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Abstract

In this work a Newton interior-point method for the solution of Karush–Kuhn–

Tucker systems is presented.

A crucial feature of this iterative method is the solution, at each iteration, of the

inner subproblem. This subproblem is a linear-quadratic programming problem, that

can solved approximately by an inner iterative method such as the Hestenes multipliers�
method.

A deep analysis on the choices of the parameters of the method (perturbation and

damping parameters) has been done.

The global convergence of the Newton interior-point method is proved when it is

viewed as an inexact Newton method for the solution of nonlinear systems with restric-

tion on the sign of some variables.
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The Newton interior-point method is numerically evaluated on large scale test prob-

lems arising from elliptic optimal control problems which show the effectiveness of the

approach.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This work is concerned with the numerical solution of large scale nonlinear

programming (NLP) problems arising, for instance, from the discretization of

optimal control problems with partial differential equations and control and

state constraints. In particular, we make reference to optimal control problems

for semilinear elliptic equations subject to control and state inequality con-
straints, with boundary or distributed control. These problems have been stud-

ied in [18]: by a suitable finite–difference discretization scheme, a control

problem is transcribed into a large scale finite–dimensional NLP problem

(see also [16,17]), where the objective function often is a quadratic form, the

elliptic state equation and the Dirichlet and/or Neumann boundary conditions

become equality constraints and the control and state constraints are simple

box constraints. The numerical solution of this large scale NLP problem

can be determined by solving the constrained system of nonlinear equations
obtained by the Karush–Kuhn–Tucker (KKT) optimality conditions of the

problem. In this paper, we propose to solve the nonlinear system by an inexact

Newton scheme, that includes the strategy of the interior-point (IP) method

for the treatment of the constrained variables. For the linear system arising

at each step of the iterative scheme, we can use an inner iterative method,

devising an adaptive stopping rule that allows to avoid unnecessary inner

iterations for the initial outer iterations and, at the same time, assures global

convergence and local superlinear convergence of the whole method (see also
[8]).

In the next section, we describe the steps of this inexact Newton method,

pointing out the meaning of the parameters on which the scheme depends.

In Section 3, we discuss about the convergence of the scheme. In Section 4, tak-

ing into account the special features of the NLP problem (equality and box

constraints), we focus our attention to the inner linear system that has be

solved at each iteration, given by the reduced Karush–Kuhn–Tucker indefinite

system. Under suitable conditions that assure the nonsingularity of the system
and the boundedness of its inverse, the system can be viewed as the Lagrange

necessary conditions for the minimum point of a convex quadratic program-
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ming problem and it can be efficiently solved by Hestenes multipliers� scheme.
Then, the solution of the KKT indefinite system is led to the solution of a se-

quence of symmetric positive definite systems. Numerical experiments on the

elliptic control problems show that, generally, one or two iterations of the Hes-

tenes scheme per outer iteration are sufficient to satisfy the inner adaptive stop-

ping rule. As consequence, this inexact Newton method preserves the good
behaviour of the classical interior-point methods and, at the same time, can

take advantage of the use of efficient sparse Cholesky solvers for the solution

of inner positive definite systems.

In the following, kÆk denotes the Euclidean vector norm or the spectral ma-

trix norm.
2. An inexact Newton method for Karush–Kuhn–Tucker systems

Consider the following nonlinear programming problem:

min f ðxÞ;
g1ðxÞ ¼ 0;

g2ðxÞ P 0;

ð1Þ

where x 2 Rn, f ðxÞ : Rn ! R, g1ðxÞ : Rn ! Rneq, g2ðxÞ : Rn ! Rm. We assume

f(x), g1(x), g2(x) are twice continuously differentiable and the first and second
derivatives of the objective function and constraints are available.

By introducing slack variables, the problem (1) can be rewritten as

min f ðxÞ;
g1ðxÞ ¼ 0;

g2ðxÞ � s ¼ 0;

s P 0;

ð2Þ

whose KKT optimality conditions are

a � rf ðxÞ � rg1ðxÞk1 �rg2ðxÞk2 ¼ 0;

b � �g1ðxÞ ¼ 0;

c � �g2ðxÞ þ s ¼ 0;

h � K2Sem ¼ 0

ð3Þ

with

s P 0 k2 P 0;

where s; k2 2 Rm, K2 = diag(k2), S = diag(s). The vector em indicates the vector
of m components whose values are equal to 1.



4 S. Bonettini et al. / Appl. Math. Comput. xxx (2004) xxx–xxx

ARTICLE IN PRESS
The system (3) can be written as

HðvÞ ¼ 0;

s P 0 k2 P 0;
ð4Þ

where

v ¼

x

k1

k2

s

0
BBB@

1
CCCA and HðvÞ ¼

a

b

c

9>=
>;H1ðvÞ

h

0
BBB@

1
CCCA:

The Jacobian matrix of H is the matrix

H 0ðvÞ ¼

Q B C 0

BT 0 0 0

CT 0 0 I

0 0 S K2

0
BBB@

1
CCCA;

where Q ¼ r2f ðxÞ �
Pneq

1 k1;ir2g1;iðxÞ �
Pm

1 k2;ir2g2;iðxÞ is the Hessian matrix
of the Lagrangian function of the problem (2), B = � $g1(x) and C = � $g2(x).
Here $2f(x), $2g1,i (x), $2g2,i (x) are the Hessian matrices of the function f(x)
and of i-th component of the constraints g1(x), and g2(x) respectively; then,
k1,i and k2,i are the i-th component of k1 and k2 respectively.

In order to solve the system (4), we can use a Newton–type method that con-

sists in computing the solution Dv(k) of the linear system

H 0ðvðkÞÞDv ¼ �HðvðkÞÞ; ð5Þ
and in updating the current iterate by

vðkþ1Þ ¼ vðkÞ þ akDv
ðkÞ:

As pointed out in [10], when we consider the last block of equations of the sys-

tem (5), called complementarity equations, it can be observed that if sðkÞi ¼ 0 (or

kðkÞ
2;i ¼ 0), then sðjÞi ¼ 0 (or kðjÞ

2;i ¼ 0), for all j > k. It means that, if the iterate
reaches the boundary of the feasible region, it sticks on the boundary even if

it is far from the solution. In order to avoid this drawback, the complementar-

ity equations are modified by introducing a perturbation parameter q. This
yields the perturbed KKT conditions

HðvÞ ¼ q~e;

s P 0 k2 P 0;
ð6Þ

where ~e ¼ ð0Tnþneqþm; e
T
mÞ

T
.

The Newton IP method consists in finding the solution Dv(k) of the per-
turbed Newton equation and in updating the current iterate
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H 0ðvðkÞÞDv ¼ �HðvðkÞÞ þ qk~e; ð7Þ

vðkþ1Þ ¼ vðkÞ þ akDv
ðkÞ; ð8Þ

where the parameter qk goes to 0 when k diverges. The method determines a

sequence {v(k)} that strictly satisfies the constraints in (6) and the KKT condi-
tions (4) only in the limit.

The crucial points in the analysis of the method are the choices of the

parameters qk and ak and the solution of the linear system (7).

