
Inner solvers for interior point methods

for large scale nonlinear programming ∗

Silvia Bonettini1, Emanuele Galligani1, Valeria Ruggiero2

1 Dipartimento di Matematica, Università di Modena e Reggio Emilia

Via Campi 213/b, 41100 Modena, Italy
2 Dipartimento di Matematica – Sede Distaccata, Università di Ferrara

Via Saragat 1, Blocco B, 44100 Ferrara, Italy

Technical Report n. 64, May 2005

Dipartimento di Matematica, Università di Modena e Reggio Emilia

Abstract

This paper deals with the solution of nonlinear programming problems
arising from elliptic control problems by an interior point scheme.
At each step of the scheme, we have to solve a large scale symmetric and
indefinite system; inner iterative solvers, with adaptive stopping rule, can
be used in order to avoid unnecessary inner iterations, especially when
the current outer iterate is far from the solution.
In this work, we analyze the method of multipliers and the preconditioned
conjugate gradient method as inner solvers for interior point schemes. We
discuss on the convergence of the whole approach, on the implementation
details and we report results of a numerical experimentation on a set of
large scale test problems arising from the discretization of elliptic control
problems. A comparison with other interior point codes is also reported.

Keywords: Large scale nonlinear programming, interior point method,
method of multipliers, preconditioned conjugate gradient method.

1 Introduction

This work is concerned with the numerical solution of large scale nonlinear
programming problems with interior point method. In this work, we present

∗This research was supported by the Italian Ministry for Education, University and Re-
search (MIUR), FIRB Project RBAU01JYPN: “Parallel Nonlinear Numerical Optimization
PN2O” (http://dm.unife.it/pn2o/).
E–mail addresses: bonettini.silvia@unimo.it (S. Bonettini), galligani@unimo.it (E. Galligani),
rgv@unife.it (V. Ruggiero).

1

2

effective iterative inner solvers for the solution of the perturbed system that
occurs at each step of the interior point scheme. In Section 4, three iterative
solvers are described.
In particular, the first one consists into applying the method of multipliers to the
perturbed system, since it can be seen as the optimality conditions of a linear–
quadratic programming problem; at each iteration of the iterative method of
the multipliers we solve a symmetric positive definite system by the efficient
library routine of Ng and Peyton implementing Cholesky factorization ([63]).
The second solver uses the conjugate gradient method to solve the perturbed
system with an indefinite preconditioner introduced by Lukšan in [65]; exploiting
the block structure of the preconditioning matrix, at each step of the precon-
ditioned conjugate gradient method, we solve, by Ng and Peyton routine, a
symmetric positive definite system.
The third solver also uses conjugate gradient method with Lukšan precondi-
tioner, but the symmetric indefinite system that occurs at each step of the
preconditioned conjugate gradient method, is solved by a routine implementing
a Cholesky–like factorization with a regularization technique; this routine, in-
troduced in [11] and available on the website http://dm.unife.it/blkfclt, is called
BLKFCLT.

These iterative solvers are inserted into an interior point scheme. The cho-
sen interior point scheme is the one which uses the Newton iteration and the
reduction of the damping parameter (sections 2 and 3). This scheme permits
a simple implementation and the convergence is assured in the framework of
inexact Newton methods, even if iterative inner solvers are used (subsection
5.2). Furthermore, in this context, a nonmonotone interior point method can
be introduced (see [9]).
In Section 5 (subsections 5.3 and 5.4), we analyse with examples, convergence
failures of the interior point scheme using Newton iteration, indicating how to
detect the failure, and then, we study the Newton iteration by analysing the
behaviour of the continuous solution, in a neighbourhood of singular points, of
the correspondent differential problem. A classification of singular points is also
reported here.
In Section 6, we evaluate the effectiveness of the whole scheme, the damped
Newton interior point method with the inner solvers, as presented in subsection
5.1.
The test problems are described in [71], [67] and [68], and they are large and
sparse nonlinear programming problems that arise from finite difference dis-
cretization of elliptic boundary or distributed control problems.
These nonlinear problems have quadratic objective function, weakly nonlinear1

equality constraints and box constraints; the involved matrices have a PDE–type
structure and interior point methods are particularly suited.

1A continuously differentiable mapping F (u) is said a weakly nonlinear mapping if it has
the form F (u) = Au + G(u) where A is a matrix and G(u) is a continuously differentiable
mapping. A weakly nonlinear system F (u) = 0, where F (u) is a nonlinear weakly nonlin-
ear mapping ([96]), arises from the discretization of many classical semilinear elliptic partial
differential equations by the finite difference or finite element methods.

3

In the experiments, we compare the whole scheme with the three solvers and
with a direct library routine solver. Moreover, a comparison, in terms of CPU
time, with other interior point codes is reported and we also consider results of
the nonmonotone interior point method introduced in [9] with the third, and
most efficient, inner solver.
The results highlights the efficiency of BLKFCLT routine.

2 Interior point framework

Consider the following nonlinear programming problem

min f(x)
g1(x) = 0
g2(x) ≥ 0
Plx ≥ l

Pux ≤ u

(1)

where x ∈ R
n, f(x) : R

n → R, g1(x) : R
n → R

neq, g2(x) : R
n → R

m,
l ∈ R

nl, u ∈ R
nu, Pl ∈ R

nl×n, Pu ∈ R
nu×n. Pl (Pu) is given by the rows of the

identity matrix whose row indices are equal to those of the entries of x which
are bounded below (above). If xi ≥ lj for some i and, simultaneously, xi ≤ uh,
we assume lj 6= uh. This hypothesis means that there are no fixed variables. On
the other hand, in this case, the problem can be reduced by eliminating them.
We assume that f(x), g1(x), g2(x) are twice continuously differentiable and
that standard assumptions for a constrained nonlinear programming problems
hold ([64, Chapt. 10]). We are interested in the case where (1) is a large
nonconvex problem. We assume that the first and second derivatives of the
objective function and constraints are available.
By introducing slack variables, the problem (1) can be rewritten as

min f(x)
g1(x) = 0
g2(x)− s = 0
Plx− l− rl = 0
Pux− u + ru = 0
s ≥ 0, rl ≥ 0, ru ≥ 0

(2)

whose Karush–Kuhn–Tucker optimality conditions are

α ≡ ∇f(x)−∇g1(x)λ1 −∇g2(x)λ2 − P t
l λl + P t

uλu = 0
ε ≡ −g1(x) = 0
β ≡ −g2(x) + s = 0
γ ≡ −Plx + l + rl = 0
δ ≡ Pux− u + ru = 0
θ ≡ Λ2Sem = 0
ζ ≡ ΛlRlenl = 0
η ≡ ΛuRuenu = 0

(3)

4

with
s, rl, ru ≥ 0; λ2,λl,λu ≥ 0

where s,λ2 ∈ R
m, rl,λl ∈ R

nl, ru,λu ∈ R
nu and Λ2 = diag(λ2); Λl = diag(λl);

Λu = diag(λu); S = diag(s); Rl = diag(rl); Ru = diag(ru).
The vector eN indicates the vector of N components whose values are equal to
1.
Here ∇f(x) denotes the gradient of f(x), ∇g1(x) and ∇g2(x) are the transpose
of the Jacobian matrices of g1(x) and g2(x) respectively.
Let us indicate s̃ = (st, rt

l , r
t
u)t ∈ R

p , w̃ = (λt
2,λ

t
l ,λ

t
u)t ∈ R

p and p = m+nl +
nu; the primal–dual system (3) can be written as

H(v) = 0
s̃ ≥ 0; w̃ ≥ 0

(4)

where

v =

x

λ1

λ2

λl

λu

w̃

s

rl

ru

s̃

and H(v) =

α

ε

β

γ

δ

H1(v)

θ

ζ

η

The Jacobian matrix of H is the matrix

H ′(v) =

Q −∇g1(x) −∇g2(x) −P t
l P t

u 0 0 0
−∇g1(x)t 0 0 0 0 0 0 0
−∇g2(x)t 0 0 0 0 I 0 0
−Pl 0 0 0 0 0 I 0
Pu 0 0 0 0 0 0 I
0 0 S 0 0 Λ2 0 0
0 0 0 Rl 0 0 Λl 0
0 0 0 0 Ru 0 0 Λu

where Q = ∇2f(x) −∑neq

1 λ1,i∇2g1,i(x) − ∑m

1 λ2,i∇2g2,i(x) is the Hessian
matrix of the Lagrangian function of the problem (2); ∇2f(x), ∇2g1,i(x), (i =
1, ..., neq), ∇2g1,j(x), (j = 1, ...,m), are the Hessian matrices of f(x), g1,i(x),
(i = 1, ..., neq) and g1,j(x), (j = 1, ...,m), respectively.
If we solve the system (4) with the Newton’s method, at each iteration k we
have to compute the vector ∆v(k) which is the solution of the Newton equation

H ′(v(k))∆v = −H(v(k)) (5)

When we consider the last p equations of the system (5), the ones related to
the complementarity conditions S̃W̃ep = 0, it can be observed that if, at an

iteration k, s̃
(k)
i = 0 (or w̃

(k)
i = 0), then s̃

(j)
i = 0 (or w̃

(j)
i = 0), for all iterations

5

j with j > k. It means that if the iterate reaches the boundary of the feasible
region, it sticks on the boundary even if it is far from the solution.
In order to avoid this disadvantage, the idea of interior point method (see e.g.
[97] for one of the last survey papers) is to perturb the system (4) only in the
last p equations and to generate a sequence of iterates {v(k)} satisfying the
perturbed system

H(v) = ρkẽ

s̃ > 0; w̃ > 0
(6)

and the Karush–Kuhn–Tucker conditions (4) only in the limit. The perturbation
parameter ρk tends to 0 when k diverges. Here ẽ = (0t

n+neq, e
t
p)

t.
By introducing a “measure” M of the system (6) expressed by the vector
Hρk

(v) = H(v) − ρkẽ (for example M(Hρk
(v)) = ‖Hρk

(v)‖)2, we can write
a general scheme for the whole class of the interior point methods:

1. Choose the initial guess v(0) such that s̃(0), w̃(0) > 0, the stopping toler-
ance tol > 0, the measureM; k = 0;

2. While M(H0(v
(k))) ≥ tol

2a. Choose the perturbation parameter ρk and the inner tolerance tolρk
;

2b. Compute a new point v(k+1) such that:

M(Hρk
(v(k+1))) < tolρk

(s̃(k+1), w̃(k+1)) > 0

2c. Set k = k + 1

The scheme described above includes a wide class of methods; it allows many
choices for M, for the perturbation parameter ρk and for the method used to
compute the new point at the step 2b. Barrier function methods (see e.g. [39,
§12.1]) can also be described by such a scheme. Some recent interior point
methods for nonlinear programming are reported in the papers [36], [82], [99],
[41], [91] [16], [5], [87], [19], [15], [3], [86], [94].
In Table 1 we report some results, obtained by Hans Mittelmann at the Arizona
State University [70], of a comparison among interior point codes for nonlinear
programming: the LOQO algorithm3, version 6.2, (see [91], [83], [7]), the KNI-
TRO algorithms4, version 3.1, (see [16], [15]) with the direct (KNITRO–D) or
with the iterative (KNITRO–I) solution ([73]) of inner subproblems and IPOPT
algorithm5, (see [92], [94]).
In the table, “it” and “sec” indicate the number of iterations and the time
expressed in seconds respectively, the symbols “*” and “m” denote an algorithm
failure and a memory failure. The codes have been carried out in order to obtain
the same precision on the solution.

2Here and in the following, the vector norm ‖ · ‖ indicates the Euclidean norm
3http://www.orfe.princeton.edu/˜loqo/
4http://www.ziena.com/knitro.html
5http://www.coin-or.org/Ipopt/

6

LOQO KNITRO–D KNITRO–I IPOPT
it sec it sec it sec it sec

P1-3-199 39 108 19 72 12 94 25 276
P1-3-299 * * 20 278 12 322 20 1143
P1-3-399 * * 21 786 15 1020 28 3618
P1-3-499 * * 22 1585 14 1754 22 7374
P1-3-599 * * * * 16 2876 m m
P2-6-99 131 51 34 17 45 33 91 29

P2-6-199 143 427 44 180 41 263 74 302
P2-6-299 * * 41 674 101 1637 113 1670
P2-6-399 * * 40 1829 109 4693 90 3518
P2-6-499 * * 42 3498 * * 88 7034

Table 1: Comparison on elliptic control test problems ([70])

For the description of the test problems see Table 4 in the section of the numer-
ical experiments.
See [72] for a comparison of interior point codes and active set sequential
quadratic programming codes on CUTE collection test problems.

3 An interior point method as inexact Newton

scheme

3.1 Inexact Newton methods

Consider the case of systems of nonlinear equations:

F (u) = 0

where F : R
n → R

n is continuously differentiable; if we denote F ′(u) the
Jacobian matrix of F at u, which we suppose nonsingular, the inexact Newton
method introduced in [23] has the form:

For k = 0, 1, ... until the convergence do

• Find the step ∆u(k) which satisfies

F ′(u(k))∆u = −F (u(k)) + r(k) where
‖r(k)‖
‖F (u(k))‖ ≤ ηk (7)

• Set u(k+1) = u(k) + ∆u(k)

Here, u(0) is a suitable initial guess, the forcing term ηk ∈ [0, 1) is a measure of
the inexactness of the solution of Newton equation

F ′(u(k))∆u = −F (u(k)) (8)

7

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

Figure 1: Newton step, inexact Newton and nonmonotone inexact Newton re-
gions

We observe that inexact Newton methods include the class of Newton–iterative
methods (e.g. see [76], [84], [57], [43], [18]), where an iterative method is used to
compute an approximation of the solution of the Newton equation (8) with stop-
ping criteria given in (7) and the class of quasi–Newton methods (e.g. see [79],
[24]) when the a posteriori Dennis–Moré condition holds ([57, Theor. 7.1.1]).
A global convergence of inexact Newton method has been introduced (see [35],
[79]), by requiring, at each iteration, a prescribed reduction of the norm of F .
Thus, the fundamental convergence theorem of inexact Newton method
[79, Theor. 6.7] can state as follow:

• if a sequence {u(k)} satisfying the residual and the norm conditions

‖F ′(u(k))(u(k+1) − u(k)) + F (u(k))‖ ≤ ηk‖F (u(k))‖ (9)

‖F (u(k+1))‖ ≤ ξk‖F (u(k))‖ (10)

(with 0 ≤ ηk ≤ η̄ < 1, 0 < ξk ≤ ξ̄ < 1) has a limit point u∗ where F ′(u∗)
is nonsingular, then {u(k)} converges to u∗ and F (u∗) = 0.

Different strategies to implement condition (10) are analyzed in [35].
Furthermore, a nonmonotone inexact Newton method has been also introduced
in [9], where both the conditions (9) and (10) have been relaxed.
In Figure 1, the arrow denotes the Newton step for the problem F (u) = 0, with

F (u) =

(

u1 + u2 − 5
u1u2 − 4

)

8

while the smaller light grey region contains the points of the region allowed by
the inexact Newton step, and the larger dark grey region contains the points of
the region of the nonmonotone inexact Newton step. Thus, a coarser accuracy
in the solution of the Newton equation and larger step sizes are allowed in a
nonmonotone choice.

3.2 A Newton interior point method

The Newton interior point method for nonlinear programming (1) is obtained
when the step 2b of the scheme of the previous section is performed by applying
Newton’s method to the perturbed system (6); that is at each iteration k, we
compute the solution ∆v(k) of the perturbed Newton equation

H ′(v(k))∆v = −H(v(k)) + ρkẽ (11)

Let us define ρk = σkµk, where σk ∈ [σmin, σmax] ⊂ (0, 1); if the following
condition holds

µk ≤ µ(2)
k ≡ ‖H(v(k))‖√

p
, (12)

then the solution ∆v(k) of the system (11) is a descent direction for ‖H(v)‖2
([28, p. 77]) and, from (11), it satisfies the residual condition (9) of the inexact
Newton method that is rewritten as

‖H ′(v(k))∆v(k) + H(v(k))‖ ≤ ηk‖H(v(k))‖ (13)

with the forcing term ηk = σk ≤ σmax < 1.

