveness of the package of Ng and Peyton due to a suitable
use of the cache memory is maintained. This new package, called BLKFCLT,
is downloadable from dm.unife.it/blkfclt.

4 Numerical Results

In order to evaluate the effectiveness of the Hestenes’ multipliers scheme and
the two versions of the PCG method, a Fortran 90 code, implementing the TP
method described in [3] with different inner solvers, has been carried out on
HP zx6000 workstation with Itanium2 processor 1.3 GHz and 2 Gb of RAM.
The code has been compiled with a +03 optimization option of the Fortran HP
compiler.

In this code, the hessian matrix @ of the lagrangian function and the jacobian
matrices BT and C” of the equality and inequality constraints are stored in a
column compressed format ([23]).
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The Newton IP method stops when
|H (0" <1075,

or when (see [26])
|gap| <108
1+ [gap| ~

)

where “gap” is the difference between the primal function f(x) and the dual
function

d(@ A, 2) = f(x) = Ay 92(®) — AT gy () — V() +
Vg (z)”
T T 1
+( Al Ay ) < Vg, (z)” .
The inner solvers stop if the residual of the system (7) at the k—th iteration is

such that
™| < max(5 - 1075, 6, | H (v™®)]),

or if a maximum number is reached; for the Hestenes’ multipliers scheme, the
maximum number is fixed equal to 15, while for the PCG method, it is equal
to the size of the system n + neg; for the value of oy see [3].

Numerical experiments have been carried out using the code on a set of semiel-
liptic control problems described in [19], [20] and [21]. These problems by a
suitable finite—difference discretization can be transcribed into large scale finite—
dimensional NLP problems, where the objective function often is a quadratic
form, the elliptic state equation and the Dirichlet and/or Neumann boundary
conditions become equality constraints and the control and state constraints are
simple box constraints. Then, in all test-problems, the matrix CS™1A,C7 is a
simple diagonal matrix whose computation is inexpensive for any inner solver.
In Table 2, we report the references of the considered test—problems. The 'B’
symbol in 'TPB*-N’ indicates that the problem has a boundary control, while
the distributed ones are indicated with the letter 'D’.

The number of variables n and the number of the equality constraints neq
depend on a parameter N which represents the number of the mesh points for
each dimension of the square domain of the control problem. The suffix in the
name of the test—problems is the value of V.

In Tables 3 and 4, for each test—problems, we report the values of n, neq, the
number of lower (nl) and upper (nu) bounds and the number of nonzero entries
nnzq and nnzb of () and B respectively. Then, in Table 5 we have:

e for the Hestenes’ scheme (IP-Hestenes) the number nnzhes of the nonzero
entries of the lower triangular part of A+ yBBT and the number Lhes of
the nonzero entries of its Cholesky factor;

e for the first version of the PCG method (IP-PCG1) the number nnzpcgl
of the nonzero entries of the lower triangular part of BT A~1B and the
number Lpcgl of the nonzero entries of its Cholesky factor;
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e for the second version of the PCG method (IP-PCG2) the number nnzpcg2
of the nonzero entries of the lower triangular part of M and the number
Lpcg2 of the nonzero entries of D and of the strictly lower part of the
Cholesky-like factor Ly {neq-

We observe that, in IP-Hestenes, because of the structure of B, the matrix—
matrix product BBT does not give rise to an excessive number of nonzero
entries and the matrix A + yBB7 is very sparse with a density at most equal
to 0.1%. Furthermore the ratio of the nonzero entries in the Cholesky factor
and in the lower part of the matrix A + yBB” is at most equal to 15.3. The
same considerations hold in IP-PCG1 for the matrix-matrix product BT A~'B
and its Cholesky factor. Furthermore, the nonzero entries of BT A~'B and of
its Cholesky factor are less than those of A + yBBT and of its Cholesky factor
respectively. For the case IP-PCG2, the number of nonzero elements of the
matrix D and of the Cholesky-like factor L, 4ycq are not significantly different
from those of the Cholesky factor of M for IP-PCG1.