We define qk = rklk, where rk 2 [rmin,rmax] � (0,1); if the following condi-
tion holds:

lk 6 lð2Þ
k � kHðvðkÞÞkffiffiffiffi

m
p ; ð9Þ

then the solution Dv(k) of the system (7) is a descent direction for kH(v)k2 ([4, p.
77]) and, from (7), it satisfies the residual condition of the inexact Newton
method ([1]):

kH 0ðvðkÞÞDvðkÞ þHðvðkÞÞk 6 gkkHðvðkÞÞk; ð10Þ
where the forcing term gk = rk 6 rmax < 1. Furthermore, it is easy to prove that

lð1Þ
k � sðkÞ

T
k
ðkÞ
2

m 6 lð2Þ
k , where lð1Þ

k is strictly connected with the notion of adherence

to the central path which is the basis of IP methods ([10]); then the choice of the
perturbation parameter lk 2 ½lð1Þ

k ; lð2Þ
k � assures that Dv(k) satisfies the residual

condition of the inexact Newton method and it is a descent direction for

kH(v)k2. At the same time, the range of values of the perturbation parameter
is enlarged in order to avoid stagnation of the current iterate on the boundary

of the nonnegative orthant (s,k2) P 0 that occurs when the value of lð1Þ
k is too

small and we are far away from the solution (see [5]).

Now consider the system (7). When the size is large, the computation of the

exact solution can be too expensive then the system (7) can be solved approx-

imately. We denote again by Dv(k) the approximate solution of system (7). If the

coefficient matrix has a special structure, an iterative scheme can exploit this

feature. Nevertheless, the use of an iterative solver determines the necessity

to state an adaptive termination rule so that the accuracy in solving the inner

system depends on the quality of the current iterate of the outer method. This

means that we can apply an iterative scheme until the final inner residual

rðkÞ ¼ H 0ðvðkÞÞDvðkÞ þHðvðkÞÞ � rklk~e ð11Þ

satisfies a suitable stopping criterion; under convenient hypotheses reported be-

low, the following criterion assures the global convergence of the whole
scheme:

krðkÞk 6 dkkHðvðkÞÞk: ð12Þ
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This adaptive termination rule avoids unnecessary inner iterations when we are

far from the solution.

Theorem 1. If 0 < rk 6 rmax < 1, 0 6 dk 6 dmax < 1 and rmax + dmax < 1, the

vector Dv(k), k P 0, that satisfies (11) and (12) is a descent direction at v(k) for

kH(v(k))k2 and it satisfies the residual condition (10) with gk = rk + dk <
rmax + dmax < 1.

Proof. The vector Dv(k) is a descent direction if

2HðvðkÞÞTH 0ðvðkÞÞDvðkÞ 6 0:

From (11), (12) and (9), we have

HðvðkÞÞTH 0ðvðkÞÞDvðkÞ ¼ HðvðkÞÞrðkÞ � kHðvðkÞÞk2 þ rklkHðvðkÞÞT~e

¼ ðdk � 1ÞkHðvðkÞÞk2 þ rkkHðvðkÞÞk2

¼ �ð1� ðdk þ rkÞÞkHðvðkÞÞk2:

Furthermore,

kH 0ðvðkÞÞDvðkÞ þHðvðkÞÞk ¼ krðkÞ þ rklk~ek 6 ðdk þ rkÞÞkHðvðkÞÞk:

This completes the proof. h

The damping parameter ak has to satisfy the feasibility and centrality condi-

tions in order to assure the convergence of the method and have to guarantee a

sufficient decreasing of kH(v)k2 at each iterate. In order to satisfy all the condi-
tions, the damping parameter ak is determined by the following sequence of

steps.

1. Feasibility condition means that all the iterates v(k) have to belong to the
feasible region

fv 2 Rnþneqþ2m s:t: si > 0 and k2;i > 0 8 i ¼ 1; . . . ;mg:
So, if DsðkÞi < 0 ðor DkðkÞ

2;i < 0Þ, ak
(1) will be chosen such that sðkþ1Þi >

0 ðor kðkþ1Þ
2;i > 0Þ.

2. Centrality conditions are expressed by the nonnegativity of the following

functions ([10], see also [19, p. 402]):

uðaÞ � min
i¼1;m

SðkÞðaÞKðkÞ
2 ðaÞem

 �
� cks1

sðkÞðaÞTkðkÞ
2 ðaÞ

m

 !
P 0; ð13Þ

wðaÞ � sðkÞðaÞTkðkÞ
2 ðaÞ � cks2kH1ðvðkÞðaÞÞk P 0; ð14Þ

where s(k)(a) = s(k) + aDs(k) and k2
(k)(a) = k2

(k) + aD k2
(k); ck 2 1

2
; 1

� �
.
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At each iterate we choose ~ak such that conditions (13) and (14) are satisfied

8a 2 ð0; ~ak� � ð0; 1�; then að2Þ
k ¼ min ~ak; a

ð1Þ
k

n o
.

In order to satisfy inequalities (13) and (14) in the initial iterate, we have

s1 6
mini¼1;m Sð0ÞKð0Þ

2
emð Þ

sð0Þ
T

k
ð0Þ
2

m

 � , and s2 6
sð0Þ

T
k
ð0Þ
2

kH1ðvð0ÞÞk
, where we assume s(0) > 0, k

ð0Þ
2 > 0.

3. On the other hand, the final parameter ak must be selected so that the outer

iterative scheme is convergent to a solution of the system (4). For this aim,

following the theory on inexact Newton methods ([9]), a minimum reduction

algorithm, consisting in a line–search strategy with backtracking technique,

is included in the method. Thus, að2Þ
k is reduced using the following strategy:

• Set b 2 0; 1
2

� �
, h 2 (0,1), ak ¼ að2Þ

k ;

• while kH(v(k) + akDv
(k))k > (1�bak(1�(rk + dk)))kH(v(k))k

ak = hak

end while

If the backtracking procedure terminates after �t steps, then ak ¼ h�tað2Þ
k ; fur-

thermore, if að2Þ
k is bounded below by a scalar greater than zero, say a(2), then

also ak is bounded below by a positive scalar, say �a > 0, i.e. ak P �a > 0, and

the vector akDv
(k), k P 0, satisfies the residual condition of the inexact New-

ton method

kH 0ðvðkÞÞakDv
ðkÞ þHðvðkÞÞk 6 gkkHðvðkÞÞk;

where gk ¼ 1� akð1� ðrk þ dkÞÞ 6 �g < 1. Indeed, from (11), (12) and (9),

we have

kH 0ðvðkÞÞakDv
ðkÞ þHðvðkÞÞk 6 kakð�HðvðkÞÞ þ rðkÞ þ rklk~eÞ þHðvðkÞÞk

6 ð1� akÞkHðvðkÞÞk þ akkrðkÞ þ rklk~ek
6 ð1� akð1� ðrk þ dkÞÞÞkHðvðkÞÞk:

Now we focus our attention to the solution of the linear system (7) that, by

omitting the iteration index k, can be written as

QDxþ BDk1 þ CDk2 ¼ �a;

BTDx ¼ �b;

CTDxþ Ds ¼ �c;

SDk2 þ K2Ds ¼ �h þ qem:

8>>><
>>>:

From the complementarity equations we can deduce

Ds ¼ K�1
2 ½�SDk2 � h þ qem�

and then the system (7) can be rewritten in reduced form
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Q B C