Furthermore, it is easy to prove that µ
(1)
k ≡ s̃(k)t

w̃(k)

p
≤ µ

(2)
k , where µ

(1)
k is the

usual choice of the perturbation parameter in the interior point method and is
strictly connected with the notion of adherence to the central path (e.g. see
[36]). Then, the choice of the perturbation parameter

µk ∈ [µ
(1)
k , µ

(2)
k] (14)

assures that ∆v(k) satisfies the residual condition of the inexact Newton method
and it is a descent direction for ‖H(v)‖2.
At the same time, the range of values of the perturbation parameter is enlarged
in order to avoid stagnation of the current iterate on the boundary of the non-

negative orthant (s̃, w̃) ≥ 0 that occurs when the value of µ
(1)
k is too small and

we are far away from the solution (see Section 5 in [29]).
When the size of the system (11) is large, the computation of the exact solution
can be too expensive and then the system (11) can be solved approximately.
We denote again by ∆v(k) the approximate solution of system (11). If the
coefficient matrix has a special structure, an iterative scheme can exploit this
feature. Nevertheless, the use of an iterative solver determines the necessity
to state an adaptive termination rule so that the accuracy in solving the inner
system depends on the quality of the current iterate of the outer method in
order to avoid unnecessary inner iterations when we are far from the solution.

9

Then, we can apply an inner iterative scheme to the perturbed Newton equation
(11) until the final inner residual

r(k) = H ′(v(k))∆v(k) + H(v(k))− σkµkẽ (15)

satisfies the condition
‖r(k)‖ ≤ δk‖H(v(k))‖ (16)

That is, we introduce a further perturbation. Obviously, the choice δk = 0
means the system (11) is solved exactly.
It is possible to prove (see [10, Theor. 1]), that, if σk ∈ (0, σmax] ⊂ (0, 1),
δk ∈ [0, δmax] ⊂ [0, 1) and σmax +δmax < 1, then, the vector ∆v(k), that satisfies
(15) and (16), is a descent direction for ‖H(v)‖2 and it satisfies the residual
condition (13) with the forcing term ηk = σk + δk.

The new iterate v(k+1) can be obtained by a globally convergent modification
of Newton’s method such as a line search technique or a trust region approach
(e.g. see [25, §6.3, 6.4]).
We consider the Newton line–search interior point method (or damped Newton
interior point method), which computes the new iterate as follows

v(k+1) = v(k) + αk∆v(k) (17)

where the damping parameter αk has to satisfy the feasibility of the new iterate
and appropriate path–following conditions (centrality conditions) and has to
guarantee a sufficient decrease of a merit function, for example of ‖H(v)‖2.
In order to satisfy all the conditions, the damping parameter αk is determined
by the following sequence of steps:

1. feasibility condition means that all the iterates v(k) have to belong to the
feasible region

{v ∈ R
n+neq+2p s.t. s̃i > 0 and w̃i > 0 ∀ i = 1, ..., p}.

So, if ∆s̃
(k)
i < 0 (or ∆w̃

(k)
i < 0), αk

(1) will be chosen such that s̃
(k+1)
i > 0

(or w̃
(k+1)
i > 0);

2. centrality conditions are expressed by the nonnegativity of the following
functions introduced in [36] (see also [74, p. 402]):

ϕ(α) ≡ min
i=1,p

“

S̃(k)(α)W̃ (k)(α)ep

”

− γkτ1

s̃
(k)(α)

t
w̃

(k)(α)

p

!

≥ 0 (18)

ψ(α) ≡ s̃
(k)(α)

t
w̃

(k)(α) − γkτ2‖H1(v
(k)(α))‖ ≥ 0 (19)

where s̃(k)(α) = s̃(k) +α∆s̃(k) and w̃(k)(α) = w̃(k) +α∆w̃(k); γk ∈ [12 , 1).

10

At each iterate we choose α̃k such that conditions (18)–(19) are satisfied
∀α ∈ (0, α̃k] ⊆ (0, 1]; then αk

(2) = min{α̃k, αk
(1)}.

In order to satisfy inequalities (18) and (19) in the initial iterate, we have

τ1 ≤
mini=1,p(S̃(0)W̃ (0)

ep)

(s̃
(0)t

w̃
(0)

p
)

, and τ2 ≤ s̃
(0)t

w̃
(0)

‖H1(v(0))‖ , where we assume s̃(0) > 0,

w̃(0) > 0.

Practically, we set

τ1 = min

0.99,
10−7 ·mini=1,p

(

S̃(0)W̃ (0)
ep

)

0.5 · (s̃
(0)t

w̃
(0)

p
)

 ; τ2 = 10−7 · s̃
(0)t

w̃
(0)

‖H1(v(0))‖
(20)

3. a sufficient decrease of the merit function ‖H(v)‖2, can be obtained im-
plementing the Armijo backtracking procedure ([6]) as in [36] or the one
in [28]

• Set β ∈ (0, 1), θ ∈ (0, 1), α = αk
(2), t = 0;

• while ‖H(v(k) + α∆v(k))‖ > (1− βα(1 − (σk + δk)))‖H(v(k))‖
or t < tmax

α← θα; t← t+ 1;

endwhile

We observe that, the first centrality condition, ϕ(α) ≥ 0, keeps the iterates
v(k)(α) = v(k) +α∆v(k) far from the boundary of the feasible region, while the

second, ψ(α) ≥ 0, forces the sequence {s̃(k)t
w̃(k)} to converge to zero slower

than the sequence {‖H1(v
(k))‖}.

If the backtracking procedure terminates after t̄ steps, we denote as αk the last

value α in the backtracking rule, i.e. αk = θt̄α
(2)
k .

Let us consider the following:

P1. Suppose that α
(1)
k is bounded below by a scalar greater than zero, say α(1),

and that also α
(2)
k is bounded below by a scalar greater than zero, say α̃. Thus,

we denote α(2) = min{α(1), α̃} > 0.
P2. Suppose that the backtracking rule terminates after a finite number of
steps, then αk is bounded below by a positive scalar, say ᾰ > 0.
We have the following result.
If P1 and P2 hold (see subsection 5.2), and denoting ᾱ = min{α(2), ᾰ} > 0,
then we have that αk ≥ ᾱ > 0 and that the vector αk∆v(k) satisfies the norm
condition of the inexact Newton method (10) with ξ̄ = (1 − βᾱ(1 − (σmax +
δmax))) < 1.
Moreover, from (12), (15) and (16), it is easy to prove that the vector αk∆v(k),
k ≥ 0, also satisfies the residual condition of the inexact Newton method (13)
with the forcing term ηk = 1− αk(1− (σk + δk)) ≤ 1− ᾱ(1− (σmax + δmax)) ≡
η̄ < 1.

11

In the following, in the related section 5.2, we report convergence results in [10]
of the Newton line–search interior point method based on convergence results
of inexact Newton methods.
Furthermore, in [9], the author extends the interior point method to nonmono-
tone choices in the context of the nonmonotone inexact Newton method. Indeed,
by allowing the choice of the parameter µk in the larger interval, respect to the
one in (14)

µk ∈
[

s̃(k)t
w̃(k)

p
,
‖H(v(ℓ(k)))‖√

p

]

if the direction ∆v(k), computed by solving approximately the Newton equation
(11), satisfies the condition

‖r(k)‖ ≤ δk‖H(v(ℓ(k)))‖
then, such direction is a nonmonotone inexact Newton step with forcing term
equal to δk + σk. A nonmonotone backtracking rule is also introduced

‖H(v(k) + αk∆v(k))‖ ≤ (1 − αkβ(1− (δk + σk))‖H(v(ℓ(k)))‖.
Here, we still denote by {v(k)} the nonmonotone interior point sequences, and
by {r(k)} the sequence of the residual in (15); the vector v(ℓ(k)) indicates an
element of the sequence {v(k)} such that

‖H(v(ℓ(k)))‖ ≡ max
0≤j≤min(M,k)

‖H(v(k−j))‖

where k − min(M,k) ≤ ℓ(k) ≤ k. Here M ∈ N is called memory or degree of
nonmonotonicity.
We observe that the nonmonotone choices involve three crucial issues: the per-
turbation parameter, the inner adaptive stopping criterion and the backtracking
rule. The first two choices influence the direction itself, while a less restrictive
backtracking rule allows to retain larger stepsizes than in the monotone case.
Convergence properties and numerical experiences of this nonmonotone interior
point method are also investigated in [9].

4 Iterative solvers for interior point iteration

We focus our attention to the solution of the linear system (11) that, by omitting
the iteration index k, can be written

Q∆x−∇g1(x)∆λ1 −∇g2(x)∆λ2 − P t
l ∆λl + P t

u∆λu = −α

−∇g1(x)t∆x = −ε

−∇g2(x)t∆x + ∆s = −β

−Pl∆x + ∆rl = −γ

+Pu∆x + ∆ru = −δ

S∆λ2 + Λ2∆s = −θ + ρem

Rl∆λl + Λl∆rl = −ζ + ρenl

Ru∆λu + Λu∆ru = −η + ρenu

12

From the complementarity equations we can deduce

∆s̃ =

∆rl

∆ru

∆s

 =

Λ−1
l [−Rl∆λl − ζ + ρenl]

Λ−1
u [−Ru∆λu − η + ρenu]
Λ−1

2 [−S∆λ2 − θ + ρem]

and then

∆w̃ =

∆λl

∆λu

∆λ2

 =

R−1
l [−ΛlPl∆x + Λlγ − ζ + ρenl]

R−1
u [ΛuPu∆x + Λuδ − η + ρenu]

S−1[−Λ2∇g2(x)t∆x + Λ2β − θ + ρem]

where ∆x and ∆λ1 are the solution of the system in a condensed form

(

A B
Bt 0

)(

∆x

∆λ1

)

=

(

c

q

)

(21)

with

A = Q+∇g2(x)S−1Λ2∇g2(x)t + P t
l R

−1
l ΛlPl + P t

uR
−1
u ΛuPu

B = −∇g1(x)
c = −α−∇g2(x)S−1[Λ2g2(x) + ρem]− P t

l R
−1
l [Λl(Plx− l)− ρenl]−

−P t
uR

−1
u [Λu(Pux− u) + ρenu]

q = −ε

The system (21) is symmetric and indefinite and it can be solved by the sparse
Bunch–Parlett triangular factorization ([14]), that combines dynamic reorder-
ing for sparsity preserving and pivoting technique for numerical stability (see
MA27 routine of HSL Library ([54])) or by considering an inertia–controlling
factorization (see [42], [41], [40]).
Nevertheless, for large scale nonlinear programming, the size of these systems is
large and, even if the coefficient matrices are sparse and the sparsity is exploited,
the computation of the solution by direct methods can be very expensive in
terms of CPU time and storage requirements. Indeed, in the framework of
direct methods, much efforts have been performed to avoid the use of MA27 for
large scale nonlinear programming problems.
Interior point schemes transform, by elimination techniques as the one above,
the symmetric systems (11) in a condensed form and reduce it into a quasidef-
inite form6 ([90]), such that a Cholesky–like factorization can be obtained. At
the beginning of the interior point scheme, the a–priori determination of a spar-
sity preserving reordering of the coefficient matrix (taking into account only of
its structure) and of the symbolic Cholesky factor is carried out. Then, at each

6A matrix

„

S V

V T −U

«

is quasidefinite if S and U are symmetric positive definite ma-

trices. A quasidefinite matrix is strongly factorizable, i.e. a Cholesky–like factorization LDLT

(with a diagonal matrix D and a lower triangular matrix L with diagonal elements equal to
one) exists for any symmetric permutation of the quasidefinite matrix. The diagonal matrix
D has a number of positive (negative) diagonal entries equal to the size of S (U respectively).
See [50] for an error analysis of Cholesky–like factorization of quasidefinite matrices.

13

iteration the factor is computed, without using pivoting technique, saving a lot
of CPU time.
The reduction of a coefficient matrix into a quasidefinite form is obtained by
a regularization technique, consisting in to modify this matrix by adding an
appropriate diagonal matrix D̃ (e.g. see [91], [81], [2]). In ([2]) the matrix D̃
is dynamically computed in the implementation of the Cholesky factorization:
when a critical pivot is reached, this is perturbed by a small quantity with a
convenient sign.
Nevertheless, the use of regularization requires additional recovery procedures
and several factorizations; for example to individuate a perturbation as small as
possible ([91]) or to implement an iterative refinement if the computed solution
of the perturbed system is not satisfactory ([2]).
From a theoretical point of view, an interior point method can be viewed as a
nonstationary iterative method of the form

v(k+1) = φk(v(k))

where φk is the law of the method; thus, an a priori unknown modification of
the matrices of the problem, or an a priori unknown bound of the modification
of the problem, is equivalent to find a new iterate which is not described by the
law of the method; in other words, it is equivalent to interrupt the sequence and
to restart from another initial point.
A different approach that avoids modifications of the matrices of the subprob-
lems is to use iterative inner solvers for (21), that exploit the sparsity of the
involved matrices, solving approximately the inner subproblems, so that unnec-
essary inner iterations can be avoided when we are far from the solution.
As seen in the previous section, the Newton line–search interior point method
combined with an inner iterative solver can be viewed as an inexact Newton
method and we can deduce a suitable adaptive stopping rule for the inner solver
that assures the global convergence and the local superlinear convergence of the
whole outer–inner scheme (see [10], [34]).
We remark that, when the solution ∆v(k) is computed by solving approximately
the perturbed Newton equation (11) rewritten in the condensed form (21), the
further perturbation that the inner solver introduces on the residual (15), ap-
pears only in the first two block–rows. That is, if we partition the residual r(k)

commensurately as v(k), we have

r(k) =

r
(k)
1

r
(k)
2

0
0

;

(

r
(k)
1

r
(k)
2

)

=

(

A B
Bt 0

)(

∆x

∆λ1

)

+

(

c

q

)

Here, we remind that A, B, c, q, ∆x and ∆λ1 are dependent on the outer
iteration k.
In the following two subsections, we consider the iterative method of multipliers
for the approximate solution of the system (21) that yields at each inner iterate

14

a symmetric positive definite system of small size, that can be solved by effi-
cient Cholesky codes, and in the other subsection, two different implementation
of preconditioned conjugate gradient (PCG) method for system (21) with the
preconditioner described in [65] (see also [66]); efficient code for Cholesky fac-
torization are requested in the first version while in the second an efficient code
for Cholesky–like factorization is introduced.

4.1 The method of multipliers

Suppose that the matrices A and B of the system (21) satisfy the following
conditions:

• Bt is a full row rank matrix;

• A is symmetric and positive definite on the null space of Bt: N (Bt) =
{x ∈ R

n : Btx = 0}.
These conditions assure that the matrix

M =

(

A B
Bt 0

)

(22)

is nonsingular ([64, p. 424]). We note that these assumptions are the standard
assumptions for local sequential quadratic programming (SQP) method ([74, p.
531])
Setting y1 = ∆x and y2 = ∆λ1, the system (21), can be viewed as the Lagrange
necessary conditions for the minimum point of the following quadratic problem

min 1
2yt

1Ay1 − cty1

Bty1 − q = 0

This quadratic problem can be solved efficiently by the method of multipliers7
8, that consists in updating the dual variable by the rule

y
(ν+1)
2 = y

(ν)
2 + χ(Bty

(ν)
1 − q) (23)

where χ is a positive parameter (penalty parameter) and y
(ν+1)
1 minimizes the

augmented Lagrangian function of the quadratic problem

Lχ(y1,y
(ν)
2) =

1

2
yt

1Ay1 − yt
1c + y

(ν)
2

t
(Bty1 − q) +

χ

2
(Bty1 − q)t(Bty1 − q)

This means that y
(ν+1)
1 is the solution of the linear system of order n

(A+ χBBt)y1 = −By
(ν)
2 + c + χBq (24)

7The method of multipliers [56, Chapt. 5, §10, p. 307], was originally suggested by Hestenes
in [55]; an equivalent method motivated from a different viewpoint has been proposed by
Powell in [77]. See [64, Chapt. 13] for the dual viewpoint of the method.

8In [45] it is showed that the method of multipliers for equality constrained least squares
problems is equal to the method of weighting [89] for a particular choice of the starting point.

15

We remark that if we premultiply for an appropriate matrix the augmented
system (21), we have

(

I χB
0 I

)(

A B
BT 0

)(

y1

y2

)

=

(

I χB
0 I

)(

c

q

)

then, changing the sign to the last block-row, we have

(

A+ χBBT B
−BT 0

)(

y1

y2

)

=

(

c + χBq

−q

)

If we split the coefficient matrix of this last system into:

(

A+ χBBT B
−BT 0

)

= D − L− U

with

D =

(

A+ χBBT 0
0 1

χ
I

)

; L =

(

0 0
BT 0

)

; U =

(

0 −B
0 1

χ
I

)

;

and we apply Gauss-Seidel method (SOR–like method in [52] with ω = 1, see
also [62]), we obtain the two iteration of the method of multipliers (23)–(24)
(see also [51]).
Moreover, we note that, since Bt has full row–rank, the null space of BBt is
equal to the null space of Bt, then the matrix A is positive definite on the null
space of BBt.
Then, by the theorem in ([64, p. 408]), there exists a positive parameter χ∗

such that for all χ > χ∗, the matrix A+ χBBt is positive definite.