In Tables 6, 7, 8, 9, 10 we report the results of the Newton IP method when
we use as inner solvers the Hestenes multipliers’ scheme (IP-Hestenes), the first
version (IP-PCG1) and the second version (IP-PCG2) of the PCG method. In
this table, it represents the number of outer iterations of Newton IP method.
The total number of inner iterations of the inner solver is reported in brack-
ets. For IP-Hestenes and IP-PCGI1, the execution time, expressed in seconds,
is subdivided into two parts, the preprocess time and the time for computing
the solution (solution time). We recall that the preprocess routine performs the
computation of the data structure employed at each iteration for the matrix-
matrix product and the symbolic factorization of the matrix. The 99% of the
preprocess time is spent in building the data structure for the matrix-matrix
product. The results obtained show the effectiveness of the second version of the
PCG solver (IP-PCG2), above all for very large-dimensional and sparse NLP
problems. The code is efficient from the point of view of the memory usage and
of the execution time. In the case of IP-Hestenes and of IP-PCG1, the more
expensive computational task is the preprocess phase, which is dependent on
the strategy used to perform the matrix—matrix products and on the size of the
resulting matrices. Then, even if the IP-PCG2 code could perform more inner
iterations than the IP-PCG1 version, the number of outer iterations is about
equal in the two version of the IP method. Consequently the absence of the
preprocess phase in the IP-PCG2 makes this method more efficient.

In some problems, when the meshsize is large, the number of outer iterations
of the IP-Hestenes is large. A possible reason of this behaviour could be the ill
conditioning of the matrix A+ yBB?. Indeed, at some iterations, the Hestenes
inner solver cannot reach the required tolerance. In these cases, the inner it-
erations are anyway stopped after 15 steps, but the solution misses to satisfy
the required tolerance (we observed that the residual is about 10 times grater).
Obviously, in these situations, (TPB1,7,10, TPD3,6 for example) the direction
provided by the Hestenes inner solver is not a “good” direction, and the algo-
rithm “corrects” this mistake by performing more outer iterations. Otherwise,
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we have a failure of the algorithm (see TPD1,2). In other cases (TPBS8 for
example), the situation is different, the Hestenes solver provides the solution
satisfying the required tolerance but the number of outer iterations is grater
than for the IP-PCG1 and IP-PCG2, and the previous explanation does not
hold.

In the Table 11 we report some results, obtained by professor H. Mittelmann at
the Arizona State University [18], of a comparison, in terms of execution time
(in seconds) of the IP-PCG2 method with the version 3.1 of KNITRO-D (direct
inner solver) and of KNITRO-I (iterative inner solver) [5] for solving the test
problem TPB1. The numerical experiments have been carried out on a 3.2MHz
Pentium 4 and the tolerance for KNITRO solvers has been set to 1077, in order
to obtain the same precision on the final value of the objective function. In-
deed, with these settings, the minimum computed by KNITRO coincides with
the resulting value of IP-PCG2 on 8 significant figures, while with a tolerance
of 1078, the value produced by KNITRO is greater than the resulting value of
IP-PCG2. Table 11 shows that the better performances in terms of time are
given by IP-PCG2 and for N = 499 KNITRO does not get the solution.

5 Conclusions

In the framework of the IP methods combined with inner iterative solvers, we
devised a preconditioner M for solving the system (7) by the PCG algorithm.
The matrix M is a dynamically computed regularized variant of the precondi-
tioner M in [16], that does not require additional matrix—matrix products and
that admits a Cholesky-like factorization (as a quasi—definite matrix), exploit-
ing the well known techniques used to obtain an efficient implementation of the
Cholesky algorithm (minimum degree reordering, determination of supernodes,
use of cache memory). This Cholesky-like factorization can be computed by
the routine BLKFCLT, downloadable from dm.unife.it/blkfclt. Following this
approach, we were able to solve a set of semielliptic control problems with size
n-+neq up to 700000.

Acknowledgements The authors are extremely grateful to Prof. Hans Mittel-
mann for fruitful discussion and for the results of Table 11 and to the anonymous
referee who stimulated us to improve the paper with his comments.
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Table 2: Description of the test-problems.