BT 0 0

CT 0 �K�1
2 S

0
B@

1
CA

Dx

Dk1

Dk2

0
B@

1
CA ¼

�a

�b

g2ðxÞ � qK�1
2 em

0
B@

1
CA: ð15Þ

By a further substitution from the third block equation

Dk2 ¼ S�1½K2C
TDxþ K2c � h þ qem�;

the system can be written in condensed form

A B

BT 0

� �
Dx

Dk1

� �
¼

c

q

� �
; ð16Þ

with

A ¼ Qþ CS�1K2C
T;

c ¼ �a � CðxÞS�1½K2c � h þ qem�;
q ¼ �b:

Let the vector r(k) of (11) be partitioned commensurately as v(k) and H(v(k)):

rðkÞ ¼

r
ðkÞ
1

r
ðkÞ
2

r
ðkÞ
3

r
ðkÞ
4

0
BBBB@

1
CCCCA; ð17Þ

when we solve approximately the system (7) in the form (15), we have r
ðkÞ
4 ¼ 0

while in the form (16), we have r
ðkÞ
3 ¼ r

ðkÞ
4 ¼ 0. In other words, in both cases, the

block related to the complementarity equations is solved exactly.
3. Analysis of the convergence

We state the conditions such that the Newton IP method can be viewed as

an inexact Newton method ([9]) with restriction on the sign of some variables.
Given � P 0, we define

Xð�Þ ¼ fv : 0 6 � 6 kHðvÞk2

6 kHðvð0ÞÞk2; s:t: (13) and (14) holdg: ð18Þ

X(�) is a closed set.
Let assume that the following conditions hold ([6], see also [10]):

C1 in X(0), f(x), g1(x), g2(x) are twice continuously differentiable; the gradi-
ents of the equality constraints are linearly independent and H 0

1ðvÞ is Lips-
chitz continuous;
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C2 the sequences {x(k)} and fkðkÞ
2 g are bounded;

C3 in any compact subset of X(0) where s is bounded away from zero, the

matrix H 0(v) is nonsingular.

In general, in literature, the condition C3 is replaced by a sufficient condi-

tion to assure that C3 holds.
The boundedness of the sequence {x(k)} can be assured by enforcing box

constraints �li 6 xðkÞi 6 li for sufficiently large li > 0, i = 1, . . .,n.

Theorem 2. Let {v(k)} be a sequence generated as described in the previous

section.

If v(k)2X(�), � > 0, then

(a) (s(k))Tk2
(k), sðkÞi kðkÞ

2;i , i = 1, . . .,m, are bounded above and below away from zero

for any k P 0; kH1(v(k))k is bounded above for any k P 0;

(b) if C1 and C2 hold, then {v(k)} is bounded above and s(k) and k
ðkÞ
2 are compo-

nentwise bounded away from zero;

(c) if C1, C2 and C3 hold, then the sequence of matrices {H 0(v(k))�1} is bounded;

(d) if C1, C2 and C3 hold, then the sequence {Dv(k)} is bounded.
Proof. (a) The above boundedness of sðkÞi kðkÞ2;i , i = 1, . . .,m, and (s(k))Tk2
(k)

follows from the inequality

sðkÞi kðkÞ
2;i 6 sðkÞ

� �T
k
ðkÞ
2 ¼ kSðkÞKðkÞ

2 emk1 6
ffiffiffiffi
m

p
kSðkÞKðkÞ

2 emk
¼

ffiffiffiffi
m

p
kHðvðkÞÞk 6

ffiffiffiffi
m

p
kHðvð0ÞÞk: ð19Þ

Furthermore in X(�), � > 0, from (13) and (14), we have sðkÞi kðkÞ
2;i > 0 for any

k P 0 and i = 1, . . .,m. Indeed, if we assume that sðkÞj kðkÞ
2;j ¼ 0 for some j, then

(s(k))Tk2
(k) = 0 and kH1(v

(k))k = 0; but this contradicts kH(v(k))k P �, � > 0.
From the inequality

� 6 kHðvðkÞÞk 6 kH1ðvðkÞÞk þ kSðkÞKðkÞ
2 emk

6 ððsðkÞÞTkðkÞ
2 Þ=ðcks2Þ þ kSðkÞKðkÞ

2 emk1 ¼ ð1þ 1=ðcks2ÞÞðsðkÞÞ
T
k
ðkÞ
2 ; ð20Þ

it follows that, for k P 0 and i = 1, . . .,m,

ðsðkÞÞTkðkÞ
2 P �s2=ðs2 þ 2Þ ð21Þ

and, from (13),

sðkÞi kðkÞ
2;i P �s1s2=ð2mðs2 þ 2ÞÞ: ð22Þ
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Finally,

kH1ðvðkÞÞk 6 kHðvðkÞÞk 6 kHðvð0ÞÞk:
(b) From assumptions C1 and C2 and from (3), we have

kaðkÞk ¼ krf ðxðkÞÞ þ BðkÞk
ðkÞ
1 þ CðkÞk

ðkÞ
2 k 6 kHðxðkÞÞk:

Then, since B(k) is a full column–rank matrix, we can write

k
ðkÞ
1 ¼ ðBðkÞTBðkÞÞ�1BðkÞTð�rf ðxðkÞÞ � CðkÞk

ðkÞ
2 þ aðkÞÞ:

For C1 and C2, the sequence fkðkÞ
1 g is bounded.

Furthermore,

ksðkÞk 6 ksðkÞ � g2ðxðkÞÞk þ kg2ðxðkÞÞk 6 kHðvðkÞÞk þ kg2ðxðkÞÞk:
Then the sequence {s(k)} is bounded.
Since sðkÞi kðkÞ2;i are bounded below away from zero and s(k) is bounded above,

for any k, it follows that k
ðkÞ
2 is bounded below away from zero. Analogously,

for the same argument, s(k) is bounded away from zero.

(c) Rearranging the rows and the columns of the matrix H 0 (v(k)), we obtain
the following matrix

KðkÞ
2 SðkÞ 0 0

I 0 CðkÞT 0

0 CðkÞ QðkÞ BðkÞ

0 0 BðkÞT 0

2
66664

3
77775: ð23Þ

Since s(k) and k
ðkÞ
2 are bounded above and componentwise below away from 0,

the matrix (23) can be factorized in the form L(k)U(k), where L(k) is the matrix

I 0 0 0

K�1
2 I 0 0

0 �CðkÞEðkÞ�1 I 0

0 0 0 I

2
6664

3
7775 ð24Þ

and U(k) is the matrix

KðkÞ
2 SðkÞ 0 0

0 �EðkÞ CðkÞT 0

0 0 F ðkÞ BðkÞ

0 0 BðkÞT 0

2
66664

3
77775; ð25Þ

with EðkÞ ¼ KðkÞ
2

�1
SðkÞ and F(k) = Q(k) + C(k)E(k)�1C(k)T. Since L(k) and H 0(v(k))

are nonsingular bounded matrices, the block triangular matrix U(k) is a nonsin-

gular matrix with nonsingular and bounded diagonal blocks. The inverse of the
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matrix H 0(v(k)) is given by (U(k))�1(L(k))�1. Since all the blocks of the matrices

(U(k))�1 and (L(k))�1 are bounded, then H 0(v(k))�1 is also bounded in X(�), � > 0,
i.e.

kH 0ðvðkÞÞ�1k 6 M ð26Þ
for v(k) 2 X(�), � > 0 and for k P 0, with M a positive scalar.