This last result enables us to solve the system (24) by applying a Cholesky
factorization.
In order to choose the parameter χ, we observe that, for any x 6= 0, we must
have xt(A+ χBBt)x > 0. When Btx = 0, we have xtAx > 0.
If Btx 6= 0, xtBBtx > 0. Then, it follows that

χ > max(0, max
x 6∈N (Bt)

−xtAx

xtBBtx
)

Since ‖A‖ ≥ (−xtAx)/(xtx) for any natural norm and also for the Frobenius
norm ‖ · ‖F , and xtBBtx/(xtx) ≥ τmin, where τmin is the minimum nonzero
eigenvalue of BBt or of BtB, we can choose χ as the following value (see also
[51]):

χ =
‖A‖F
tmin

(25)

where tmin is the minimum between 1 and the smallest positive diagonal element
of BtB. Although tmin ≥ τmin, tmin is a good approximation of τmin ([46]).

16

For an analysis of the conditioning of the system (24) and on the behaviour of
the method of multipliers with a normalization matrix see [46] and [27, §6].
Let us consider the implementation details of the method. We assume that the
Hessian matrix Q of the Lagrangian function and the Jacobian matrix Bt of the
equality constraints are stored in a column compressed format ([80]).

In the cases of the test problems of the section of the numerical experiments,
the inequality constraints are box constraints, then the matrices A and Q have
the same structure and they differ only for the diagonal entries.
Thus, at each outer iteration of the interior point method, the method of mul-
tipliers requires the computation of the matrix T = A+χBBt and its Cholesky
factorization T = LnL

t
n.

The operations related to each inner iteration ν, that is, sparse matrix–vector

products B(−y
(ν)
2 +χq) and Bty

(ν)
1 and solution of the triangular systems with

coefficient matrices Ln, have a negligible computational complexity.
Thus, the method of multipliers requires:

• for any outer iteration, the computation of the matrix T = A+χBBt and
its Cholesky factorization T = LnL

t
n;

• for any inner iteration ν, the sparse matrix–vector products B(−y
(ν)
2 +χq)

and Bty
(ν)
1 and the solution of the triangular systems related to Ln and

Lt
n.

The computational complexity of any inner iteration is negligible with respect
to the operations required at any outer iteration.
When BBt is sufficiently sparse, in order to save a lot of CPU time, before start-
ing the outer scheme, we can perform a preprocessing procedure that executes
the following steps:

• the formation of a data structure for storing the indices of the nonzero
entries of the lower triangular part of T : for any nonzero entry of T , in
the same data structure we also store the pairs of indices of the elements of
B and Bt that give a nonzero contribution in the scalar product forming
the entry; this task can be expensive since we have to investigate O(n2/2)
entries of the lower part of T and for each (i, j) entry, we have to individ-
uate the nonzero pairs among the neq pairs of elements of the i–th and
j–th columns of BT ;

• the computation of the symbolic Cholesky factorization of the sparse sym-
metric and positive definite matrix T by the Fortran package (version 0.3)
of Ng and Peyton (included in the package LIPSOL, downloadable from
www.caam.rice.edu/˜zhang/lipsol); the multiple minimum degree reorder-
ing of Liu used to minimize the fill–ins in Ln and the supernodal block
factorization enables to take advantage of the presence of the cache mem-
ory in modern computer architectures ([63]).

Thus, in the results, we consider the time for solving a nonlinear programming
problem by interior point scheme combined with the method of multipliers di-
vided in the preprocessing time and the time for computing the solution. We

17

observe that the preprocessing time is dependent on the strategy used to perform
the matrix–matrix products needed in the method for computing T .
We refer as IP–MM, the interior point method with the method of multipliers
as inner iterative solver.

4.2 Preconditioned conjugate gradient method

Another approach for the solution of the symmetric and indefinite system (21)
that occurs at each iteration of an interior point method, is the preconditioned
conjugate gradient (PCG) method (see e.g. [8], [20], [30], [31], [49], [65], [66],
[58]).
The PCG method, with the preconditioning matrix M̄ , for the solution of the
system (21)

My = b

where M is given by (22) and y = (∆xt,∆λt
1)

t and b = (ct, qt)t, is expressed
as follows ([75, p. 199]):

Set: r̂(0) = b−My(0); let d(0) be the solution of M̄d = r̂(0); set: p(0) = d(0);

For ν = 0, 1, ... until the convergence do

• β̃ν = d(ν)t
r̂(ν)/p(ν)t

Mp(ν)

• y(ν+1) = y(ν) + β̃νp(ν)

• r̂(ν+1) = r̂(ν) − β̃νMp(ν)

• let d(ν+1) be the solution of M̄d = r̂(ν+1)

• β̂ν = d(ν+1)t
r̂(ν+1)/d(ν)t

r̂(ν)

• p(ν+1) = d(ν+1) + β̂νp(ν)

The basic conjugate gradient method results by choosing M̄ = I, the identity
matrix.
The multiplication Mp that occurs at each iteration ν, does not require the
explicit computation of the matrix A of system (21); indeed, if we set the n× p
matrix C = (∇g2(x), P t

l , P
t
u), and the p× p diagonal matrices S̃ = diag(s̃) and

W̃ = diag(w̃), respectively, then, the matrix A becomes A = Q+ CS̃−1W̃Ct.
The computation of t = Mp, where p = (pt

1,p
t
2)

t, t = (tt
1, t

t
2)

t (p1, t1 ∈ R
n,

p2, t2 ∈ R
neq), can be carried out as

• t1 ← Ctp1

• t̂← S̃−1W̃ t1

• t1 ← C t̂

• t1 ← t1 +Qp1 +Bp2

18

• t2 ← Btp1

Here t̂ is a temporary array of size p.
In this work, we consider the indefinite preconditioner introduced by Lukšan in
[65]:

M̄ =

(

Ā B
Bt 0

)

=

(

I 0
BtĀ−1 I

)(

Ā 0
0 −BtĀ−1B

)(

I Ā−1B
0 I

)

(26)
where Ā is a positive diagonal approximation of A. We refer to [65] for spectral
properties of the conjugate gradient method with this preconditioner.
In this work the diagonal matrix Ā is chosen as Ā = diag(āii) as follows

āii =

{

aii = qii +
∑p

j=1 c
2
ijw̃j/s̃j if aii > 10−8

1.5 · 10−8 otherwise.
i = 1, ..., n (27)

where w̃j and s̃j , j = 1, ..., p are the component of the vectors w̃ and s̃ re-
spectively, the coefficients cij , i = 1, ..., n, j = 1, ..., p, are the entries of the
n×p matrix C defined above and qii, i = 1, ..., n, are the diagonal entries of the
matrix Q.
At each iteration ν of PCG algorithm, we have to solve the linear system of
order n+ neq,

M̄d = r̂ (28)

We partition the vectors d and r̂ as d = (dt
1,d

t
2)

t and r̂ = (r̂t
1, r̂

t
2)

t respectively,
(d1, r̂1 ∈ R

n, d2, r̂2 ∈ R
neq).

In this work we consider two different methods to solve the system (28) when
the coefficient matrix M̄ is defined in (26). The first method exploits the block
structure of the matrix (26) while the second one solves directly the system (28)
by introducing a regularization technique on the preconditioning matrix M̄ in
order to assure that it admits a Cholesky–like factorization.
The two different techniques to compute the solution of system (28) produce
different performances, especially for large scale problems.
In the first case, at the beginning of the PCG method we compute the sym-
metric positive definite matrix T = BtĀ−1B and its Cholesky factorization
T = LneqL

t
neq; then, taking into account of M̄−1 from (26), the solution of (28)

can be determined by the following procedure

• d1 ← Ā−1r̂1

• d2 ← r̂2 −Btd1

• t̂← −L−1
neqd2

• d2 ← L−t
neq t̂

• d1 ← d1 − Ā−1Bd2

19

Here t̂ is a temporary array of size neq.
As in the implementation of the method of multipliers, when BtĀ−1B is suffi-
ciently sparse, a preprocessing routine executes:

• the formation of a data structure for storing the information needed to
compute the matrix T ;

• the determination of the minimum degree reordering of T and of its sym-
bolic Cholesky factor.

For this last part and for computing the elements of Lneq we use the package of
Ng and Peyton.
We observe that this approach can be more convenient with respect to the
IP–MM method at two level:

• at the preprocessing phase, we have to compute the entries of the neq×neq
matrix BtĀ−1B instead of the ones of the n× n matrix A+ χBBt;

• at solution phase, at any iterate of the inner solver, we have to solve
positive definite linear systems with coefficient matrix BtĀ−1B instead of
A+ χBBt and neq < n.

Nevertheless, the formation of data structure phase can be expensive since we
have to investigate O(neq2/2) entries of the lower part of T and for each (i, j)
entry, we have to individuate the nonzero pairs among the n pairs of elements
of the i–th and j–th columns of B.
We refer as IP–PCG1, the interior point method with the preconditioned con-
jugate gradient as inner solver, with preconditioning matrix M̄ as in (26), and
the solution of the system (28) computed as described above.

The other method to compute the solution of the system (28), avoids the com-
putation of the matrix–matrix product BT Ā−1B.
We observe that the matrix M̄ can be factorized in a Cholesky–like form

Ln+neqDL
t
n+neq, (29)

where Ln+neq is a lower triangular matrix with diagonal entries equal to one and
D is a nonsingular diagonal matrix. In order to reduce the fill–ins in the lower
triangular factor, we can perform a minimum degree reordering of the matrix
M̄ . But, it is not assured that the symmetrically permuted matrix PM̄P t can
be factorized in the Cholesky–like form.
Nevertheless, we can obtain a factorization in the form (29) if we use for the
matrix M̄ the regularization technique described in [2]; in other words, instead
of using the preconditioner M̄ , we compute the factorization of

¯̄M = M̄ +

(

R1 0
0 −R2

)

where R1 and R2 are nonnegative diagonal matrices such that P ¯̄MPT ad-
mits a factorization of the form (29). The computation of R1 and R2 can

20

be obtained during the factorization procedure. If a pivot di is too small
(|di| < 10−15 maxj<i |dj |), we put di =

√
eps if 1 ≤ i ≤ n, or di = −√eps

if n+ 1 ≤ i ≤ n+ neq, where eps is the machine precision.
The dynamic computation of the elements of R1 and R2 reduces the pertur-
bation to a minimum. This approach is used in [8] for linear and quadratic
programming problems with equality and box constraints.
The Cholesky–like factorization of ¯̄M can be obtained by a modification of the
Ng and Peyton package. In particular, we modify the subroutine PCHOL such
that we compute Ln+neqDL

T
n+neq with diagonal elements of Ln+neq equal to 1.

Consequently, it is necessary to construct suitable subroutines (MMPYM and
SMXPYM) to update the blocks of the factor Ln+neq, and to modify the sub-
routine BLKSVT for the computation of the solution of the system

Ln+neqDL
t
n+neqd = r̂

The routines for performing the minimum degree reordering, for determining
the supernodes and for the computation of the symbolic factor are unchanged.
Consequently, the effectiveness of the package of Ng and Peyton due to a suit-
able use of the cache memory is maintained. This package, called BLKFCLT,
introduced in [11], is downloadable from the website http://dm.unife.it/blkfclt.
We refer as IP–PCG2, the interior point method with the preconditioned con-
jugate gradient as inner solver, with preconditioning matrix M̄ as in (26), and
the solution of the system (28) computed by the package BLKFCLT.

5 Analysis of the convergence

5.1 Formulation of the algorithm

In this subsection we state the damped Newton interior point algorithm as
described in the previous sections.
We refer this algorithm as IP–MM, IP–PCG1, IP–PCG2, depending on we use as
inner solver the method of multipliers with Ng–Peyton routine, the conjugate
gradient method with Lukšan preconditioner and Ng–Peyton routine or the
conjugate gradient method with Lukšan preconditioner and BLKFCLT routine,
respectively,
We also refer as IP–MA27, when we solve the inner system by the direct method
implemented in MA27 routine.
The algorithm can be formulated as follows:

• set v(0) s.t. s̃(0) > 0 and w̃(0) > 0;

• set the backtracking parameters β, θ ∈ (0, 1) and the centrality conditions
parameters τ1 and τ2 as in (20) with γk = 1

2 ; set the tolerance ǫexit > 0;

• for k = 0, 1, ... until stopping rule is satisfied, do:

– set µk ∈ [µ
(1)
k , µ

(2)
k], δk ∈ [0, 1); σk > δk(1 + 1

2τ2) with σk + δk < 1;

21

– compute the solution ∆v(k) by solving the system (21) with a direct
or an iterative process. In this last case, the stopping rule satisfies
condition (16), that is:

‖r‖ ≤ max(5ǫexit, δk‖H(v(k))‖)
where r is the inner current residual and it is computed as in (15);

– find α such that s̃ = s̃(k) +α∆s̃(k) > 0 and w̃ = w̃(k) +α∆w̃(k) > 0
(feasibility conditions), i.e. (θ̂ < 1):

α ≡ α(1)
k = min

(

min

(

min
∆s̃

(k)
i

<0

−s̃(k)
i

∆s̃
(k)
i

, min
∆w̃

(k)
i

<0

−w̃(k)
i

∆w̃
(k)
i

)

θ̂, 1

)

(30)

– reduce eventually the parameter α
(1)
k , by multiplying by a positive

factor θ̆ < 1, until the centrality conditions (18)–(19) are satisfied9.

Denote α
(2)
k the obtained value;

– apply backtracking procedure [28]:

set α = αk
(2); t = 0;

while ‖H(v(k) + α∆v(k))‖ > (1− βα(1 − (σk + δk)))‖H(v(k))‖
or t < tmax
α← θα; t← t+ 1;

endwhile

Denote αk the value of α at the final backtracking step;

– v(k+1) = v(k) + αk∆v(k)

Here, the outer iterations stop when the outer residual ‖H(v(k))‖ satisfies

‖H(v(k))‖ ≤ 10−8

or when (see [91])
|gap|

1 + |gap| ≤ 10−8

where gap is the difference between the primal function f(x) and the dual
function

d(x,λ1, w̃) = f(x)− λt
2g2(x)− λt

1g1(x) + ltλl − utλu −∇f(x)tx +

+
(

λt
1 λt

2

)

(

∇g1(x)t

∇g2(x)t

)

x

9In the experiments, we use an adaptive rule for θ̂ as in [4]; that is, if the result of the
minimum in (30) is less then 1 we have

θ̂ = max
“

0.8,min(0.9995, 1 − 100(s̃(k)t
w̃

(k)))
”

otherwise, if ∆v(k) does not bring the new iterate out of the feasible region, we set

θ̂ = max
“

0.8, 1 − 100(s̃(k)t
w̃

(k))
”

Furthermore, we set θ̆ = 0.5.

22

5.2 Convergence of inexact Newton method for Karush–

Kuhn–Tucker systems

The analysis of the convergence of the damped Newton interior point algorithm
as described above, can be developed as an analysis of the convergence of inexact
Newton method for solving Karush–Kuhn–Tucker systems.
Given ǫ ≥ 0, we define

Ω(ǫ) =
{

v : 0 ≤ ǫ ≤ ‖H(v)‖2 ≤ ‖H(v(0))‖2, s. t.

min
i=1,p

(

S̃W̃ep

)

≥ τ1
2

(

s̃tw̃

p

)

s̃tw̃ ≥ τ2
2
‖H1(v)‖

}

(31)

Ω(ǫ) is a closed set.
Let assume that the following conditions hold [33] (see also [36] and [28]):

C1 in Ω(0), f(x), g1(x), g2(x) are twice continuously differentiable; the gra-
dients of the equality constraints are linearly independent and H ′

1(v) is
Lipschitz continuous;

C2 the sequences {x(k)} and {w̃(k)} are bounded;

C3 for any Ωs, the matrix H ′(v) is nonsingular. The set Ωs is a compact
subset of Ω(0) where s is bounded away from zero.

The condition C3 is equivalent to the condition that the matrix M of (22) is
nonsingular for any Ωs.
In general, in literature, the condition C3 is replaced by a sufficient condition
to assure that C3 holds.
For example, a sufficient condition is to require that, for any Ωs, the matrix A
is symmetric and positive definite on the null space of Bt and Bt is a full row
rank matrix. Another sufficient condition is to require that, for any Ωs, the
matrices A and BtA−1B are nonsingular10.
The boundedness of the sequence {x(k)} can be assured by enforcing box con-

straints −li ≤ x(k)
i ≤ li for sufficiently large li > 0, i = 1, ..., n.

The following result in ([10, Theor. 2]), assures the boundedness of the iteration.