Test problems References

TPB1-N [19], Example 5.5

TPB2-N [19], Example 5.6

TPB3-N [19], Example 5.7

TPB4-N [19], Example 5.8

TPB5-N [19], Example 5.1

TPB6-N [19], Example 5.2

TPB7-N [19], Example 5.3

TPB&-N [19], Example 5.4

TPBY-N [21], Example 4.1, a = 0.005

TPB9-N [21], Example 4.1, a =

TPDI1-N [20], Example 1

TPD2-N [20], Example 2

TPD3-N [20], Example 3

TPD4-N [20], Example 4

TPD5-N [20], Example 5

TPD6-N 21, 4.2, M = 1,K = 0.8,b=1L,u; = 1.7,us = 2,90(x) = 7.1
TPD7-N 21], 42, M =0,K =1,b=1,u; = 2,us = 6,9(z) = 4.8
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Problem n neq nu nl nnzb nnzq
TPB1-99 10593 10197 10593 39204 50193 10593
TPB1-199 41193 40397 41193 158404 200393 41193
TPB1-299 91793 90597 91793 357604 450593 91793
TPB1-399 162393 160797 162393 636804 800793 162393
TPB1-499 252993 250997 252993 996004 1250993 252993
TPB1-599 363593 361197 363593 1435204 1801193 363593
TPB2-99 10593 10197 10593 39204 50193 10197
TPB2-199 41193 40397 41193 158404 200393 40397
TPB2-299 91793 90597 91793 357604 450593 90597
TPB2-399 162393 160797 162393 636804 800793 160797
TPB2-499 252993 250997 252993 996004 1250993 250997
TPB2-599 363593 361197 363593 1435204 1801193 361197
TPB3-99 10593 10197 10593 39204 50193 10593
TPB3-199 41193 40397 41193 158404 200393 41193
TPB3-299 91793 90597 91793 357604 450593 91793
TPB3-399 162393 160797 162393 636804 800793 162393
TPB3-499 252993 250997 252993 996004 1250993 252993
TPB3-599 363593 361197 363593 1435204 1801193 363593
TPB4-99 10593 10197 10593 39204 50193 9801
TPB4-199 41193 40397 41193 158404 200393 39601
TPB4-299 91793 90597 91793 357604 450593 89401
TPB4-399 162393 160797 162393 636804 800793 159201
TPB4-499 252993 250997 252993 996004 1250993 249001
TPB4-599 363593 361197 363593 1435204 1801193 358801
TPB5,6-99 10197 9801 10197 396 49005 10197
TPB5,6-199 | 40397 39601 40397 796 198005 40397
TPB5,6-299 | 90597 89401 90597 1196 447005 90597
TPB5,6-399 | 160797 159201 160797 1596 796005 160797
TPB5,6-499 | 250997 249001 250997 1996 1245005 250997
TPB5,6-599 | 361197 358801 361197 2396 1794005 361197
TPB7,8-99 10197 9801 10197 396 49005 9801
TPB7,8-199 | 40397 39601 40397 796 198005 39601
TPB7,8-299 | 90597 89401 90597 1196 447005 89401
TPB7,8-399 | 160797 159201 160797 1596 796005 159201
TPB7,8-499 | 250997 249001 250997 1996 1245005 249001
TPB7,8-599 | 361197 358801 361197 2396 1794005 358801
TPB9-119 14637 14518 14280 14637 71519 3840
TPBY9-179 32757 32578 32220 32757 161279 8460
TPBY9-279 78957 78678 78120 78957 390879 20160
TPB9-379 145157 144778 144020 145157 720479 36870
TPB9-479 231357 230878 229920 231357 1150079 58560
TPB9-579 337557 336978 335820 337557 1679679 85260
TPB10-119 14637 14518 14280 14637 71519 3721
TPB10-179 32757 32578 32220 32757 161279 8281
TPB10-279 78957 78678 78120 78957 390879 19881
TPB10-379 | 145157 144778 144020 145157 720479 36491
TPB10-479 | 231357 230878 229920 231357 1150079 58081
TPB10-579 | 337557 336978 335820 337557 1679679 84681