(d) Since (11), Dv(k) has the following form:

DvðkÞ ¼ H 0ðvðkÞÞ�1ð�HðvðkÞÞ þ rðkÞ þ rklk~eÞ: ð27Þ
From (26), (18), (9) and (12), we have that

kDvðkÞk 6 Mð1þ dk þ rkÞkHðvð0ÞÞk < 2MkHðvð0ÞÞk;
because dk + rk 6 dmax + rmax < 1. Then the proof is completed. h

In the following we analyze the three steps for the computation of the damp-

ing parameter ak and we show that it is uniformly bounded away from zero (see
Section 2).

In the step 1., it is easy to see that að1Þ
k is bounded away from zero, i.e.

að1Þ
k P að1Þ > 0, since we set

að1Þ
k ¼ min min

DsðkÞi <0

�sðkÞi

DsðkÞi

; min
DkðkÞ

2;i
<0

�kðkÞ
2;i

DkðkÞ
2;i

; 1

( )
;

where, for any iteration k, sðkÞi and kðkÞ
2;i are bounded away from zero and DsðkÞi

and DkðkÞ
2;i are bounded.

Now, we analyze the damping parameter in step 2.; the following theorem

(see [11]) shows the existence of two positive numbers âð2Þ
k and �að2Þ

k such that

the centrality functions u(a) and w(a) are nonnegative for a 2 ð0; âð2Þ
k � and

for a 2 ð0; �að2Þ
k � respectively.

Theorem 3. Let {v(k)} be a sequence generated as described in the previous
section; let us also assume rk 2 [rmin,rmax] � (0,1) and dk 2 [0,dmax] � [0,1),

and

rk > dkð1þ cks2Þ: ð28Þ
Then, if u(k)(0) P 0, there exists a positive number âð2Þ

k > 0, such that u(k)(a) P 0

for all a 2 ð0; âð2Þ
k �.

Then, if w(k)(0) P 0, there exists a positive number �að2Þk > 0, such that
w(k)(a) P 0 for all a 2 ð0; �að2Þk �.

Proof. Set

N ðkÞ
i ¼ DsðkÞi DkðkÞ

2;i �
cks1
m

DsðkÞ
T
Dk

ðkÞ
2

$$$ $$$ i ¼ 1; . . . ;m:
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The fourth block equations of the linear system (7) in componentwise is

sðkÞi DkðkÞ
2;i þ kðkÞ

2;i Ds
ðkÞ
i ¼ �sðkÞi kðkÞ

2;i þ rklk: ð29Þ

Summing for any i = 1, . . . ,m, we have

sðkÞ
T
Dk

ðkÞ
2 þ k

ðkÞ
2

T
DsðkÞ ¼ �sðkÞ

T
k
ðkÞ
2 þ mrklk: ð30Þ

Thus, for a 2 (0,1], we can define

uðkÞ
i ðaÞ ¼ sðkÞi þ aDsðkÞi

 �
kðkÞ
2;i þ aDkðkÞ

2;i

 �
� s1ck

m
sðkÞ þ aDsðkÞ
� �T

k
ðkÞ
2 þ aDk

ðkÞ
2

 �
:

By easy computation and by using (29) and (30), we can deduce

uðkÞ
i ðaÞ ¼ ð1� aÞ sðkÞi kðkÞ

2;i �
s1ck
m

sðkÞ
T
k
ðkÞ
2

h i
þ arklkð1� s1ckÞ

þ a2 DsðkÞi DkðkÞ
2;i �

s1ck
m

DsðkÞ
T
Dk

ðkÞ
2

 �
:

Hence,

uðkÞ
i ðaÞ ¼ ð1� aÞuðkÞ

i ð0Þ þ arklkð1� s1ckÞ

þ a2 DsðkÞi DkðkÞ
2;i �

s1ck
m

DsðkÞ
T
Dk

ðkÞ
2

 �
: ð31Þ

Since u(k)(0) P 0, we have uðkÞ
i ð0Þ P 0. Then

ð1� aÞuðkÞ
i ð0Þ ¼ uðkÞ

i ðaÞ � arklkð1� s1ckÞ

� a2 DsðkÞi DkðkÞ
2;i �

s1ck
m

DsðkÞ
T
Dk

ðkÞ
2

 �
:

Thus

uðkÞ
i ðaÞ P arklkð1� s1ckÞ þ a2 DsðkÞi DkðkÞ

2;i �
s1ck
m

DsðkÞ
T
Dk

ðkÞ
2

 �
P arklkð1� s1ckÞ � a2N ðkÞ

i :

Set N ðkÞ ¼ maxi¼1;...;mN
ðkÞ
i ; for any a such that

a P ðð1� s1ckÞrklkÞ=N ðkÞ > 0; ð32Þ
we have u(k)(a) P 0. Thus we define

âð2Þ
k ¼ max

a2ð0;1�
fa : uðkÞðtÞ P 0; 8t 6 ag:

We prove now the second part of the theorem.

By assumptions C1, we have that H 0
1ðvÞ is Lipschitz continuous with

Lipschitz constant C.
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Set

M ðkÞ ¼ DsðkÞ
T
Dk

ðkÞ
2 � cks2

C
2
kDvðkÞk2

$$$$
$$$$

and let r̂ðkÞ be the vector composed by the first three block components of the
vector r(k) defined in (11) and (17). By the mean value theorem for vector val-

ued functions (e.g. see [2, p. 74]), we can write for a 2 (0,1]

H1ðvðkÞ þ aDvðkÞÞ ¼ H1ðvðkÞÞ þ aH 0
1ðvðkÞÞDvðkÞ

þ a
Z 1

0

ðH 0
1ðvðkÞ þ naDvðkÞÞ � H 0

1ðvðkÞÞÞdn
� �

DvðkÞ;

¼ ð1� aÞH1ðvðkÞÞ þ ar̂ðkÞ

þ a
Z 1

0

ðH 0
1ðvðkÞ þ naDvðkÞÞ � H 0

1ðvðkÞÞÞdn
� �

DvðkÞ:

ð33Þ
From the Lipschitz continuity for the derivative of H1(v), we obtain

kH1ðvðkÞ þ aDvðkÞÞk 6 ð1� aÞkH1ðvðkÞÞk þ akr̂ðkÞk

þ a
Z 1

0

CknaDvðkÞkdn
� �

kDvðkÞk;

or, by (12)

kH1ðvðkÞ þ aDvðkÞÞk 6 ð1� aÞkH1ðvðkÞÞk þ adkkHðvðkÞÞk þ C
2

a2kDvðkÞk2:

ð34Þ
From the definition of w(k)(a) and by using (30), we have that

wðkÞðaÞ ¼ sðkÞ
T
k
ðkÞ
2 þ að�sðkÞ

T
k
ðkÞ
2 þ rklkmÞ þ a2DsðkÞ

T
Dk

ðkÞ
2

� cks2kH1ðvðkÞ þ aDvðkÞÞk:

If we multiply (34) by �cks1, changing the sign, then we have a lower bound of
�cks2kH1(v