Theorem 1. Let {v(k)} be a sequence generated by the damped Newton inte-
rior point method.
If v(k) ∈ Ω(ǫ), ǫ > 0, then

10The inverse of the matrix M of (22), by the inversion of a matrix by partitioning [38, p.
161], is given by

M−1 =

„

A−1 − A−1B(BtA−1B)−1BtA−1 A−1B(BtA−1B)−1

(BtA−1B)−1BtA−1 −(BtA−1B)−1

«

23

(a) the sequences {s̃(k)t
w̃(k)} and {s̃(k)

i w̃
(k)
i }, i = 1, . . . p, are bounded above

and below away from zero for any k ≥ 0; the sequence {‖H1(v
(k))‖} is

bounded above for any k ≥ 0;

(b) if C1 and C2 hold, then {v(k)} is bounded above and s̃(k) and w̃(k) are
componentwise bounded away from zero;

(c) if C1, C2 and C3 hold, then the sequence of matrices {H ′(v(k))} is bounded
and then, also the sequence of {H ′(v(k))−1} is bounded;

(d) if C1, C2 and C3 hold, and if σk + δk < 1, then the sequence {∆v(k)} is
bounded.

Hence, as a consequence of Theorem 1, we see that the damping parameter is
uniformly bounded away from zero.
Since the final value of the damping parameter is obtained after satisfaction of
the feasibility, the path–following conditions and the backtracking reduction, we
separate the analysis into three steps.

1. (Feasibility) It is easy to see that α
(1)
k in (30) is bounded away from zero,

i.e. α
(1)
k ≥ α(1) > 0, since, for any iteration k, s̃

(k)
i and w̃

(k)
i are bounded

away from zero and ∆s̃
(k)
i and ∆w̃

(k)
i are bounded above, for i = 1, ..., p.

2. (Path–following) The following result in [10, Theor. 3] assures the exis-

tence of two positive numbers α̂
(2)
k and α̌

(2)
k such that the centrality func-

tions ϕ(α) and ψ(α) are nonnegative for α ∈ (0, α̂
(2)
k] and for α ∈ (0, α̌

(2)
k]

respectively.

Theorem 2. Let {v(k)} be a sequence generated by the damped Newton
interior point method. Let us also assume σk ∈ [σmin, σmax] ⊂ (0, 1) and
δk ∈ [0, δmax] ⊂ [0, 1), and

σk > δk(1 + γkτ2) (32)

Then, if ϕ(k)(0) ≥ 0, there exists a positive number α̂
(2)
k > 0, such that

ϕ(k)(α) ≥ 0 for all α ∈ (0, α̂
(2)
k].

Then, if ψ(k)(0) ≥ 0, there exists a positive number α̌
(2)
k > 0, such that

ψ(k)(α) ≥ 0 for all α ∈ (0, α̌
(2)
k].

From result in Theorem 1 (see the proof of [10, Theor. 3]), we have that

min{α̂(2)
k , α̌

(2)
k , 1} ∈ (0, 1] ≥ α̃ > 0

Then, α
(2)
k ≥ α(2) = min{α(1), α̃} > 0.

For sake of completeness, we report the result in [44] (also in [10]) that

shows that the strict feasibility of the initial vectors s̃(0) > 0 and w̃(0) > 0
is sufficient to guarantee the nonnegativity of the centrality functions ϕ(α)
and ψ(α) at each iterate k.

24

Theorem 3. Let ϕ(α) and ψ(α) be the centrality functions defined in
(18) and (19); set τ1 and τ2 as in (20) and let be given a sequence of
parameters {γk} with

1 > γ0 ≥ γ1 ≥ ... ≥ γk ≥ γk+1 ≥ ... ≥
1

2
.

Furthermore, since s̃(0) > 0, w̃(0) > 0, then

ϕ(k)(α) ≥ 0 for all α ∈ (0, α̂
(2)
k]

ψ(k)(α) ≥ 0 for all α ∈ (0, α̌
(2)
k]

for any k = 0, 1, ...

3. (Backtracking) As shown in [10, Theor. 4], under the hypotheses of theo-
rems 1 and 2, the while loop of the backtracking procedure of the damped
Newton interior point algorithm, terminates in a finite number of steps
(see also [35, Lemma 5.1]).

Thus, by P1 and P2, the damping parameter αk is bounded below away from
zero and the damped Newton interior point step, αk∆v(k) satisfies the norm
and the residual conditions of inexact Newton method.
Hence, we report here the convergence theorem for the damped Newton inte-
rior point method, based on the fundamental convergence theorem of inexact
Newton method ([79, Theor. 6.7]).

Theorem 4. Suppose that the assumptions C1, C2 and C3 hold. Suppose
that σk ∈ [σmin, σmax] ⊂ (0, 1), δk ∈ [0, δmax] ⊂ [0, 1), σmax + δmax < 1 and
σk > δk(1 + γkτ2). Then, the damped Newton interior point algorithm, with
ǫexit = 0, generates a sequence {v(k)} such that:

(i) the sequence {‖H(v(k))‖} converges to zero and each limit point of the
sequence {v(k)} satisfies the Karush–Kuhn–Tucker conditions (3) for (1)
and (2);

(ii) if the sequence {v(k)} converges to v∗ with H ′(v∗) nonsingular matrix,
σk = O(‖H(v(k))‖ζ), 0 < ζ < 1, and δk = O(‖H(v(k))‖), then there
exists an index k̄ such that αk = 1 for k ≥ k̄. Thus, the damped Newton
interior point method has a superlinear local convergence.

Proof. (i) We have that the sequence {‖H(v(k))‖} is monotone, nonincreasing
and bounded. Hence, this sequence has a limit H∗ ∈ R. If H∗ = 0, we have the
result. Suppose, by contradiction, that H∗ > 0. Then the sequence {v(k)} ⊂
Ω(ǫ) with ǫ = (H∗)2 > 0. Since {v(k)} is bounded above, then it possesses
limit points (Bolzano–Weierstrass Theorem [1, p. 54]). Let v∗ be one of these
limit points. Then, there is a subsequence of {v(k)} that converges to v∗.
Denoting this converging subsequence by {v(ki)}, we have that v(ki) → v∗

as ki → ∞. Since H(v) is continuous, it follows that H(v(ki)) → H(v∗) and
‖H(v(ki))‖ → ‖H(v∗)‖. But ‖H(v(ki))‖ → H∗. Therefore, ‖H(v∗)‖ = H∗.

25

This implies that v∗ belongs to Ω(ǫ), ǫ > 0; then, the matrixH ′(v∗) is invertible.
Consequently by the Theorem 6.7 in [79, p. 70] (see also Theorem 6.1 in [35]),
we deduce that H(v∗) = 0. This contradicts our assumptions that H∗ > 0.
Hence, the sequence {H(v(k))} must converge to zero.
Moreover, the limit point v∗ satisfies H(v∗) = 0 and (s̃∗, w̃∗) ≥ 0, i.e., v∗

satisfies the KKT conditions for the problem (1).
(ii) See part (c) of the proof of Theorem 5 in [10] (see also [32]). �

5.3 On the global convergence

In this subsection, we briefly make some remarks on cases of a global conver-
gence failure of the damped Newton interior point method. Obviously, when it
happens, we have that at least one of the sufficient conditions C1–C3 for the
convergence is not satisfied.
We will check some small examples.
Let us consider, for instance, the example in [93] where it is stressed that algo-
rithms which uses Newton direction could fail:

minx
x2 ≥ −a
x ≥ b

As pointed out in [33, Example 3.1], when the initial point is taken as x(0) = −3,

w̃(0) = e2 (a = −1, b = 1), the damped Newton interior point method generates
a sequence which is not convergent to the optimal solution x∗ = 1. In this case,
in [33], it has been observed that the sufficient condition on the boundedness of

the sequence of the inequalities’ multipliers {w̃(k)} is not satisfied.

Indeed, the values of w̃(k) increase and the values of s̃(k) become very small

with respect to (s̃(k)t
w̃(k))/p. This is a case where the sequence generated by

the damped Newton interior point iteration tends to a solution which does not
belong to the feasible region.
On the other hand, if we start with x(0) = 3, w̃(0) = e2, the sequence {w̃(k)} is
bounded and the algorithm converges to the solution.
Thus, an increasing of the values of the sequence {w̃(k)} is a detection that
the sequence of the solution could not converge and then, another choice of the
initial point is recommended.
Moreover, we observe that the sufficient condition (C4) in [36] of linear inde-
pendence of the gradients of the active constraints is violated here, either if we
start from a bad or a good initial point. Thus, the condition on the boundedness
of the inequalities’ multipliers is more general respect to the condition (C4) in
[36].
An example of large scale nonlinear programming problem for which the damped
Newton interior point method gives the same behaviour is still given in [33,
Example 3.2].
A way to compute a suitable starting point could be the one to execute some
steps of the gradient projection method (e.g. see [64, §11.4, p. 330]), before to

26

ν k x s rl λ2 λl s̃tw̃/2 ‖H(v)‖

0 - 3.0 1.0 1.0 1.0 1.0 1.0 10.58
1 - 0.69 1.38 0.63 1.0 · 10−5 1.31 0.41 2.3
2 0 1.58 0.90 0.12 1.0 · 10−5 1.11 6.7 · 10−2 0.76
- 1 1.46 0.95 0.34 0.26 0.22 0.16 0.33
- 2 1.16 0.19 0.11 0.31 0.25 4.3 · 10−2 0.17
- 3 1.05 3.8 · 10−2 3.3 · 10−2 0.34 0.26 1.1 · 10−2 6.3 · 10−2

- 4 1.01 7.6 · 10−3 8.0 · 10−3 0.36 0.27 2.4 · 10−3 1.6 · 10−2

- 5 1.00 1.5 · 10−3 1.7 · 10−3 0.36 0.27 5.0 · 10−4 3.5 · 10−3

- 6 1.00 1.5 · 10−4 1.7 · 10−4 0.37 0.27 5.1 · 10−5 3.6 · 10−4

Table 2: Polyalgorithm for Example 3.1 in [33]

start with the damped Newton interior point method.
In Table 2, we report the number of iterations and the values of the primal and
dual variables of the sequence generated by the polyalgorithm composed by the
gradient projection method, with Armijo backtracking procedure for the merit
function ‖H(v)‖2 and, by the damped Newton interior point method for the
Example 3.1 in [33].
The result shows that only two iterations ν of the gradient projection method
are necessary to enter in a good region11 for the damped Newton interior point
method.

Finally, we consider the Example 3 of nonlinear programs in [17]

min 1
3 (x− 1)3 + x

x ≥ 0

where it is stressed that Newton iteration with decrease of the merit function
‖H(v)‖2 fails, since the Newton direction becomes orthogonal to the gradient
of the merit function.
If we indicate ϑk the angle between the opposite of the direction of the damped
Newton interior point method and the gradient of the least squares merit func-
tion Υ(v) = ‖H(v)‖2, at the iteration k, in [43] is shown that,

cosϑk ≥
1− ηk

2K(H ′(v(k)))
(33)

where K(H ′(v(k))) = ‖H ′(v(k))‖ · ‖H ′(v(k))−1‖ indicates the condition number
of the Jacobian matrix at the point v(k) and ηk is the forcing term.

11We refer good region as the set of starting points for which the method generates a sequence
of point convergent to a solution. This is the definition of attraction basin in [79, p. 43].
For example, in the case of nonlinear systems, when the function satisfies a Lipschitz continu-
ous condition, the bound of the attraction basin for Newton method depends on the Lipschitz
constant ([79, p. 44]). When the function satisfies an affine invariant condition, see [26, p. 88]
and [43] for bounds of attraction basins of Newton and inexact Newton methods, respectively.
In this section, we do not develop an analogous analysis for nonlinear systems with restriction
on the sign of some variables such as the Karush–Kuhn–Tucker systems.

27

We report, here, the simple proof of (33). Indeed, by squaring (13) we obtain:

2(∆v(k))tH ′(v(k))tH(v(k)) + ‖H(v(k))‖2 + ‖H ′(v(k))∆v(k)‖2 ≤ η2
k‖H(v(k))‖2

Hence

∆v(k)t∇Υ(v(k)) = 2(∆v(k))tH ′(v(k))tH(v(k)) ≤ (η2
k − 1)‖H(v(k))‖2

But,

‖∆v(k)‖ = ‖H ′(v(k))−1
(

(H(v(k)) +H ′(v(k))∆v(k))−H(v(k))
)

‖

≤ ‖H ′(v(k))−1‖
(

‖H(v(k)) +H ′(v(k))∆v(k)‖+ ‖H(v(k))‖
)

≤ ‖H ′(v(k))−1‖(ηk + 1)‖H(v(k))‖

and
‖∇Υ(v(k))‖ = ‖2H ′(v(k))tH(v(k))‖ ≤ 2‖H ′(v(k))‖‖H(v(k))‖

Thus

cosϑk =
−∇Υ(v(k))t∆v(k)

‖∇Υ(v(k))‖‖∆v(k)‖

≥ 1− η2
k

2‖H ′(v(k))‖‖H ′(v(k))−1‖(1 + ηk)
=

1− ηk

2K(H ′(v(k)))

then, we have (33).

If, it happens that, the matrix H ′(v(k)) becomes nearly singular, then condition
C3 does not hold and then, the condition number might be not bounded since
the sequences {‖H ′(v(k))‖} and/or {‖H ′(v(k))−1‖} are not bounded. This is
the case of this example, as shown in Table 3. The starting point of the example
is x = 2, λl = 1 and rl = 1 and the used backtracking rule is the one in [28].
The results of tables 2 and 3 have been obtained by a Matlab code which solves
directly the inner linear system that occurs at each Newton iteration. The
forcing term ηk is equal to ηk = 1− αk(1 − σk).
In the following subsection, we consider an alternative explanation of the ap-
proaching of the Newton iteration to singular points.

5.4 On Newton’s iteration and singular points

In the analysis of the damped Newton interior point method, we point out some
remarks regarding the reasons of global convergence failures of Newton’s itera-
tion which can be explained by considering the differential equation associated
to the nonlinear problem.
Indeed, in order to extend the domain of convergence of iterative methods for
the solution of systems of nonlinear equations, many authors proposed methods
which associated a differential equation to the nonlinear system, and found

28

k x ‖H(v)‖ α 1 − η cos ϑ K(H′(v))
0 2 1.73205 0.80 0.48 0.76 2.88
1 1.30667 0.844158 5.3 · 10−7 3.2 · 10−7 2.7 · 10−4 9590.65
2 0.49322 0.825476 3.3 · 10−6 2.0 · 10−6 8.5 · 10−4 3082.29
3 0.49535 0.825476 3.1 · 10−5 1.8 · 10−5 2.0 · 10−3 1309.26
4 0.50103 0.825475 2.0 · 10−4 1.2 · 10−4 6.5 · 10−3 398.28
5 0.51249 0.825473 9.4 · 10−4 5.6 · 10−4 1.5 · 10−2 168.49
6 0.53582 0.825406 3.8 · 10−3 2.3 · 10−3 3.2 · 10−2 80.27
7 0.58411 0.825049 1.4 · 10−2 8.4 · 10−3 6.0 · 10−2 42.08
8 0.68787 0.823723 2.0 · 10−2 1.2 · 10−2 8.7 · 10−2 28.22
9 0.80922 0.821058 2.7 · 10−3 1.6 · 10−3 4.7 · 10−2 51.66
10 0.84640 0.817953 5.1 · 10−4 3.1 · 10−4 1.7 · 10−2 139.76
11 0.86634 0.817029 2.6 · 10−6 1.6 · 10−6 1.4 · 10−3 1713.55
12 0.86504 0.81698 3.1 · 10−8 1.8 · 10−8 1.3 · 10−4 18551.1
13 0.86488 0.81698 8.5 · 10−10 5.1 · 10−10 2.9 · 10−5 83680.8
14 0.86490 0.81698 1.3 · 10−10 7.9 · 10−11 8.9 · 10−6 2.69 · 105

15 0.86491 0.81698 8.7 · 10−13 5.2 · 10−13 9.4 · 10−7 2.56 · 106

Table 3: Newton interior point method for Example 3 in [17]

the roots of the nonlinear systems by integrating numerically the differential
equation (see e.g. [21], [48], [22], [98], [88], [100], [59], [60], [37]).
Let us consider the following Cauchy problem for nonlinear differential equa-
tions:

u̇(t) = −Φ(u(t))F (u(t)) 0 ≤ t <∞; u(0) = u(0) (34)

If we apply Euler’s method to the differential equation (34) with Φ(u(t)) =
F ′(u(t))−1 then we obtain the damped Newton method where the damping
parameter is the time step ∆t.
Thus, if we set Φ(u(t)) = F ′(u(t))−1, then the differential problem (34) de-
scribes the continuous Newton method; furthermore, if we set Φ(u(t)) = I or
Φ(u(t)) = F ′(u(t))t then we have the method of the most rapid slope (contin-
uous steepest descent method) or the continuous gradient method respectively.
Here I denotes the identity operator.
Continuous analogs of iterative methods can usually be obtained easier. If a
convergence theorem is proved for a continuous method, that is, for the Cauchy
problem for a differential equation, then, we can construct various finite differ-
ence schemes for the solution of this Cauchy problem. These difference schemes
give discrete methods for the solution of F (u) = 0. For instance, the method
of Euler and Runge–Kutta can be used. Applications and modifications of con-
tinuous methods have been and are deeply studied.
Let us consider the following nonlinear system

F (u) ≡
(

u1

10u1/(u1 + 0.1) + 2u2
2

)

=

(

0
0

)

(35)

This example has been firstly proposed by Powell in [78], where the author
proved that the Newton’s method, starting from the initial point u(0) = (3, 1)t,
does not converge to the unique solution u∗ = (0, 0)t, when the step length is
chosen as the local minimizer of the least squares function 1/2‖F (u)‖2.