Table 3: Description of the test—problems: boundary control



Problem n neq nu nl nnzb nnzq
TPD1-99 19602 9801 19602 9801 59202 19602
TPD1-199 79202 39601 79202 39601 = 238402 79202
TPD1-299 178802 89401 178802 89401 537602 178802
TPD1-399 318402 159201 318402 159201 956802 318402
TPD1-499 498002 249001 498002 249001 1496002 498002
TPD2-99 19602 9801 19602 9801 59202 9801
TPD2-199 79202 39601 79202 39601 238402 39601
TPD2-299 178802 89401 178802 89401 537602 89401
TPD2-399 318402 159201 318402 159201 956802 159201
TPD2-499 498002 249001 498002 249001 1496002 249001
TPD3,4-99 19998 10197 19602 9801 59598 19602
TPD3,4-199 | 79998 40397 79202 39601 239198 79202
TPD3,4-299 | 179998 90597 178802 89401 538798 178802
TPD3,4-399 | 319998 160797 318402 159201 958398 318402
TPD3,4-499 | 499998 250997 498002 249001 1497998 498002
TPD5-99 19998 10197 19602 9801 59598 10197
TPD5-199 79998 40397 79202 39601 < 239198 40397
TPD5-299 179998 90597 178802 89401 538798 90597
TPD5-399 319998 160797 318402 159201 958398 160797
TPD5-499 499998 250997 498002 249001 1497998 250997
TPD6-99 19602 9801 19602 9801 58410 39204
TPD6-199 79202 39601 79202 39601 236810 158404
TPD6-299 178802 89401 178802 89401 535210 357604
TPD6-399 318402 159201 318402 159201 953610 636804
TPD6-499 498002 249001 498002 249001 1492010 996004
TPD7-99 19602 9801 19602 9801 58410 29403
TPD7-199 79202 39601 79202 39601 236810 118803
TPD7-299 178802 89401 178802 89401 535210 268203
TPD7-399 318402 159201 318402 159201 953610 477603
TPD7-499 498002 249001 498002 249001 1492010 747003

Table 4: Description of the test—problems: distributed control.
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Problem Grid nnzhes Lhes nnzpcgl Lpcgl nnzpcg2 Lpcg2
TPB1,2,3,4-99 70783 622759 69991 621571 60786 718637
TPB1,2,3,4-199 281583 3181444 279195 3179056 241586 3416032
TPB1,2,3,4-299 632383 8374469 628795 8370881 542386 9084296
TPB1,2,3,4-399 1123183 16252152 1118395 16247364 9631186 20102932
TPB1,2,3,4-499 1753983 26855490 1747995 26849502 1503986 28784753
TPB1,2,3,4-599 2524783 41135305 2517595 41128117 2164786 43488232
TPB5,6,7,8-99 69595 621571 67619 619595 59202 716261
TPB5,6,7,8-199 279195 3179056 275219 3175080 238401 3411256
TPB5,6,7,8-299 628795 8370881 622819 8364905 537602 9011520
TPB5,6,7,8-399 1118395 16247364 1110419 16239388 956802 20093356
TPB5,6,7,8-499 1747995 26849502 1738019 26839526 1496002 28772777
TPB5,6,7,8-599 2517595 41128117 2505619 41116141 2155202 43473654
TPB10,11-119 100315 945546 99720 944951 86156 1029560
TPB10,11-179 226075 2541572 225180 2540677 194036 2733190
TPB10,11-279 547675  T167732 546280 7166337 469836 8619291
TPB10,11-379 1009275 14501957 1007380 14500062 865636 15396152
TPB10,11-479 1610875 24901311 1608480 24898916 1381436 26203761
TPB10,11-579 2352475 37810473 2349580 37807578 2017236 48288922
TPD1,2,3-99 126029 715465 67619 619595 78012 735071
TPD1,2,3-199 512029 3409660 275219 3175080 316012 3488866
TPD1,2,3-299 1158029 8900195 622819 8364905 714012 9253530
TPD1,2,3-399 2064029 20090160 1110419 16239388 1272012 20405866
TPD1,2,3-499 3230029 28768781 1738019 26839526 1990012 29266787
TPD4,5-99 128401 717837 69595 621571 79596 737447
TPD4,5-199 516801 3414432 517993 3179056 319196 3493642
TPD4,5-299 1165201 8907367 1166993 8370881 718796 9260706
TPD4,5-399 2073601 20099732 2075994 16247364 1278396 20418142
TPD4,5-499 3242001 28780753 3244994 26849502 3244994 29278763
TPD6,7-99 72816 715465 67619 619595 78012 735071
TPD6,7-199 295620 3409660 510837 3175080 316012 3488866
TPD6,7-299 1158029 8900195 622819 8364905 714012 9079001
TPD6,7-399 2064029 20090160 1110419 16239388 1272012 20408566
TPD6,7-499 3230029 28768781 1738019 26839526 1990012 29266787

Table 5: Nonzero entries of the matrices and of the Cholesky factors
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Table 11: Comparison PCG2 vs. KNITRO-3.1
IP-PCG2 KNITRO-I KNITRO-D

TPB1-99 6 40 17

TPB1-199 46 321 127

TPB1-299 243 1353 759

TPB1-399 799 4990 1939

TPB1-499 1372 10343 *
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