(k) + aDv(k))k that gives

wðkÞðaÞ P ð1� aÞwðkÞð0Þ þ aðrklkm� cks2dkkHðvðkÞÞkÞ

þ a2 DsðkÞ
T
Dk

ðkÞ
2 � cks2

C
2
kDvðkÞk2

� �
:

Then, by the hypothesis w(k)(0) P 0, lk P
sðkÞð ÞTk

ðkÞ
2

m and (20), we obtain

wðkÞðaÞ P a
rk

1þ cks2
� dk

� �
cks2kHðvðkÞÞk � aM ðkÞ

� �
:
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If condition (28) holds, then for any a such that

a P
rk

1þ cks2
� dk

� �
cks2kHðvðkÞÞk=M ðkÞ > 0; ð35Þ

we have w(k)(a) P 0. Thus we define

�að2Þ
k ¼ max

a2ð0;1�
fa : wðkÞðtÞ P 0; 8t 6 ag:

This completes the proof. h

Let us define

~ak ¼ min âð2Þ
k ; �að2Þ

k ; 1
n o

2 ð0; 1�;

then, under the hypotheses of Theorem 2, N(k) andM(k) are uniformly bounded

and

~ak P ~a > 0:

Consequently, we have

að2Þ
k � minf~ak; a

ð1Þ
k g P að2Þ � minf~a; að1Þg > 0:

To select the final value of the damping parameter at the iteration k, in step 3.

we perform the backtracking technique described in [9] until an acceptable

ak ¼ h�tað2Þ
k

is found, where �t is the smallest nonnegative integer such that ak satisfies the

backtracking condition

kHðvðkÞ þ akDv
ðkÞÞk 6 ð1� bakð1� ðrk þ dkÞÞÞkHðvðkÞÞk; ð36Þ

with h,b 2 (0,1).
We have to prove now that �t is a finite number independent on k.

Theorem 4. Under the hypotheses of Theorems 2, 3, the while-loop in step 3.

terminates in a finite number of steps.

Proof. From (29), (33) and (11), we have, for a 2 (0,1] and for i = 1, . . .,m:

ðsðkÞi þ aDsðkÞi ÞðkðkÞ
2;i þ aDkðkÞ

2;i Þ ¼ sðkÞi kðkÞ
2;i þ að�sðkÞi kðkÞ

2;i þ rklkÞ þ a2DsðkÞi DkðkÞ
2;i

and

H1ðvðkÞ þ aDvðkÞÞ ¼ ð1� aÞH1ðvðkÞÞ þ ar̂ðkÞ

þ a
Z 1

0

H 0
1 vðkÞ þ naDvðkÞ
� �

� H 0
1ðvðkÞÞ

� �
dn

� �
DvðkÞ:
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We can write

H vðkÞ þ aDvðkÞ
� �

¼
H1 vðkÞ þ aDvðkÞ
� �

SðkÞ þ aDSðkÞ� �
KðkÞ
2 þ aDKðkÞ

2

 �
0
@

1
A

¼ ð1� aÞ
H1ðvðkÞÞ
SðkÞKðkÞ

2 em

 !
þ a

r̂ðkÞ

0

 !
þ a

0

rklkem

� �

þ a

R 1
0

H 0
1 vðkÞ þ naDvðkÞ
� �

� H 0
1ðvðkÞÞ

� �
dn

 �
DvðkÞ

0

 !

þ a2
0

DSðkÞDKðkÞ
2 em

� �
:

Thus

kHðvðkÞ þ aDvðkÞÞk 6 ð1� aÞkHðvðkÞÞk þ akrðkÞk þ arklkkemk

þ akDvðkÞk
Z 1

0

kH 0
1ðvðkÞ þ naDvðkÞÞ � H 0

1ðvðkÞÞkdn

þ a2kDSðkÞDKðkÞ
2 emk:

From the Lipschitz continuity for the derivative of H1(v), from (12), we have

kHðvðkÞ þ aDvðkÞÞk 6 ð1� aÞkHðvðkÞÞk þ aðrk þ dkÞkHðvðkÞÞk

þ a2 kDSðkÞDKðkÞ
2 emk þ

C
2
kDvðkÞk2

� �
:

Therefore, we can affirm that

ð1� bað1� ðrk þ dkÞÞÞkHðvðkÞÞk � kHðvðkÞ þ aDvðkÞÞk

P ð1� bÞað1� ðrk þ dkÞÞkHðvðkÞÞk � a2 1þ C
2

� �
kDvðkÞk2

� �

is nonnegative for a 2 ð0; â� with

â ¼ ð1� bÞð1� ðrk þ dkÞÞkHðvðkÞÞk
1þ C

2

� �
kDvðkÞk2

> 0:

Since â is bounded away from zero in X(�), � > 0, it is possible to find a non-
negative integer �t such that 0 < h�tað2Þ

k 6 minfâ; 1g; then the value ak ¼ h�tað2Þ
k

is bounded below by a strictly positive number, say �a.
This completes the proof. h

Set �a ¼ min að2Þ; �a
) *

, we observe that, since

ð1� bakð1� ðrk þ dkÞÞÞ 6 ð1� b�að1� ðrmax þ dmaxÞÞÞ < 1;
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inequality (36) asserts that

kHðvðkþ1ÞÞk < kHðvðkÞÞk: ð37Þ
We prove now the following result (see [11]).

Proposition 1. Let u(a) and w(a) be the centrality functions defined in (13) and

(14); set

s1 ¼
min
i¼1;m

ðSð0ÞKð0Þ
2 emÞ

sð0Þ
T
k
ð0Þ
2

m

� � ; s2 ¼
sð0Þ

T
k
ð0Þ
2

H1 vð0Þð Þk k

and let be given a sequence of parameters {ck} with

1 > c0 P c1 P � � � P ck P ckþ1 P � � � P
1

2
:

Furthermore, since s(0) > 0, k
ð0Þ
2 > 0, then

uðkÞðaÞ P 0 for all a 2 0; âð2Þ
k

 i
;

wðkÞðaÞ P 0 for all a 2 0; �að2Þ
k

 i
for any k = 0,1, . . .

Proof. This results shows that the strict feasibility of the initial vectors s(0) > 0
and k

ð0Þ
2 > 0 is sufficient to guarantee the positivity of the centrality functions

u(a) and w(a) at each iterate k.

Indeed, for k = 0, the definitions of s1 and s2 give

uð0Þð0Þ ¼ ð1� c0Þmin
i
ðSð0ÞKð0Þ

2 emÞ > 0;

wð0Þð0Þ ¼ ð1� c0Þsð0Þ
T
k
ð0Þ
2 > 0:

Theorem 3 assures that there exist âð2Þ
0 > 0 and �að2Þ

0 > 0 such that

uð0ÞðaÞ P 0 for all a 2 0; âð2Þ
0

 i
;

wð0ÞðaÞ P 0 for all a 2 0; �að2Þ
0

 i
:

Thus, we have u(0)(a0) P 0 and w(0)(a0) P 0, where a0 is the final value of the
damping parameter obtained after the backtracking procedure.