29

Indeed, the iterative process leads to the point û = (1.8016, 0.0000)t, which is
neither a solution of the system (35) nor a stationary point of the least squares
merit function, as showed in [17]. Moreover, the vector F (û) does not belong
to the null space of the Jacobian matrix of F ,

F ′(u) =

(

1 0
1/(u1 + 0.1)2 4u2

)

computed in the points of the (u1, 0)t, where it is singular.
This behaviour of Newton’s iteration can be easily explained if we consider the
associated differential problem (34) with Φ(u(t)) = F ′(u(t))−1, that is

F ′(u(t))−1 =

(

1 0
−1/4u2(t)(u1(t) + 0.1)2 1/(4u2(t))

)

The system (34) for the problem (35) is given by

du1

dt
(t) = −u1(t)

du2

dt
(t) =

u1(t)

4u2(t)(u1(t) + 0.1)2
− 1

4u2(t)

(

10u1(t)

u1(t) + 0.1
+ 2u2(t)

2

)

By calculations, it yields to the equation

du2(t)

du1(t)
=

1

4u2(t)

(

− 1

(u1(t) + 0.1)2
+

10

u1(t) + 0.1
+

2u2(t)
2

u1(t)

)

whose solution, dependent on the initial point u(0) = (u1(0), u2(0))
t ≡ (u

(0)
1 , u

(0)
2)

t
,

is given by

u2(t) = ±

√

√

√

√

√u1(t)

− 5

u1(t) + 0.1
+

5

u
(0)
1 + 0.1

+
u

(0)
2

2

u
(0)
1

 (36)

In Figure 2, we indicate the solution curves (36) in the phase plane (u1, u2) (left
figure) and an enlargement of the phase plane where the circles indicates the
first three iterates of Newton’s method when the step length is chosen as local
minimizer of the least squares function (right figure).
We note that the Newton step ∆u(k) = −F ′(u(k))−1F (u(k)) is tangent to the
curve (36) at the curve point u(k).
A same behaviour of Newton’s iteration, we obtain when we use Armijo or
Eisenstat and Walker ([35]) backtracking strategies.
Indeed, we observe that, at the first iterate, the step is shortened by a the value
of the damping parameter approximately equal to 0.395 and this leads the next
iterate very close to the u1 axis, where the Jacobian matrix is singular.
This yields a Newton step almost orthogonal to the axis and that the first local
minimizer of the merit function along this direction is very close to the previous
iterate, such that the step length is of order 10−3.

30

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Figure 2: Powell example: solution curves and first three Newton’s iterates

At the next iterate the situation is the same, and the sequence sticks to one of
the solution curves and stagnates in a neighborhood of the point û.
This behaviour can be explained following [47], by defining the set of the singular
points

Ω = {u ∈ R
n : F ′(u) is singular}

and a Lyapunov’s function V (u) which is a continuous and differentiable func-
tion, always positive, except in Ω where it is equal to zero. For instance, we can
set

V (u) =
1

2
(detF ′(u))

2

Here detF ′(u) denotes the determinant of the Jacobian matrix F ′(u).
If we have V̇ (u) < 0 in some domain containing Ω, then the function V (u) is
decreasing, with respect to the variable t, on the solution curves of the differen-
tial equation. Thus, the function V (u), with increasing values of t, will be able
to become arbitrarily small on u(t), that is to say that, the distance between
u(t) and Ω will become arbitrarily small. Thus the solutions of the differential
equation, which are defined both at the left and at the right of Ω, are directed,
from the right or from the left, towards the points of Ω. These points of Ω are
called end points ([53, p. 61]). This is the case of the Powell example.
Indeed, we can see that in the example, we have

V̇ (u) = ∇uV (u)t(
du1

dt
,
du2

dt
)t = −4

10u1(t)
2 + 2u2(t)

2(u1(t) + 0.1)2

(u1(t) + 0.1)2
≤ 0

If V̇ (u) > 0 in some domain containing Ω, then the function V (u), with in-
creasing values of t, will be arbitrarily large on u(t). Thus the solutions of the
differential equation, which are defined both at the left and at the right of Ω,
are diverging from the points of Ω. These points of Ω are called initial points
([53, p. 61]).
Now we consider the example in [47].

31

The function F (u) is defined as

F (u) =

(

u1 + u2 − 5
u1u2 − 4

)

The inverse of the Jacobian of F (u) is given by

F ′(u)−1 =
1

u1 − u2

(

u1 −1
−u2 1

)

and the solution of F (u) = 0 are u∗ = (1, 4)t and ũ∗ = (4, 1)t.
By proceeding as before, the associated differential system (34), with initial

conditions u(0) = (u1(0), u2(0))
t ≡ (u

(0)
1 , u

(0)
2)

t
, is:

du1

dt
(t) = − 1

u1(t)− u2(t)

(

u1(t)
2 − 5u1(t) + 4

)

du2

dt
(t) = − 1

u1(t)− u2(t)

(

−u2(t)
2 + 5u2(t)− 4

)

In the phase plane we have

du2(t)

du1(t)
= − (u2(t)− 4)(u2(t)− 1)

(u1(t)− 4)(u1(t)− 1)

Set

K =
u

(0)
1 − 1

u
(0)
1 − 4

u
(0)
2 − 1

u
(0)
2 − 4

the solutions of the differential system are a continuum of hyperbolas

(1 −K)u1(t)u2(t) + (4K − 1)(u1(t) + u2(t)) + (1− 16K) = 0

For K = 0 and K = ∞, the hyperbolas degenerates in two pairs of linear
functions (u1(t)− 1)(u2(t)− 1) = 0 and (u1(t)− 4)(u2(t)− 4) = 0, respectively.
In Figure 3, the solution curves in the phase plane are plotted and the arrows
indicates the direction of the trajectories for increasing values of t.
In this example, the set Ω of singular points is formed by the line u1(t) = u2(t)
which is also plotted in Figure 3.
Defining the Lyapunov’s function as before, and let A and B be the points of
Ω, (1, 1) and (4, 4) respectively; we can deduce that all the points of Ω included
between A and B (except A and B) are initial points, while the ones outside the
interval [A,B] are end points.
The points A and B are singular points for which the system

F ′(u)∆u = −F (u)

where F ′(u) and F (u) are computed in A or in B, has solution.
In this case, the derivative of V (u) on the solutions of the differential equation
has nonconstant sign when it crosses Ω and therefore the paths which approach

32

−4 −3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Figure 3: Solution curves and singular points of the example in [47]

from the left, can go away from it on the right. That was to be expected because
we can extend the solution in Ω and therefore there must be continuity in the
direction of the paths when Ω is crossed (see [47]).
We call A and B cross points.
We remark, that in the points close to Ω, the differential system becomes stiff12,
and then it is difficult to follow the trajectories of the solutions by Euler’s
method, that is by Newton’s method.
Moreover, we observe that if we follow the trajectories of the solutions in the
points of the region defined by

S = {(u1, u2) : u1 ≥ 4, u2 ≥ 4} ∪ {(u1, u2) : u1 ≤ 1, u2 ≤ 1}

it is not possible to reach any of the solutions u∗ or ũ∗.
We also observe that, when we reach end points of Ω following a trajectory of
the solution of the differential system, it is not possible to go away from Ω. To
avoid this drawback, Branin, in [13] (see also [85]), has suggested to change the
differential system (34), where Φ(u(t)) = F ′(u(t))−1, with

u̇(t) = F ′(u(t))−1F (u(t)) 0 ≤ t <∞; u(0) = u(0) (37)

In this way it is possible to go away from Ω because end points become initial
points. By the way, it is necessary to keep in mind that other points can become

12See e.g. [61, p. 228] for definition of stiffness.

33

end points for the system (37), but they can be extraneous to the differential
system (34).

6 Numerical experiments

In order to evaluate the effectiveness of the damped Newton interior point
method with different inner solvers, Fortran 90 codes, implementing the method,
have been carried out on a workstation HP zx6000 with an Intel Itanium2 pro-
cessor 1.3 GHz with 2Gb of RAM and they have been compiled with a “+O3”
optimization level of the HP compiler.
We consider a set of nonlinear programming test problems arising from the
discretization with finite difference formulae of boundary and distributed elliptic
control problems ([67], [68], [71], see also [69]).
In these optimal control problems the functional is quadratic, the partial dif-
ferential system is given by a weakly nonlinear elliptic equation with Dirichlet
and/or Neumann conditions on the unit square (0, 1)× (0, 1) and the state and
the control variables are subject to box constraints. It yields to a nonlinear
programming problem with quadratic functional, nonlinear equality constraints
and box constraints. The Hessian of the objective function and the Jacobian of
the constraints are large and sparse.
Furthermore, the matrix ∇g2(x)S−1Λ2∇g2(x)t +P t

l R
−1
l ΛlPl + P t

uR
−1
u ΛuPu is

diagonal and the computation of this matrix in the block A of (21) is inexpensive.
In Table 4, we report the references of the test problems shown in the tables.
The symbol N denotes the number of grid points of the discretization along each
axis. We remark that the size of any problem depends on the value of N.
In tables 5 and 6, we report the number of primal variables n, the number of
equality neq constraints, the numbers nl and nu of variables bounded below
and above, the number of nonzero entries nnzjac and nnzhess of the matrices B
and Q respectively.
In the experiments, we set the starting point of the damped Newton interior
point method as follows: the initial values for the multipliers and for the slack

variables are set to 1 while the value x
(0)
i , i = 1, ..., n are set equal to zero if

the i–th component xi is a free variable, equal to (ui + li)/2 if xi is bounded
above and below, and equal to ui − 1 or li + 1 if xi is bounded above or below
respectively. Only for the test problem P2-6, the first n/2 initial values for x(0)

are set equal to 6 and the last n/2 initial values are set equal to 1.8, as suggested
by Mittelmann in [71]. Moreover, for the codes employing an iterative method
as inner solver, the initial value of the inner iterations has been fixed equal to
the null vector.
All the results in this section have been obtained with the choice µk = µ

(1)
k =

s̃(k)t
w̃(k)/p.

Furthermore, the maximum value of inner iterations has been set equal to 15
for the IP–MM code, to neq for IP–PCG1 and to n+ neq for IP–PCG2.
We set the backtracking parameters θ = 0.5, β = 10−4 while the forcing term

34

0 5 10 15 20 25

0

5

10

15

20

25

nz = 229
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 464
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 360

matrix A+ χBBt matrix BtB preconditioner M̄

Figure 4: Sparsity pattern of the matrices factorized by the codes

parameters σk, δk are chosen as in the following: set

δmax =
0.8

1 + 0.5 τ2

√
2

min(1,τ2)

; σmax =
δmax0.5τ2

√
2

min(1, τ2)
· 1.1

we have for the initial value δ0 = min(δmax, 0.8·‖H(v(0))‖) and for the iterations
k, k > 1, we have

δk = min

(

δmax,max

(

5.0 · 10−5, ‖H(v(k))‖, 0.5 · ‖H1(v
(k))‖

‖H1(v(k−1))‖

))

The forcing term σk is chosen of the same order of δk as

σk = min

(

σmax,max

(

1.1 · 0.5τ2δk
√

2

min(1, τ2)
, 0.01‖H(v(k))‖

))

In the three inner solvers, an explicit computation of the matrices A + χBBt,
BtĀ−1B and of the preconditioner ¯̄M is needed for the factorization. As ex-
plained in Section 4, for the IP–MM and IP–PCG1 codes the structure of ma-
trices A + χBBt and BtĀ−1B respectively, is computed with a preprocessing
routine. This preprocess is not needed for the code IP–PCG2.
In Figure 4, we report, for the test problem P2-6 with N= 5, the sparsity pattern
of the matricesA+χBBt, BtB and M̄ that have to be factorized for the IP–MM,
IP–PCG1 and IP–PCG2 codes respectively.
In Table 7, the number of nonzero entries of one triangular part (including the
diagonal elements) of the matrices A + χBBt, BtĀ−1B and M̄ is reported in
the columns “nnz-mat1”, “nnz-mat2” and “nnz-mat3” respectively, while the
number of nonzero entries of the Cholesky factor is listed in the columns “L-
mat1”, “L-mat2” and “L-mat3”.

35

From Table 7, it can be observed that the number of nonzero entries in the
Cholesky factor is quite similar in the three cases: the matrices A+ χBBt and
BtĀ−1B have a density at most equal to 0.1%, while the ratio of the nonzero
entries of the Cholesky factor and of the lower triangular part of A + χBBt is
at most equal to 15.3.
In tables 8 and 9, we report the minimum values of the objective functional in
the optimal control problems obtained by IP–PCG2; the difference with respect
to the minimum values obtained with the other solvers are not significant, they
differs of a factor of 10−8 and they are according to the values reported in [67],
[68], [71].
In tables 10, 11 and 12 we evaluate the effectiveness of the different versions
of the code implementing the damped Newton interior point method with the
iterative inner solvers with ǫexit = 10−8, while in Table 13 there are the results
related to the code with the direct inner solver MA27. The method is referred
as IP–MA27.
The number of outer iterations (“it”), the total number of inner iterations
(“inn”) and the execution time in seconds (“time”) are reported.
In IP–MM and IP–PCG1 codes the CPU time is divided in the time required by
the preprocessing routine in the computation of the matrices structure (“prep”)
and in the time needed for the the computation of the iterations (“iter”).
We consider that an algorithm fails when the backtracking procedure produces
a damping parameter smaller than 10−8 (we use the symbol “*”). The symbol
“m” indicates a memory failure.
From the numerical experiments, we can draw the following remarks:

• the number of inner iterations per outer iteration is very small for all
the three inner solvers; we observe that in the experiments sometimes it
happens that the total number of inner iterations is less than the number of
outer iterations. This can happen in any code that uses an iterative inner
solver with an adaptive stopping rule. Indeed, for some values of v(0),
it can happen that the inner stopping rule (16) with r(k) as in (15) and
k = 0, is satisfied without the necessity of inner iterations, since ‖H(v(0)‖
is large. Nevertheless, even if ∆x and ∆λ1 are unchanged, ∆s̃ and ∆w̃

change and then, in the subsequent iteration, ‖H(v)‖ decreases until to
cause the necessity of iterations of the inner solver. In other words, for
some values of v(0), the iterate of the interior point method moves only
along the directions of s̃ and w̃; this can arise for some initial iterations;

• the most expensive computational task for the codes IP–MM and IP–
PCG1 is the preprocessing phase; we can also notice that the preprocessing
time of IP–PCG1 code is smaller than the one of IP–MM code, since the
size of the matrix to preprocess is neq respect to the size of the matrix
to preprocess for IP–MM which is n and neq < n. This gain in terms
of time is more significant when the test problem arises from distributed
control problems, since in such cases, the number of equality constraints is
a half of the number of the variables. On the other hand, beside a “heavy”

36

preprocessing phase, the time for the computation of the iterations is very
fast. This feature could be exploited when different problems with the
same structure or the same problem with different parameters have to be
solved in sequence;

• in terms of total time, the most effective code is the IP–PCG2, which does
not require the preprocessing phase and needs almost the same number
of outer and inner iterations than the version IP–PCG1. Thus, since at
each iteration of the conjugate gradient, the IP–PCG2 code has to solve a
system with the matrix ¯̄M of order n+ neq while the IP–PCG1 code has
to solve systems of order neq with Ng and Peyton routine, we point out
the efficiency of the BLKFCLT routine;

• another feature of IP–PCG2 code is that it requires a relatively little
memory storage; this allows us to solve very large scale problems up to
one million primal variables.

The results of Tables 14, 15, 16, 17, 18 show the performances of IP–PCG2 code
(ǫexit = 10−8) and of the direct and iterative versions of KNITRO (version
4.0.2), with different values of the tolerance parameter (“opttol”). We report
the computed minimum f(v(it)), the value of ‖H(v(it))‖, the execution time in
seconds (“time”), the number of outer iterations (“it”). For IP–PCG2” code
and the iterative version of KNITRO we also report the total number of inner
iterations (“inn”).
The notation 1e-6 denotes 10−6. For these experiments, IP–PCG2 use the same
input AMPL models of the discretized PDE problems as KNITRO. The primal
variables are initialized the same way as they are in the AMPL models. Then
the execution time and the number of iterations of IP-PCG2 are different with
respect those reported in tables 10, 11 and 12.
This comparison highlights the good stability and efficiency of IP–PCG2 method
on this kind of test problems for large scale problems.
Finally, we report in Table 19 the results on the distributed control problem
P2-7 of the IP–PCG2 algorithm with the nonmonotone choices for the additive
inner stopping rule and for the backtracking rule, as seen in subsection 4.2;
different values of degree of nonmonotonicity M are examined. Obviously, for
M = 1, we have the monotone algorithm. From Table 19, we observe that an
improvement of efficiency of the method can be obtained by using M > 1, for
example, in this case M = 4.

Acknowledgements. The authors are very grateful to Hans Mittelmann
for fruitful discussions and for the results of Table 1.

References

[1] Apostol T.M.; Mathematical Analysis, Second Edition, Addison–Wesley
Publ. Reading MA, 1974.

37

Test problems References
P1-1 Example 5.5 in [67]
P1-2 Example 5.6 in [67]
P1-3 Example 5.7 in [67]
P1-4 Example 5.8 in [67]
P1-5 Example 5.1 in [67]
P1-6 Example 5.2 in [67]
P1-7 Example 5.3 in [67]
P1-8 Example 5.4 in [67]
P1-9 Example 4.1 in [71] with α = 0.005
P1-10 Example 4.1 in [71] with α = 0
P2-1 Example 1 in [68]
P2-2 Example 2 in [68]
P2-3 Example 3 in [68]
P2-4 Example 4 in [68]
P2-5 Example 5 in [68]
P2-6 Example 4.2 in [71] with a(x) = 7 + 4 sin(2πx1x2),

M = 1, K = 0.8, b = 1, u1 = 1.7, u2 = 2, ψ(x) = 7.1
P2-7 Example 4.2 in [71] with a(x) = 7 + 4 sin(2πx1x2),

M = 0, K = 1, b = 1, u1 = 2, u2 = 6, ψ(x) = 4.8

Table 4: Description of the test problems

[2] Altman A. , Gondzio J.; Regularized symmetric indefinite systems in in-
terior point methods for linear and quadratic optimization, Optim. Meth.
Software 11–12 (1999), 275–302.

[3] Argáez M., Tapia R.A.; On the global convergence of a modified aug-
mented lagrangian linesearch interior–point Newton method for nonlinear
programming, J. Optim. Theory Appl. 114 (2002), 1–25.

[4] Argáez M., Tapia R., Velázquez L.; Numerical comparisons of path–
following strategies for a primal–dual interior–point method for nonlinear
programming, J. Optim. Theory Appl. 114 (2002), 255–272.

[5] Armand P., Gilbert J.C., Jan–Jégou S.; A feasible BFGS interior point
algorithm for solving convex minimization problems, SIAM J. Optim. 11
(2000), 199–222.

[6] Armijo L.; Minimization of functions having Lipschitz–continuous first
partial derivatives, Pacific J. Math. 16 (1966), 1–3.

[7] Benson H.Y., Shanno D.F., Vanderbei R.J.; Interior–point methods
for nonconvex nonlinear programming: Jamming and numerical testing,
Math. Program. 99 (2004), 35–48.

38

N n neq nu nl nnzjac nnzhess

P1-1 99 10593 10197 10593 39204 50193 10593
199 41193 40397 41193 158404 200393 41193
299 91793 90597 91793 357604 450593 91793
399 162393 160797 162393 636804 800793 162393
499 252993 250997 252993 996004 1250993 252993
599 363593 361197 363593 1435204 1801193 363593

P1-2 99 10593 10197 10593 39204 50193 10197
199 41193 40397 41193 158404 200393 40397
299 91793 90597 91793 357604 450593 90597
399 162393 160797 162393 636804 800793 160797
499 252993 250997 252993 996004 1250993 250997
599 363593 361197 363593 1435204 1801193 361197

P1-3 99 10593 10197 10593 39204 50193 10593
199 41193 40397 41193 158404 200393 41193
299 91793 90597 91793 357604 450593 91793
399 162393 160797 162393 636804 800793 162393
499 252993 250997 252993 996004 1250993 252993
599 363593 361197 363593 1435204 1801193 363593

P1-4 99 10593 10197 10593 39204 50193 9801
199 41193 40397 41193 158404 200393 39601
299 91793 90597 91793 357604 450593 89401
399 162393 160797 162393 636804 800793 159201
499 252993 250997 252993 996004 1250993 249001
599 363593 361197 363593 1435204 1801193 358801

P1-5 99 10197 9801 10197 396 49005 10197
and 199 40397 39601 40397 796 198005 40397
P1-7 299 90597 89401 90597 1196 447005 90597

399 160797 159201 160797 1596 796005 160797
499 250997 249001 250997 1996 1245005 250997
599 361197 358801 361197 2396 1794005 361197

P1-6 99 10197 9801 10197 396 49005 9801
and 199 40397 39601 40397 796 198005 39601
P1-8 299 90597 89401 90597 1196 447005 89401

399 160797 159201 160797 1596 796005 159201
499 250997 249001 250997 1996 1245005 249001
599 361197 358801 361197 2396 1794005 358801

P1-9 119 14637 14518 14280 14637 71519 3840
179 32757 32578 32220 32757 161279 8460
279 78957 78678 78120 78957 390879 20160
379 145157 144778 144020 145157 720479 36870
479 231357 230878 229920 231357 1150079 58560
579 337557 336978 335820 337557 1679679 85260

P1-10 119 14637 14518 14280 14637 71519 3721
179 32757 32578 32220 32757 161279 8281
279 78957 78678 78120 78957 390879 19881
379 145157 144778 144020 145157 720479 36491
479 231357 230878 229920 231357 1150079 58081
579 337557 336978 335820 337557 1679679 84681

Table 5: Description of the test problems: boundary control problems

39

N n neq nu nl nnzjac nnzhess

P2-1 99 19602 9801 19602 9801 59202 19602
199 79202 39601 79202 39601 238402 79202
299 178802 89401 178802 89401 537602 178802
399 318402 159201 318402 159201 956802 318402
499 498002 249001 498002 249001 1496002 498002

P2-2 99 19602 9801 19602 9801 59202 9801
199 79202 39601 79202 39601 238402 39601
299 178802 89401 178802 89401 537602 89401
399 318402 159201 318402 159201 956802 159201
499 498002 249001 498002 249001 1496002 249001

P2-3 99 19998 10197 19602 9801 59598 19602
and 199 79998 40397 79202 39601 239198 79202
P2-4 299 179998 90597 178802 89401 538798 178802

399 319998 160797 318402 159201 958398 318402
499 499998 250997 498002 249001 1497998 498002

P2-5 99 19998 10197 19602 9801 59598 10197
199 79998 40397 79202 39601 239198 40397
299 179998 90597 178802 89401 538798 90597
399 319998 160797 318402 159201 958398 160797
499 499998 250997 498002 249001 1497998 250997

P2-6 99 19602 9801 19602 9801 58410 39204
199 79202 39601 79202 39601 236810 158404
299 178802 89401 178802 89401 535210 357604
399 318402 159201 318402 159201 953610 636804
499 498002 249001 498002 249001 1492010 996004

P2-7 99 19602 9801 19602 9801 58410 29403
199 79202 39601 79202 39601 236810 118803
299 178802 89401 178802 89401 535210 268203
399 318402 159201 318402 159201 953610 477603
499 498002 249001 498002 249001 1492010 747003

Table 6: Description of the test problems: distributed control problems

40

N nnz-mat1 L-mat1 nnz-mat2 L-mat2 nnz-mat3 L-mat3

P1-1,P1-2, 99 70783 622759 69991 621571 60786 718637
P1-3,P1-4 199 281583 3181444 279195 3179056 241586 3416032

299 632383 8374469 628795 8370881 542386 9084296
399 1123183 16252152 1118395 16247364 9631186 20102932
499 1753983 26855490 1747995 26849502 1503986 28784753
599 2524783 41135305 2517595 41128117 2164786 43488232

P1-5,P1-6, 99 69595 621571 67619 619595 59202 716261
P1-7,P1-8 199 279195 3179056 275219 3175080 238401 3411256

299 628795 8370881 622819 8364905 537602 9011520
399 1118395 16247364 1110419 16239388 956802 20093356
499 1747995 26849502 1738019 26839526 1496002 28772777
599 2517595 41128117 2505619 41116141 2155202 43473654

P1-9,P1-10 119 100315 945546 99720 944951 86156 1029560
179 226075 2541572 225180 2540677 194036 2733190
279 547675 7167732 546280 7166337 469836 8619291
379 1009275 14501957 1007380 14500062 865636 15396152
479 1610875 24901311 1608480 24898916 1381436 26203761
579 2352475 37810473 2349580 37807578 2017236 48288922

P2-1,P2-2, 99 126029 715465 67619 619595 78012 735071
P2-3 199 512029 3409660 275219 3175080 316012 3488866

299 1158029 8900195 622819 8364905 714012 9253530
399 2064029 20090160 1110419 16239388 1272012 20405866
499 3230029 28768781 1738019 26839526 1990012 29266787

P2-4,P2-5 99 128401 717837 69595 621571 79596 737447
199 516801 3414432 517993 3179056 319196 3493642
299 1165201 8907367 1166993 8370881 718796 9260706
399 2073601 20099732 2075994 16247364 1278396 20418142
499 3242001 28780753 3244994 26849502 3244994 29278763

P2-6,P2-7 99 72816 715465 67619 619595 78012 735071
199 295620 3409660 510837 3175080 316012 3488866
299 1158029 8900195 622819 8364905 714012 9079001
399 2064029 20090160 1110419 16239388 1272012 20408566
499 3230029 28768781 1738019 26839526 1990012 29266787

Table 7: Nonzero entries of the matrices and of the Cholesky factors

41

Boundary control problems

N minimum N minimum

P1-1 99 0.55224625 P1-6 99 0.09669507
199 0.55436881 199 0.10044221
299 0.55507372 299 0.10170115
399 0.55542568 399 0.10233242
499 0.55580371 499 0.10271175
599 0.55577731 599 0.10296487

P1-2 99 0.01507867 P1-7 99 0.32100965
199 0.01560172 199 0.32812152
299 0.01577842 299 0.33050688
399 0.01586721 399 0.33170235
499 0.01592062 499 0.33242047
599 0.01595628 599 0.33289956

P1-3 99 0.26416255 P1-8 99 0.24917848
199 0.26728343 199 0.25587655
299 0.26832628 299 0.25812464
399 0.26884799 399 0.25925143
499 0.26916120 499 0.25992872
599 0.26937006 599 0.26038061

P1-4 99 0.16553111 P1-9 119 0.25908196
199 0.16778056 179 0.25305430
299 0.16854245 279 0.24894250
399 0.16892441 379 0.24705220
499 0.16915379 479 0.24596630
599 0.16930712 579 0.24526176

P1-5 99 0.19651967 P1-10 119 0.15741541
199 0.20077162 179 0.15128350
299 0.20219539 279 0.14694570
399 0.20290856 379 0.14492090
499 0.20333682 479 0.14375680
599 0.20362247 579 0.14299524

Table 8: Minimum values of the objective functional: boundary control prob-
lems

42

Distributed control problems
N minimum N minimum

P2-1 99 0.06216164 P2-5 99 0.05266390
199 0.06442591 199 0.05293239
299 0.06519262 299 0.05302628
399 0.06557820 399 0.05307458
499 0.06581034 499 0.05310603

P2-2 99 0.05644747 P2-6 99 -6.57642757
199 0.05869688 199 -6.62009226
299 0.05946010 299 -6.63464408
399 0.05984417 399 -6.64192346
499 0.06007572 499 -6.64629219

P2-3 99 0.11026306 P2-7 99 -18.73618438
199 0.11026872 199 -18.86331163
299 0.11026969 299 -18.90575104
399 0.11027035 399 -18.92698093
499 0.11027047 499 -18.93972227

P2-4 99 0.07806386
199 0.07842594
299 0.07854995
399 0.07861255
499 0.07865054

Table 9: Minimum values of the objective functional: distributed control prob-
lems

43

IP–MM IP–PCG1 IP–PCG2
N it(inn) prep+iter time it(inn) time(prep+iter) time it(inn) time

P1-1 99 29(32) 2.22+2.03 4.25 37(30) 2.21+2.46 4.67 37(72) 5.24
199 54(59) 36.38+22.87 59.25 45(37) 35.81+18.31 54.12 45(95) 38.9
299 181(186) 206.35 +246.8 453.15 52(47) 197.29+68.09 256.38 52(116) 156.49
399 327(341) 833.79+961.08 1794.92 58(53) 758.23+174.82 933.05 58(137) 493.07
499 501(527) 1933.8+2768.7 4702.5 63(59) 1635.64+341.65 1977.37 63(158) 845.76
599 * * * 66(62) 1902.21+701.21 2603.55 66(181) 1377.61

P1-2 99 34(34) 2.2+2.3 4.6 35(39) 2.3+2.4 4.7 35(37) 4.5
199 40(40) 37.8+17.3 55.1 41(45) 37.8+17.3 55.1 41(41) 32.6
299 55(56) 172.8+73.5 246.3 51(55) 201.8+68.13 269.9 50(52) 140.3
399 143(144) 558.1+420.8 979 58(64) 655.9+171.6 827.5 59(60) 441.7
499 197(198) 1418.3+1076.1 2494.4 66(76) 1621.4+364+9 1986.4 70(73) 829.1
599 242(243) 2997.4+2367.5 5364.9 74(87) 3456.5+714.5 4171.1 79(89) 1560.2

P1-3 99 21(23) 3.02+1.46 4.49 29(36) 2.22+2.05 4.28 28(79) 4.31
199 26(27) 47.83+10.87 58.71 33(42) 45.87+14.46 60.35 33(91) 30.02
299 39(45) 162.15+52.88 215.03 36(47) 194.79+49.7 243.52 37(109) 115.84
399 36(39) 831.0+105.29 936.34 39(54) 617.47+117.91 735.42 38(120) 312.78
499 65(87) 2062.11+360.03 2422.22 42(55) 1522.11+232.93 1755.12 41(146) 535.14
599 * * * 44(60) 3928.54+427.12 3928.54 43(159) 925.84

P1-4 99 31(31) 2.2+2.1 4.3 33(42) 2.3+2.3 4.6 31(44) 4.2
199 38(98) 34.5+18.9 53.5 40(51) 36.6+17.2 53.8 38(59) 31.5
299 41(58) 172.7+56.3 228.9 45(60) 189.9+61.3 251.3 40(59) 114.7
399 43(45) 560.3+125.3 685.7 49(66) 603.6+147.2 750.8 45(67) 341.7
499 * * * 51(67) 1499.3+283.7 1783.1 50(76) 601.7
599 * * * 69(82) 3621.0+662.8 4284 82(153) 1660.4

P1-5 99 28(28) 2.1+1.9 4 31(31) 2.1+2.1 4.2 28(34) 3.6
199 33(33) 33.8+13.6 47.4 37(37) 35.7+15.2 50.9 32(42) 26
299 40(55) 169.0+54.8 223.8 41(41) 194.9+53.9 248.8 36(50) 99.6
399 45(75) 548.0+137.4 685.4 44(45) 751.0+128.1 879.1 39(62) 298.3
499 49(79) 1380.6+275.1 1655.8 46(47) 1583.6+248.5 1832.1 43(73) 520.2
599 51(126) 2978.9+534.4 3513.3 48(50) 3336.1+456.7 3792.9 46(77) 925.3

Table 10: Numerical results: boundary control problems P1-1–P1-5

44

IP–MM IP–PCG1 IP–PCG2

N it(inn) prep+iter time it(inn) prep+iter time it(inn) time

P1-6 99 30(30) 2.1+2.0 4.1 35(37) 2.1+2.4 4.5 30(39) 3.9
199 33(33) 33.2+13.6 46.7 37(41) 35.4+15.4 50.8 32(41) 25.8
299 40(55) 168.3+54.3 222.6 41(47) 231.6+55.8 287.4 37(54) 102.8
399 46(61) 546.9+136.7 683.7 44(50) 634.8+129.4 764.2 40(65) 306.1
499 50(95) 1377.3+288.2 1665.5 47(56) 1587.4+258.6 1846.1 44(75) 533.5
599 51(126) 2971.5+532.8 3504.5 49(59) 3290.6+470.1 3760.8 46(77) 925.2