For k = 1, the centrality functions are

uð1ÞðaÞ ¼ min
i¼1;...;m

Sð1ÞðaÞKð1Þ
2 ðaÞem

 �
� c1s1

sð1ÞðaÞTkð1Þ
2 ðaÞ

m

 !
;
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wð1ÞðaÞ ¼ sð1ÞðaÞTkð1Þ
2 ðaÞ � c1s2kH1ðvð1ÞðaÞÞk;

where s(1)(a) = s(1) + aDs(1), k
ð1Þ
2 ðaÞ ¼ k

ð1Þ
2 þ aDk

ð1Þ
2 and v(1)(a) = v(1) + aDv(1).

We have

uð1Þð0Þ ¼ min
i¼1;...;m

Sð1ÞKð1Þ
2 em

 �
� c1s1

sð1Þ
T
k
ð1Þ
2

m

 !
;

wð1Þð0Þ ¼ sð1Þ
T
k
ð1Þ
2 � c1s2kH1ðvð1ÞÞk:

Since

uð0Þða0Þ ¼ min
i¼1;...;m

Sð1ÞKð1Þ
2 em

 �
� c0s1

sð1Þ
T
k
ð1Þ
2

m

 !
P 0;

wð0Þða0Þ ¼ sð1Þ
T
k
ð1Þ
2 � c0s2kH1ðvð1ÞÞk P 0

and c1 6 c0, we have

uð1Þð0Þ P uð0Þða0Þ P 0 and wð1Þð0Þ P wð0Þða0Þ P 0:

Thus, Theorem 3 assures that there exist âð2Þ
1 > 0 and �að2Þ

1 > 0 such that

uð1ÞðaÞ P 0 for all a 2 0; âð2Þ
1

 i
;

wð1ÞðaÞ P 0 for all a 2 0; �að2Þ
1

 i
:

Hence, we have u(1)(a1)P 0 and w(1)(a1) P 0, where a1 is the step-length ob-
tained after the execution of the backtracking procedure.

Thus, in the next steps (k = 2,3, . . .) of the process we have

uðkÞð0Þ P uðk�1Þðak�1Þ P 0 and wðkÞð0Þ P wðk�1Þðak�1Þ P 0:

This completes the proof. h

Since the initial iterate v(0) satisfies (13) and (14), then v(0) 2 X(0). Then Dv(0),
satisfying (11) and (12), is well defined. The procedure described in Section 2

and Theorems 2–4 enable us to determine a0 so that kH(v(1))k < kH(v(0))k
and (13) and (14) hold at v(1). Then v(1) 2 X(0). With the same argument, if
v(k) 2 X(0), then v(k + 1) 2 X(0). Therefore the sequence {v(k)} 2 X(0), for k P 0.

Theorem 5. Under the hypotheses of Theorems 2, 3, the Newton IP algorithm,

with � = 0, generates a sequence {v(k)} such that:

(a) if v* is a limit point of the sequence {v(k)} such that H 0(v*) is nonsingular,

then the sequence {H(v(k))} converges to zero and v(k) converges to v* when

k diverges;
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(b) the sequence {kH(v(k))k} converges to zero and each limit point of the

sequence {v(k)} satisfies the KKT conditions for (1) and (2);

(c) if the sequence {v(k)} converges to v* with H 0(v*) nonsingular matrix,

rk ¼ OðkHðvðkÞÞknÞ, 0 < n < 1, and dk ¼ OðkHðvðkÞÞkÞ, then there exists an

index �k such that ak = 1 for k P �k. Thus, the Newton IP algorithm has a

superlinear local convergence.
Proof. Part (a) Since v(k) 2 X(�), � > 0, then, by Theorem 2, kH(v(k))k 5 0 and

H 0(v(k)) is nonsingular. Therefore, the method is well defined and determines a
new point at each iteration k. Since theorems 2, 3 and 4, the Newton IP step

akDv
(k) satisfies the residual condition of the inexact Newton method with

forcing term uniformly bounded by 1 (see Section 2) and the condition on the

reduction of the norm (37). Thus, from [20, p. 70] (or [9, Theor. 6.1]) we have
the result.

Part (b) (see [8, Theor. 3.1]). The Newton IP method generates in X(�), � > 0
a sequence {kH(v(k))k} which is monotone nonincreasing, then, bounded.

Consequently, this sequence has a limit point, say, H� 2 R. If it is equal to zero,

we have the result. Suppose that H* 5 0, then the sequence {v(k)} and its limit
point belong to X(�), with � = (H*)2 > 0. If v* is one this limit points, we have
that H 0(v*) is a nonsingular matrix, then from part (a) of this theorem we

deduce that H(v*) = 0. This contradicts the assumption that H* > 0. Hence, the

sequence {kH(v(k))k} must converges to zero.
Part (c) (see [7]). From (11), (9) and (12), we have

kDvðkÞk 6 kH 0ðvðkÞÞ�1k 1þ rk þ dkð ÞkHðvðkÞÞk;
where H 0(v(k))�1 is a bounded matrix, then, for k P �k, we have,

kDsðkÞk ¼ O kHðvðkÞÞk
� �

and kDk
ðkÞ
2 k ¼ O kHðvðkÞÞk

� �
. Then, for k sufficiently

large, the conditions (13) and (14) are satisfied for að2Þ
k ¼ 1. Indeed, for k suf-

ficiently large, DsðkÞi < 0 and DkðkÞ
2;i < 0 are negligible with respect sðkÞi and kðkÞ

2;i

and then að1Þ
k ¼ 1.

Furthermore, from the definition of uðkÞ
i ðaÞ and (31), we observe that

uðkÞ
i ð1Þ ¼ sðkÞi ð1ÞkðkÞ

2;i ð1Þ � ðcks1=mÞðsðkÞð1ÞÞ
T
k
ðkÞ
2 ð1Þ

P rklkð1� s1ckÞ � ð1þ s1ck=mÞkDsðkÞkkDk
ðkÞ
2 k:

Since, from (9) and (20), we have

kHðvðkÞÞk=ðð1þ 1=ðcks2ÞÞmÞ 6 lk 6 kHðvðkÞÞk=
ffiffiffiffi
m

p
;

then lk ¼ O HðvðkÞÞ
++ ++� �

and rklk ¼ O kHðvðkÞÞknþ1
 �

, while kDsðkÞkkDkðkÞk ¼

O kHðvðkÞÞk2
 �

. Hence the criterion (13) is satisfied for âð2Þ
k ¼ 1, with k suffi-

ciently large.
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As far as the criterion (14) is concerned,

wðkÞð1Þ ¼ ðsðkÞð1ÞÞTkðkÞ
2 ð1Þ � s2kH1ðvðkÞð1ÞÞk

P mrklk � cks2dkkHðvðkÞÞk þ ð1þ cks2ÞkDvðkÞk
2

 �
;

so, for sufficiently large k, �að2Þ
k ¼ 1 satisfies (14).

Then að2Þk ¼ min að1Þk ; âð2Þk ; �að2Þk ; 1
 �

¼ 1.