P1-7 99 39(39) 2.1+2.7 4.8 42(42) 2.1+2.8 4.9 40(54) 5.2
199 46(46) 33.2+19.0 52.1 46(46) 35.6+18.9 54.5 45(72) 37.4
299 64(99) 168.4+89.2 257.6 52(52) 193.6+69.5 263.1 49(87) 138.7
399 96(141) 549.3+288.5 837.8 55(58) 636.0+160.5 796.5 53(95) 407.9
499 127(169) 1387.3+703.4 2090.7 57(64) 1583.1+311.9 1895.1 52(94) 630
599 159(202) 3020.9+1548.1 4569.1 59(69) 3309.4+563.6 3873.1 52(98) 1051.9

P1-8 99 40(40) 2.1+2.7 4.8 43(43) 2.1+2.9 5 41(52) 5.3
199 48(48) 33.2+20.5 53.7 50(50) 35.4+20.6 56 47(74) 38.8
299 66(106) 168.9+93.1 292 55(55) 195.3+72.8 268.2 52(90) 146.8
399 101(156) 546.1+304.3 851.4 60(63) 637.0+174.6 808.7 58(105) 447.2
499 133(195) 1404.1+745.6 2149.8 62(70) 1589.4+337.4 1926.9 57(105) 693.1
599 167(364) 3033+1725.1 4758.1 65(76) 3595.4+622.9 4218.4 58(112) 1175.5

P1-9 119 41(41) 4.4+4.3 8.7 45(47) 4.5+4.8 9.3 48(74) 9.6
179 75(87) 17.1+25.7 42.8 51(56) 23.2+16.9 40.1 46(73) 30.1
279 63(63) 133.1+69.4 202.5 57(63) 140.7+62.4 203.4 51(90) 136.2
379 82(97) 448.9+212.5 661.4 62(78) 482.3+161.9 644.2 55(112) 302.1
479 95(185) 1226.6+523.1 1749.7 65(84) 1255.2+341.1 1596.3 58(129) 638.5
579 110(275) 2562+997.8 3560 67(96) 2658.7+570.9 3229.6 61(149) 1545.1

P1-10 119 44(44) 4.4+4.6 9 49(52) 4.5+5.2 9.8 44(70) 8.9
179 56(56) 22.4+18.4 40.8 59(65) 23.2+19.5 42.7 55(89) 36
279 72(87) 129.1+80.1 209.2 67(79) 140.9+74.3 215.2 63(117) 169.2
379 101(251) 452.9+290.5 743.5 77(100) 483.6+204.9 688.6 74(165) 408.6
479 105(360) 1202.8+629.1 1832 81(113) 1235.4+429.9 1665.3 78(190) 864.7
579 119(374) 2558.6+1123.8 3682.5 86(130) 2660.6+738.9 2299.6 83(224) 2118.1

Table 11: Numerical results: boundary control problems P1-6–P1-10

45

IP–MM IP–PCG1 IP–PCG2
N it(inn) prep+iter time it(inn) prep+iter time it(inn) time

P2-1 99 23(23) 4.8+2.2 7.1 26(25) 2.5+1.9 4.36 24(23) 3.3
199 28(193) 123.1+26.4 149.5 28(26) 41.5+12.1 53.7 27(26) 22.6
299 * * * 30(29) 218.3+41.2 259.5 28(27) 81.2
399 * * * 31(56) 706.4+100.9 807.4 29(28) 222
499 * * * 32(69) 2166.8+196.3 2363.2 29(28) 351.8

P2-2 99 28(28) 4.8+2.6 7.5 31(45) 2.5+2.4 4.9 29(28) 3.9
199 31(166) 78.8+25.8 104.6 33(53) 41.7+15.7 57.4 30(29) 24.74
299 * * * 34(64) 217.7+51.5 269.2 32(31) 92.8
399 * * * 36(95) 704.9+125.7 830.7 33(32) 252.3
499 * * * 37(132) 1741.9+252.1 1994.1 33(32) 399.1

P2-3 99 25(25) 4.8+2.4 7.2 31(26) 2.5+2.2 4.7 25(22) 3.4
199 31(196) 119.0+27.9 147 33(27) 41.5+14.5 55.7 26(23) 21.7
299 43(403) 694.4+131.1 825.6 34(28) 218.4+46.1 264.5 28(25) 80.8
399 89(1184) 2339.9+758.3 3098.2 37(58) 869.4+119.4 988.9 30(27) 229.1
499 * * * 36(61) 1742.25+212.91 1955.3 29(26) 350.23

P2-4 99 24(54) 5.0+2.9 7.9 20(16) 3.08+1.45 4.53 20(38) 3.11
199 27(237) 80.6+29.4 109.9 21(17) 40.82+9.11 49.94 21(37) 19.02
299 35(335) 424.2+108.3 532.5 22(18) 227.65+30.02 257.67 22(39) 68.21
399 36(351) 1480.1+256.3 1736.5 23(19) 752.20+69.30 821.5 23(42) 184.77
499 * * * 23(19) 2119.59+127.88 2247.47 23(42) 290.58

P2-5 99 48(63) 5.0+4.8 9.9 56(152) 2.6+5.2 7.8 47(43) 6.4
199 68(383) 80.7+58.2 138.9 78(712) 52.7+74.7 127.4 65(61) 53.9
299 104(1439) 421.5+403.4 825.4 91(1356) 226.9+320.7 547.7 80(77) 230.9
399 155(2255) 1489.0+1376.1 2865.2 107(1436) 718.6+704.4 1423.1 93(92) 709.7
499 i i i 116(3125) 1798.6+2040.4 3839.1 104(104) 1256

P2-6 99 28(29) 5.77+2.7 8.48 35(70) 2.46+3.03 5.5 34(122) 6.28
199 48(49) 118.03+25.11 143.17 51(88) 41.25+25.19 66.44 51(178) 53.2
299 81(111) 686.30+131.49 817.99 56(97) 223.61+85.79 309.41 54(177) 173.82
399 102(153) 2292.11+477.5 2769.7 71(130) 727.06+239.67 966.73 64(221) 553.78
499 101(166) 5496.66+699.3 6196.11 62(107) 1849.82+361.12 2210.95 61(209) 823.08

P2-7 99 51(51) 4.8+4.9 9.7 51(90) 2.5+4.2 6.7 35(70) 5.5
199 62(107) 118.7+35.6 154.3 63(284) 41.4+41.8 83.2 51(88) 45.8
299 68(188) 684.8+127.4 812.4 70(493) 217.14+164.1 381.29 54(94) 158.7
399 80(1010) 2299.4+654.9 2954.3 81(1014) 703.2+522.5 1225.8 65(109) 515.9
499 90(1170) 3808.8+1150.7 4959.6 87(1331) 1733.9+1083.6 2817.7 80(115) 989.4

Table 12: Numerical results: distributed control problems

46

IP–MA27

N it time

P1-1 99 29 27.38
199 37 349.66

P1-2 199 35 339.1

P1-3 99 24 22.52
199 27 250.28

P1-4 99 25 22.7
199 30 269.7

P1-5 99 24 21.7
199 26 370

P1-6 99 24 23.1
199 26 258.7

P1-7 99 26 22.1
199 31 269.1

P1-8 99 27 22.9
199 33 285.1

P1-9 119 31 48.1
179 34 406.7

P1-10 119 35 54.6
179 40 581.5

P2-6 99 25 24.71
199 26 304.11

Table 13: Control problems with direct inner solver

47

N Solver opttol f(x(it)) ‖H(v(it))‖ time it(inn)
99 IP–PCG2 0.55224625 5.7e-9 9.52 37(33)

KNITRO–D 1e-6 0.55332954 4e-7 5.44 15
1e-8 0.55224722 3.9e-9 8.47 24
1e-9 0.55224625 4.2e-11 9.52 27

KNITRO–I 1e-6 0.55331458 3.9e-7 8.6 14(93)
1e-8 0.55224739 8.66e-9 33.12 22(983)
1e-9 0.55224641 7.02e-10 39.57 25(1210)

199 IP–PCG2 0.5543688 3.6e-9 43.6 45(40)
KNITRO–D 1e-6 0.55446811 2.2e-8 45.22 18

1e-8 0.55437617 6.4e-9 52.45 21
1e-9 0.55436933 1e-9 56.71 23

KNITRO–I 1e-6 0.554480051 3.1e-7 97.84 15(418)
1e-8 0.554376509 7.4e-9 242.84 22(1462)
1e-9 0.554368888 1.9e-10 319.27 27(2054)

299 IP–PCG2 0.55507371 5.1e-9 157.41 52(50)
KNITRO–D 1e-6 0.57017027 8.1e-7 98.79 10

1e-8 0.555099009 5.9e-9 212.04 23
1e-9 0.555073838 2.9e-10 474.95 34

KNITRO–I 1e-6 0.555405597 3.3e-8 202.48 14(153)
1e-8 0.555099497 5.55e-9 693.32 21(1665)
1e-9 0.55507386 7.7e-11 1636.35 28(4472)

399 IP–PCG2 0.555425678 2.8e-9 531.16 58(58)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 m m m m
1e-8 m m m m
1e-9 m m m m

Table 14: Comparison IP–PCG2 with KNITRO v4.0.2 on test problem P1-1

48

N Solver opttol f(x(it)) ‖H(v(it))‖ time it(inn)
99 IP–PCG2 0.2641625459 3.5e-9 5.9 28(24)

KNITRO–D 1e-6 0.2642862472 4.5e-7 5.5 14
1e-8 0.264163747 4.7e-9 7.0 18
1e-9 0.2641625452 7.2e-11 7.7 20

KNITRO–I 1e-6 0.2643159559 5.5e-7 7.0 11(38)
1e-8 0.2641637501 5.0e-9 13.0 15(173)
1e-9 0.2641625452 5.2e-10 16.3 17(247)

199 IP–PCG2 0.2672834461 9.0e-9 40.0 35(34)
KNITRO–D 1e-6 0.2676809839 5.6e-7 37.2 14

1e-8 0.2672858418 5.5e-9 49.5 19
1e-9 0.2672839122 9.2e-10 54.4 21

KNITRO–I 1e-6 0.2676583552 8.0e-7 57.8 14(85)
1e-8 0.2672838028 4.8e-9 100.5 21(231)
1e-9 0.2672835172 3.7e-10 155.2 23(536)

299 IP–PCG2 0.2683261906 6.6e-10 125.9 37(36)
KNITRO–D 1e-6 0.2683490951 7.6e-7 174.6 19

1e-8 0.2683296025 9.0e-9 191.7 21
1e-9 0.2683262257 2.3e-10 217.3 24

KNITRO–I 1e-6 0.2694845168 4.0e-7 258.2 19(110)
1e-8 0.2683272538 6.3e-9 361.6 25(217)
1e-9 0.2683263348 5.0e-10 494.2 27(488)

399 IP–PCG2 0.26884799937 4.3e-9 352.3 39(34)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 0.2684751969 3.1e-7 401.9 11(70)
1e-8 0.2688521643 9.6e-9 523.9 14(127)
1e-9 0.2688480413 3.6e-10 916.4 17(509)

Table 15: Comparison IP–PCG2 with KNITRO v4.0.2 on test problem P1-3

49

N Solver opttol f(x(it)) ‖H(v(it))‖ time it(inn)
99 IP–PCG2 6.216167657e-2 8.0e-9 5.9 23(22)

KNITRO–D 1e-6 6.28379652e-2 4.2e-7 4.28 8
1e-8 6.21720059e-2 4.2e-8 6.95 14
1e-9 6.21637312e-2 9.1e-10 7.85 16

KNITRO–I 1e-6 6.290104777e-2 1.9e-7 3.51 4(11)
1e-8 6.21659812e-2 2.5e-9 6.4 8(30)
1e-9 6.2162183013e-2 4.1e-10 8.86 10(66)

199 IP–PCG2 6.44262870e-2 8e-9 33.3 25(24)
KNITRO–D 1e-6 6.519188743e-2 1.3e-7 20.39 6

1e-8 6.44368448e-2 3.5e-9 36.8 12
1e-9 6.442826536e-2 2.3e-10 45.2 15

KNITRO–I 1e-6 6.5203856844 8e-7 16.5 3(8)
1e-8 6.444127289e-2 3.6e-9 33.7 7(25)
1e-9 6.44335931e-2 7.8e-10 44.1 9(47)

299 IP–PCG2 6.5193140696e-2 9.3e-9 100.1 26(25)
KNITRO–D 1e-6 6.5970554302e-2 1.1e-7 66.3 6

1e-8 6.5269064297e-2 1.8e-10 92.4 9
1e-9 6.519765283e-2 6.2e-11 159.1 16

KNITRO–I 1e-6 6.597880027e-2 5.2e-7 52.1 3(8)
1e-8 6.525495675e-2 1.1e-9 91.7 6(17)
1e-9 6.519876526e-2 3.0e-10 147.2 10(46)

399 IP–PCG2 6.5578165106e-2 8.8e-10 279.8 28(27)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 m m m m
1e-8 m m m m
1e-9 m m m m

Table 16: Comparison IP–PCG2 with KNITRO v4.0.2 on test problem P2-1

50

N Solver opttol f(x(it)) ‖H(v(it))‖ time it(inn)
99 IP–PCG2 -6.57642730 9.4e-8 10.1 29(66)

KNITRO–D 1e-6 -6.57629592 3.9e-7 13.8 18
1e-8 -6.57640594 8.9e-9 14.8 20
1e-9 -6.57642744 1.1e-10 16.8 24

KNITRO–I 1e-6 -6.57585240 6.3e-7 9.9 6(30)
1e-8 -6.57642667 5.2e-10 42.2 12(494)
1e-9 -6.57642667 5.2e-10 42.2 12(494)

199 IP–PCG2 -6.62009225 3.9e-8 46.3 27(61)
KNITRO–D 1e-6 -6.61987115 4.7e-8 63.2 17

1e-8 -6.62007441 5.6e-9 72.9 20
1e-9 -6.62009178 3.7e-10 79.5 22

KNITRO–I 1e-6 -6.61925123 1.2e-7 67.4 6(17)
1e-8 -6.62009137 2.0e-9 185.2 12(198)
1e-9 -6.62009225 6.0e-9 984.2 36(1802)1

299 IP–PCG2 -6.63464400 5.5e-9 126.3 27(55)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 -6.63316140 1.3e-7 240.8 6(16)
1e-8 -6.63462656 6.2e-9 373.5 9(38)
1e-9 * * * *

Table 17: Comparison IP–PCG2 with KNITRO v4.0.2 on test problem P2-6
1 Current solution estimate can not be improved by the code.

51

N Solver opttol f(x(it)) ‖H(v(it))‖ time it(inn)
99 IP–PCG2 -18.73614837 5.9e-9 13.9 49(54)

KNITRO–D 1e-6 -18.73188084 4.8e-7 7.0 13
1e-8 -18.73611604 9.3e-9 14.8 29
1e-9 -18.73614224 6.8e-10 17.4 34

KNITRO–I 1e-6 -18.73221830 4.2e-7 20.5 19(133)
1e-8 -18.73608419 7.8e-9 33.3 32(214)
1e-9 -18.73614833 1.8e-10 38.6 38(235)

199 IP–PCG2 -18.86331163 4.9e-9 87.4 60(73)
KNITRO-D 1e-6 -18.84530188 4.5e-7 38.2 11

1e-8 -18.86315409 4.0e-9 119.7 37
1e-9 -18.86328069 8.1e-10 141.0 44

KNITRO–I 1e-6 -18.84592606 4.5e-7 88.4 14(118)
1e-8 -18.86315369 4.7e-9 213.1 33(307)
1e-9 -18.86329639 5.5e-10 248.2 40(339)

299 IP–PCG2 -18.905751265 3.3e-9 278.1 67(93)
KNITRO–D 1e-6 -18.862397636 5.0e-7 126.7 10

1e-8 -18.905307698 6.1e-9 361.2 31
1e-9 -18.905681444 9.7e-10 472.5 41

KNITRO–I 1e-6 -18.836892321 8.4e-7 309.1 14(153)
1e-8 -18.905301531 6.1e-9 578.6 28(282)
1e-9 * * * *

399 IP–PCG2 -18.926980012 2.9e-7 825.2 76(113)
KNITRO–D 1e-6 m m m m

1e-8 m m m m
1e-9 m m m m

KNITRO–I 1e-6 m m m m
1e-8 m m m m
1e-9 m m m m

Table 18: Comparison IP–PCG2 with KNITRO v4.0.2 on test problem P2-7

M=1 M=2 M=3 M=4

N it(inn) time it(inn) time it(inn) time it(inn) time

P2-7 99 35(70) 5.5 39(70) 5.9 42(72) 6.3 25(52) 3.9
199 51(88) 45.8 54(94) 48.4 62(105) 55.3 28(37) 24.3
299 54(94) 158.7 57(95) 167.2 73(114) 212.5 32(51) 93.8
399 65(109) 515.9 79(144) 630.5 32(38) 248.6 35(37) 269.9

Table 19: IP–PCG2 with nonmonotone choices

52

[8] Bergamaschi L., Gondzio J., Zilli G.; Preconditioning indefinite systems in
interior point methods for optimization, Comput. Optim. Appl. 28 (2004),
149–171.