Now we prove that the backtracking procedure determines ak = 1 for

sufficiently large k.

kHðvðkÞð1ÞÞk ¼ kHðvðkÞ þ DvðkÞÞk;
6 kHðvðkÞ þ DvðkÞÞ � ðHðvðkÞÞ þ H 0ðvðkÞÞDvðkÞÞk þ kHðvðkÞÞ

þ H 0ðvðkÞÞDvðkÞk:

For the Lemma 2.2 in [1] (see also the footnote in p. 403) and from the residual

condition (10) with forcing term gk = rk + dk, it follows that

kHðvðkÞð1ÞÞk 6 oðkDvðkÞkÞ þ ðdk þ rkÞkHðvðkÞÞk
¼ oðkHðvðkÞÞkÞ þ ðdk þ rkÞkHðvðkÞÞk:

Hence, we have

ð1� bð1� ðdk þ rkÞÞÞkHðvðkÞÞk � kHðvðkÞð1ÞÞk
P ð1� bÞð1� ðdk þ rkÞÞkHðvðkÞÞk � oðkHðvðkÞÞkÞ
¼ ð1� bÞkHðvðkÞÞk � ð1� bÞðdk þ rkÞkHðvðkÞÞk � oðkHðvðkÞÞkÞ
¼ ð1� bÞkHðvðkÞÞk � ðOðkHðvðkÞÞk1þnÞ þOðkHðvðkÞÞk2ÞÞ � oðkHðvðkÞÞkÞ
P 0:

Then, there exists an index �k P 0 such that ak = 1 for all k P �k. It follows that

gk ¼ 1� akð1� ðdk þ rkÞÞ ¼ dk þ rk; for k P �k

and then, from Corollary 3.5(a) in [1], the sequence {v(k)} converges to v*

superlinearly. h
4. Solution of the KKT indefinite system in condensed form

When we have to solve NLP problems as those in [16–18], where the ine-

quality constraints are simple box constraints, it is convenient to reduce the in-

ner linear system (7) in the form (16); indeed, in this case, the term CS�1K2C
T

of the matrix A is a diagonal matrix.
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A crucial point for the well definition of the algorithm is that the matrix

H 0(v) is nonsingular in any compact set of X(0) where s is bounded away from
zero (hypothesis C3). This hypothesis holds if the coefficient matrix of the sys-

tem (16) is nonsingular in the same sets. This matrix is nonsingular if and only

if the matrix ZTAZ is nonsingular, where Z is the m · (n � neq) matrix such

that BTZ = 0 and ZTZ = I, i.e. the columns of Z form an orthogonal basis
of the null space of BT ([12]).

The following theorem states two sufficient conditions to assure that this

matrix is nonsingular.

Theorem 6. The coefficient matrix in (16) is nonsingular if one of the following

conditions hold:

C3 0 the matrices A and BTA�1B are nonsingular;
C300 BT is a full row–rank matrix and A is positive definite on the null space of

BT: NðBTÞ ¼ fx 2 Rn : BTx ¼ 0g.
Proof. If C3 0 holds, it is immediate to prove that the following matrix is the
inverse of the coefficient matrix in (16):

A�1 � A�1BðBTA�1BÞ�1BTA�1 A�1BðBTA�1BÞ�1

ðBTA�1BÞ�1BTA�1 �ðBTA�1BÞ�1

 !
:

For the condition C300, see [15, p. 424]. h

Under the hypothesis C300, setting y1 = Dx and y2 = Dk1, the system (16), can
be viewed as the Lagrange necessary conditions for the minimum point of the

following quadratic problem

minimize
1

2
yT1Ay1 � cTy1;

subject to BTy1 � q ¼ 0:

This quadratic problem can be solved efficiently by Hestenes multipliers�
scheme ([13, p. 308]), that consists in updating the dual variable by the rule

y
ðjþ1Þ
2 ¼ y

ðjÞ
2 þ vðBTyðjÞ1 � qÞ;

where v is a positive parameter (penalty parameter) and y
ðjÞ
1 minimize the aug-

mented lagrangian function of the quadratic problem

Lvðy1; y2Þ ¼
1

2
yT1Ay1 � yT1 cþ yT2 BTy1 � q

� �
þ v
2

BTy1 � q
� �T

BTy1 � q
� �

:

This means that y
ðjÞ
1 is the solution of the linear system of order n

ðAþ vBBTÞy1 ¼ �ByðjÞ2 þ cþ vBq: ð38Þ
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Note that, since BT has full row–rank, the null space of BBT is equal to the null

space of BT, then the matrix A is positive definite on the null space of BBT.

Then, it is immediate the following theorem.

Theorem 7 [15, p. 408]. There exists a positive parameter v* such that for all

v > v*, the matrix A + vB BT is positive definite.

This result enables us to solve the system (38) by applying a Cholesky

factorization.

In order to choose the parameter v, we observe that, "x 5 0, we must have

xT(A + vBBT)x > 0. When BTx = 0, we have, for the hypothesis C300, xTAx > 0.
If BTx 5 0, xTBBTx > 0. Then, it follows that

v > max 0; max
x62NðBTÞ

�xTAx

xTBBTx

� �
:

Since kAk P (�xTAx)/(xTx) for any natural norm and also for the Frobenius

norm kÆkF, and xTBBTx/(xTx) P smin, where smin is the minimum nonzero

eigenvalue of BBT or of BTB, we can choose as v the following value:

v >
kAkF
smin

:

In general it is difficult to determine an estimate of smin. Numerical evidence
shows that a good approximation of smin is min(1,tmin), where tmin is the min-

imum diagonal entry of the matrix BTB, although tmin P smin. Furthermore, in
order to avoid that the value of v is too small (the matrix is not positive defi-
nite) or too large (too ill–conditioned system), it is convenient to use save-

guards. In the numerical experiments of the next section, the following value

of v produced good results:

v ¼ min max 107;
maxfkAkF ; 1g
minftmin; 1g

� �
; 108

� �
: ð39Þ
5. Numerical results

In order to evaluate the effectiveness of the Newton IP method, a Fortran 90

code, implementing the method, has been carried out on HP zx6000 worksta-

tion with Itanium2 processor 1.3GHz and 2Gb of RAM. The code has been

compiled with a +O3 optimization option of the Fortran HP compiler.

In this code, theHessianmatrixQ of the lagrangian function and the Jacobian

matrices BT andCT of the equality and inequality constraints are stored in a col-

umn compressed format ([21]). Then, in order to compute the matrices
A = Q + C S�1K2C

T and A + vB BT, the code executes a preprocess procedure.
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The preprocess routine builds a data structure storing the indices of the nonzero

entries of the above matrices. For any nonzero entry, in the same data structure

we also store the pairs of indices of the elements of B and BT(and C and CT

respectively) that give a nonzero contribution in the scalar products. The pre-

process routine also computes the symbolic Cholesky factorization of A + vB
BT. Indeed, at each Hestenes iteration, it is necessary to solve a linear system
where the coefficient matrix of order n, A + vB BT, is sparse, symmetric, positive

definite. To exploit the sparsity of A + vBBT, its factorization is obtained by a

Fortran package (version 0.3) of Ng and Peyton (included in the package LIP-

SOL, downloadable fromhttp://www.cam.rice.edu/~zhang/lipsol). This package

computes a priori the symbolic factor ofA + vB BT, using the multiple minimum

degree ordering of Liu to minimize the fill-ins in this factor and the supernodal

block factorization to take advantage of modern computer architectures ([14]).