[9] Bonettini S.; A nonmonotone inexact Newton method, Optim. Meth. Soft-
ware 20 (2005), 475–491.

[10] Bonettini S., Galligani E., Ruggiero V.; An inexact Newton method com-
bined with Hestenes multipliers’ scheme for the solution of Karush–Kuhn–
Tucker systems, Appl. Math. Comput. 118 (2005), 651–676.

[11] Bonettini S., Ruggiero V.; Some iterative methods for the solution of a
symmetric indefinite KKT system, to appear on Comput. Optim. Appl.
2006.

[12] Bongartz I., Conn A.R., Gould N.I.M., Toint Ph.L.; CUTE: Constrained
and Unconstrained Testing Environment, ACM Trans. Mathl. Software 21
(1995), 123–160.

[13] Branin F.H.; Widely convergent method for finding multiple solutions of
simultaneous nonlinear equations, IBM J. Res. Devel. 16 (1972), 504–522.

[14] Bunch J. R., Parlett B. N.; Direct methods for solving symmetric indefinite
systems of linear equations, SIAM J. Numer. Anal. 8 (1971), 639–655.

[15] Byrd R.H., Gilbert J.C., Nocedal J.; A trust region method based on
interior–point techniques for nonlinear programming, Math. Program. 89
(2000), 149–185.

[16] Byrd R.H., Hribar M.E., Nocedal J.; An interior point algorithm for large
scale nonlinear programming, SIAM J. Optim. 9 (1999), 877–900.

[17] Byrd R.H., Marazzi M., Nocedal J.; On the convergence of Newton iter-
ations to non–stationary points, Tech. Rep. OTC 2001/01, Optimization
Technology Center, Nortwestern University, Evaston IL, 2001.

[18] Chen Y., Cai D.Y.; Inexact overlapped block Broyden methods for solving
nonlinear equations, Appl. Math. Comput. 136 (2003), 215–228.

[19] Conn A.R., Gould N.I.M., Orban D., Toint Ph.L.; A primal–dual trust
region algorithm for non–convex nonlinear programming, Math. Program.
87 (2000), 215–249.

[20] D’Apuzzo M., Marino M.; Parallel computational issues of an interior
point method for solving large bound–constrained quadratic programming
problems, Parallel Computing, 29 (2003), 467–483.

[21] Davidenko D.F.; On a new method of numerical solution of systems of
nonlinear equations, Dokl. Akad. Nauk SSSR 88 (1953), 601–602 (in Rus-
sian).

53

[22] Davidenko D.F.; Inversion of matrices by the method of variation of pa-
rameters, Soviet Math. Dokl. 1 (1960), 279–282.

[23] Dembo R.S., Eisenstat S.C., Steihaug T.; Inexact Newton methods, SIAM
J. Numer. Anal. 19 (1982), 400–408.

[24] Dennis J.E. Jr., Moré J.; Quasi–Newton methods, motivation and theory,
SIAM Review 19 (1977), 46–89.

[25] Dennis J.E. Jr., Schnabel R.B.; Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice–Hall, Englewood Cliffs,
1983.

[26] Deuflhard P., Hohmann A.; Numerical Analysis in Modern Scientific Com-
puting, Second Edition, Springer, New York, 2003.

[27] Durazzi C.; Numerical solution of discrete quadratic optimal control prob-
lems by Hestenes’ method, Rend. Circ. Matem. Palermo, Ser. II, Suppl.
58 (1999), 133–154.

[28] Durazzi C.; On the Newton interior–point method for nonlinear program-
ming problems, J. Optim. Theory Appl. 104 (2000), 73–90.

[29] Durazzi C., Galligani E.; Nonlinear programming methods for solving op-
timal control problems, Equilibrium Problems: Nonsmooth Optimization
and Variational Inequality Models (F. Giannessi, A. Maugeri, P.M. Parda-
los eds.), Nonconvex Optimization and Its Applications 58, Kluwer Aca-
demic Publ., Dordrecht, 2001, 71–99.

[30] Durazzi C., Ruggiero V.; Indefinitely preconditioned conjugate gradient
method for large sparse equality and inequality constrained quadratic prob-
lems, Numer. Linear Algebra Appl. 10 (2003), 673–688.

[31] Durazzi C., Ruggiero V.; Numerical solution of special linear and quadratic
programs via a parallel interior–point method, Parallel Computing 29
(2003), 485–503.

[32] Durazzi C., Ruggiero V.; A Newton inexact interior–point method for large
scale nonlinear optimization problems, Annali Univ. Ferrara, Sez. VII, Sc.
Matem. IL (2003), 333–357.

[33] Durazzi C., Ruggiero V.; Global convergence of the Newton interior–point
method for nonlinear programming, J. Optim. Theory Appl. 120 (2004),
199–208.

[34] Durazzi C., Ruggiero V., Zanghirati G.; Parallel interior–point method
for linear and quadratic programs with special structure, J. Optim. Theory
Appl. 110 (2001), 289–313.

[35] Eisenstat S.C., Walker H.F.: Globally convergent inexact Newton methods,
SIAM J. Optim. 4 (1994), 393–422.

54

[36] El–Bakry A.S., Tapia R.A., Tsuchiya T., Zhang Y.; On the formulation
and theory of Newton interior–point method for nonlinear programming,
J. Optim. Theory Appl. 89 (1996), 507–541.

[37] Evtushenko Y.G.; Numerical Optimization Techniques, Optimization
Software Inc., New York, 1985.

[38] Faddeev D.K., Faddeeva V.N., Computational Methods of Linear Algebra,
W.H. Freeman & C., San Francisco, 1963.

[39] Fletcher R.; Practical Methods of Optimization, Second Edition, John
Wiley & Sons, Chichester, 1987.

[40] Forsgren A.; Inertia–controlling factorizations for optimization algo-
rithms, Appl. Numer. Math. 43 (2002), 91–107.

[41] Forsgren A., Gill P.E.; Primal–dual interior point methods for nonconvex
nonlinear programming, SIAM J. Optim. 8 (1998), 1132–1152.

[42] Forsgren A., Murray W.; Newton method for large–scale linear equality–
constrained minimization, SIAM J. Matrix Anal. Appl. 14 (1993), 560–
587.

[43] Galligani E.: The Newton–arithmetic mean method for the solution of
systems of nonlinear equations, Appl. Math. Comput. 134 (2003), 9–34.

[44] Galligani E.; Analysis of the convergence of an inexact Newton method
for solving Karush–Kuhn–Tucker systems, Atti Sem. Matem. Fis. Univ.
Modena e Reggio Emilia, LII (2004), 331–368.

[45] Galligani E., Ruggiero V., Zanni L.; A minimization method for the so-
lution of large symmetric eigenproblems, Intern. J. Computer Math. 70
(1998), 99–115.

[46] Galligani I., Ruggiero V.; Numerical solution of equality–constrained
quadratic programming problems on vector–parallel computers, Optim.
Meth. Software 2 (1993), 233–247.

[47] Galligani I., Trigiante D.; Numerical methods for solving large algebraic
systems, Pubblicazioni IAC, 98, Ser. III, Rome, 1974.

[48] Gavurin M.K.; Nonlinear functional equations and continuous analogies
of iterative methods, Izv. Vyssh. Uchebn. Zaved., Matematika 5 (1958),
18–31 (in Russian).

[49] Gill P.E., Murray D.B., Ponceleon D.B., Saunders M.A.; Preconditioners
for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl.
13 (1992), 292–311.

55

[50] Gill P.E., Saunders M.A., Shinnerl J.R.; On the stability of Choleski fac-
torization for symmetric quasidefinite systems, SIAM J. Matrix Anal.
Appl. 17 (1996), 35–46.

[51] Golub G.,Greif C.; On solving block–structured indefinite linear systems,
SIAM J. Sci. Comput. 24 (2003), 2076–2092.

[52] Golub G., Wu X., Yuan J.Y.; SOR–like methods for augmented system,
BIT 41 (2001), 71–85.

[53] Hahn W.; Stability of Motion, Springer Verlag, Berlin, 1967.

[54] Harwell Subroutine Library; A Catalogue of Subroutines (HSL 2000),
AEA Technology, Harwell, Oxfordshire, England (2002).

[55] Hestenes M.R.; Multiplier and gradient methods, J. Optim. Theory Appl.
4 (1969), 303–320.

[56] Hestenes M.R.; Optimization Theory. The Finite Dimensional Case, John
Wiley & Sons, New York, 1975.

[57] Kelley C.T.; Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia, 1995.

[58] Keller C., Gould N.I.M., Wathen A.J.; Constraint preconditioners for in-
definite linear systems, SIAM J. Matrix Anal. Appl. 21 (2000), 1300–1317.

[59] Keller H.B.; Global homotopies and Newton methods, Recent Advances in
Numerical Analysis (C. De Boor, G.H. Golub eds.), Academic Press, New
York, 1978, 73–94.

[60] Keller H.B.; Lectures on Numerical Methods in Bifurcation Problems,
Springer–Verlag, Heidelberg, 1987.

[61] Lambert J.D.; Computational Methods in Ordinary Differential Equa-
tions, John Wiley & Sons, London, 1973.

[62] Li C., Li Z., Shao X., Nie Y., Evans D.J.; Optimum parameter for the
SOR–like method for augmented system, Intern. J. Computer Math. 81
(2004), 749–763.

[63] Liu J.W., Ng E.G., Peyton B.W.; On finding supernodes for sparse matrix
computations, SIAM J. Matrix Anal. Appl. 14 (1993), 242–252.

[64] Luenberger D.G.; Linear and Nonlinear Programming, Second Edition,
Addison–Wesley Publ., Reading, 1984.

[65] Lukšan L., Vlček J.; Indefinitely preconditioned inexact Newton method
for large sparse equality constrained non–linear programming problems,
Numer. Linear Algebra Appl. 5 (1998), 219–247.

56

[66] Lukšan L., Matonoha C., Vlček J.; Interior–point method for non–linear
non–convex optimization, Numer. Linear Algebra Appl. 11 (2004), 431–
453.

[67] Maurer H., Mittelmann H.D.; Optimization techniques for solving elliptic
control problems with control and state constraints: Part 1. Boundary
control, Comput. Optim. Appl. 16 (2000), 29–55.

[68] Maurer H., Mittelmann H.D.; Optimization techniques for solving elliptic
control problems with control and state constraints: Part 2. Distributed
control, Comput. Optim. Appl. 18 (2001), 141–160.

[69] Mittelmann H.D.; Verification of second-order sufficient optimality condi-
tions for semilinear elliptic and parabolic control problems, Comput. Op-
tim. Appl. 20 (2001), 93–110.

[70] Mittelmann H.D.; Private communication, 2004.

[71] Mittelmann H.D., Maurer H.; Solving elliptic control problems with inte-
rior point and SQP methods: control and state constraints, J. Comput.
Appl. Math. 120 (2000), 175–195.

[72] Morales J.L., Nocedal J., Waltz R.A., Liu G., Goux J.P.; Assessing the
potential of interior methods for nonlinear optimization, Tech. Rep. OTC
2001/04, Optimization Technology Center, Nortwestern University, Evas-
ton IL, 2001.

[73] Nocedal J., Hribar M.E., Gould N.I.M.; On the solution of equality con-
starined quadratic programming problems arising in optimization, SIAM
J. Sci. Comput. 23 (2001), 1375–1394.

[74] Nocedal J., Wright S.J.; Numerical Optimization, Springer, New York,
1999.

[75] Ortega J.M.; Introduction to Parallel and Vector Solution of Linear Sys-
tems, Plenum Press, New York, 1988.

[76] Ortega J.M., Rheinboldt W.C.; Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, New York, 1970.

[77] Powell M.J.D.; A method for nonlinear constraints in minimization prob-
lems, Optimization (R. Fletcher ed.), Academic Press, London, 1969, 283–
298.

[78] Powell M.J.D.; A hybrid method for nonlinear equations, Numerical Meth-
ods for Nonlinear Algebraic Equations (P. Rabinowitz ed.), Gordon &
Breach, London, 1970, 87–114.

[79] Rheinboldt W.C.; Methods for Solving Systems of Nonlinear Equations,
Second Edition, SIAM, Philadelphia, 1998.

57

[80] Saad Y.; Iterative Methods for Sparse Linear System, PSW Publ. Co.,
Boston, 1996.

[81] Saunders M., Tomlin J. A., Solving regularized linear programs using bar-
rier methods and KKT systems, Tech. Rep. SOL 96–4, Systems Optimiza-
tion Lab., Dept. Oper. Res., Stanford University, Stanford CA, 1996.

[82] Shanno D.F., Simantiraki E.M.; Interior point methods for linear and
nonlinear programming, The State of the Art in Numerical Analysis (I.S.
Duff, G.A. Watson eds.), Clarendon Press, Oxford, 1997, 339–362.

[83] Shanno D.F., Vanderbei R.J.; Interior–point methods for nonconvex non-
linear programming: orderings and higher order methods, Tech. Rep. SOR
99–5, Stats. Oper. Res., Princeton University, Princeton NJ, 1999.

[84] Sherman A.H.; On Newton–iterative methods for the solution of systems
of nonlinear equations, SIAM J. Numer. Anal. 15 (1978), 755–771.

[85] Smale S.; A convergent process of price adjustment and global Newton
methods, J. Math. Econ. 3 (1976), 107–120.

[86] Tits A.L., Wächter A., Bakhtiari S., Urban T.J., Lawrence C.T.; A
primal–dual interior–point method for nonlinear programming with strong
global and local convergence properties, SIAM J. Optim. 14 (2003), 173–
199.

[87] Ulbrich M., Ulbrich S., Vicente L.N.; A globally convergent primal–dual
interior–point filter method for nonconvex nonlinear programming, Tech.
Rep. TR00–12, Dept. Comput. Appl. Math., Rice University, Houston
TX, 2000.

[88] Ul’m S.; On iterative methods with the successive approximation of the
inverse operator, Izv. Akad. Nauk Estonskoi SSR, Ser. Fizika–Matematika
16 (1967), 403–411 (in Russian).

[89] Van Loan C.; On the method of weighting for equality–constrained least–
squares problems, SIAM J. Numer. Anal. 22 (1985), 851–864.

[90] Vanderbei R.J.; Symmetric quasidefinite matrices, SIAM J. Optim. 5
(1995) 100–113.

[91] Vanderbei R.J., Shanno D.F.; An interior–point algorithm for nonconvex
nonlinear programming, Comput. Optim. Appl. 13 (1999), 231–252.

[92] Wächter A.; An interior point algorithm for large–scale nonlinear op-
timization with applications in processes engineering, Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh PA, 2002.

[93] Wächter A., Biegler L.T.; Failure of global convergence for a class of in-
terior point methods for nonlinear programming, Math. Programming 88
(2000), 565–574.

58

[94] Wächter A., Biegler L.T.; On the implementation of an interior–point fil-
ter line–search algorithm for large–scale nonlinear programming, Research
Rep. RC 23149, IBM T.J. Watson Research Center, Yorktown Heights NY,
2004.

[95] Waltz R.A., Morales J.L., Nocedal J., Orban D.; An interior algorithm
for nonlinear optimization that combines line search and trust region steps,
Tech. Rep. OTC 2003-6, Optimization Technology Center, Northwestern
University, Evanston IL, 2003.

[96] Wang D., Bai Z.Z., Evans D.J.; On the monotone convergence of mul-
tisplitting method for a class of systems of weakly nonlinear equations,
Intern. J. Computer Math. 60 (1996), 229–242.

[97] Wright M.; The interior–point revolution in optimization: hystory, recent
developments, and lasting consequences, Bull. Amer. Math. Soc. 42 (2005),
39–56.

[98] Yacovlev M.N.; The solution of systems of non–linear equations by a
method of differentiation with respect to a parameter, USSR Comput.
Math. Mathl. Phys. 4 (1964), 146–149.

[99] Yamashita H., Yabe H., Tanabe T.; A globally and superlinearly con-
vergent primal–dual interior point trust region for large scale constrained
optimization, Tech. Rep., Mathematical Systems Inc., Sinjuku–ku, Tokyo,
1998.

[100] Židkov E.P., Puzynin I.V.; The stabilization method of solving boundary
value problems for nonlinear second–order ordinary differential equations,
Soviet Math. Dokl. 8 (1967), 614–616.