The a priori symbolic factorization is executed in the preprocess routine.
The code uses lð1Þ

k as perturbation parameter; at each outer iteration the

damping parameter ak is initially chosen equal to 1, then it is eventually re-

duced in order to satisfy the feasibility condition, the centrality conditions

(13) and (14) and the backtracking strategy (36) with b = 10�4. The factor of
reduction of ak is h = 0.5.
The Newton IP method stops when

kHðvðkÞÞk 6 10�8;

or when (see [22])

jgapj
1þ jgapj 6 10�8;

where ‘‘gap’’ is the difference between the primal function f(x) and the dual
function

dðx; k1; k2Þ ¼ f ðxÞ � kT2 g2ðxÞ � kT1 g1ðxÞ � rf ðxÞTx

þ kT1 kT2
� � rg1ðxÞ

T

rg2ðxÞ
T

 !
x:

The inner Hestenes solver stops if the following rule is satisfied

krðkÞk 6 max 5 � 10�8; dkkHðvðkÞÞk
� �

;

or if a maximum number is reached; in the code, the maximum number is fixed
equal to 6.

Numerical experiments have been carried out using the code on a set of test

problems described in [16], [17] and [18]. In these cases, the matrix C S�1K2 CT

is a diagonal matrix and in the preprocess phase only the matrix BBT has to be

considered.

http://www.cam.rice.edu/~zhang/lipsol
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In Table 1, we report the references of the considered test problems. The

number of variables n and the number of the equality constraints neq depend

on a parameter N which represents the number of the mesh points for each

dimension of the square domain of the control problem. The suffix in the name

of the tests problems is the value of N.

In Table 2, for each test problems, we report the values of n, neq, the number
of nonzero entries nnzq and nnzb of Q and B respectively, the number nnz of

the nonzero entries of the lower triangular part of A + vBBT and the number

nnzl of the nonzero entries of the Cholesky factor of A + vBBT. We observe

that, because of the structure of B, the matrix–matrix product BBT does not
Table 1

Description of the test-problems

Test problems References

TP1-N [18, 4.2, p. 191]

M = 1, K = 0.8, b = 1, u1 = 1.7, u2 = 2, w(x) = 7.1
TP2-N [17, 4.4, Example 4, p. 153]

TP3-N [16, 5.2, Example 5.5, p. 47]

TP4-N [16, 5.2, Example 5.7, p. 51]

Table 2

Values of n, neq, nonzero entries in Q, in B, nonzero entries in the triangular part of A + vBBT and

in its Cholesky factor

Test problems n neq nnzq nnzb nnz nnzl

TP1-99 19,602 9801 39,204 58,410 72,816 715,465

TP1-199 79,202 39,601 158,404 236,810 295,620 3,409,660

TP1-299 178,802 89,401 357,604 535,210 1,158,029 8,900,195

TP1-399 318,402 159,201 636,804 953,610 2,064,029 20,090,160

TP1-499 498,002 249,001 996,004 149,2010 3,230,029 28,768,781

TP2-99 19,998 10,197 19,602 38,214 128,401 717,837

TP2-199 79,998 40,397 79,202 156,414 516,801 3,414,432

TP2-299 179,998 90,597 178,802 354,614 1,165,201 8,907,367

TP2-399 319,998 160,797 318,402 632,814 2073601 20,099,732

TP3-99 10,593 10,197 10,593 30,789 70,783 622,759

TP3-199 41,193 40,397 41,193 121,589 281,583 3,181,444

TP3-299 91,793 90,597 91,793 272,389 632,383 8,374,469

TP3-399 162,393 160,797 162,393 483,189 1,123,183 16,252,152

TP3-499 252,993 250,997 252,993 753,989 1,753,983 26,855,490

TP4-99 10,593 10,197 10,197 30,789 70,783 622,759

TP4-199 41,193 40,397 40,397 121,589 281,588 3,181,444

TP4-299 91,793 90,597 90,597 272,389 632,383 8,374,469

TP4-399 162,393 160,797 160,797 483,189 1,123,183 16,252,152

TP4-499 252,993 250,997 250,997 753,989 1,753,983 26,855,490
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give rise to an excessive number of nonzero entries and the matrix A + vBBT is

very sparse with a density at most equal to 0.06%. Furthermore the ratio of the

nonzero entries in the Cholesky factor and in the matrix A + vBBT is at most

equal to 15.3.

In Table 3, we report the results of the Newton IP method when we use the

Hestenes multipliers� iterative scheme. In this table, it represents the number of
outer iterations of Newton IP method. The total number of inner iterations of

the Hestenes method is reported in brackets. The execution time, expressed in

seconds, is subdivided into two parts, the preprocess time and the time for com-

puting the solution (solution time). Table 3 shows that the Newton IP–Hestenes

scheme is able to solve high–dimensional and sparse NLP problems. The code

is efficient from the point of view of the memory usage and of the execution

time. Actually, the more expensive computational task is the preprocess phase,

which is dependent on the strategy used to perform the matrix–matrix products
needed in the method.

Furthermore, in all test problems, the total execution time of the Newton

IP–Hestenes method is significantly less than the one of the Newton IP method

which uses a direct inner solver as the MA27 subroutine of the Harwell Sub-
Table 3

Results of Newton IP-Hestenes

Test problems Newton IP–Hestenes

it Preprocess time + solution time

TP1-99 28(29) 5.77 + 2.7

TP1-199 48(49) 118.03 + 25.11

TP1-299 81(111) 686.30 + 131.49

TP1-399 102(153) 2292.11 + 477.5

TP1-499 101(166) 5496.66 + 699.3

TP2-99 13(29) 6.09 + 1.51

TP2-199 15(50) 118.07 + 10.38

TP2-299 16(46) 634.28 + 30.59

TP2-399 17(47) 2109.27 + 80.5

TP3-99 29(32) 2.22 + 2.03

TP3-199 54(59) 36.38 + 22.87

TP3-299 181(186) 206.35 + 246.8

TP3-399 327(341) 833.79 + 961.08

TP3-499 501(527) 1933.793 + 2768.707

TP4-99 21(23) 3.02 + 1.46

TP4-199 26(27) 47.83 + 10.87

TP4-299 39(45) 162.15 + 52.88

TP4-399 36(39) 831.0 + 105.29

TP4-499 65(87) 2062.11 + 360.03
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routine Library. This routine solves the symmetric system by a sparse symme-

try preserving Bunch–Parlett triangular factorization ([3]).

For instance, the execution time of Newton IP–MA27 method is 24.71 and

304.11 seconds for TP1-99 and TP1-199 respectively with 25 and 26 iterations

in the two cases respectively. For the test problems TP3-99, TP3-199, TP4-99

and TP4-199, we have 27.38, 349.66, 22.52, 250.28 seconds respectively with
29, 37, 24, 27 iterations in all these cases respectively. In the other cases of Ta-

ble 3, the Newton IP–MA27 method fails for exceeded memory requirements.

Finally, we observe that in the larger test problems, the method with the direct

solver, when it works, requires less iterations.
6. Conclusions

We have discussed the use of an inexact Newton method for the solution of

nonlinear programming problems arising from elliptic control problems. At

each step of this method we introduced Hestenes multipliers� scheme as itera-
tive solver for the inner indefinite KKT system. Consequently the solution of

this system is led to a solution of a sequence of positive definite systems. We

devised conditions to assure the global convergence of the whole method. As

shown in Table 3, few inner iterations of Hestenes scheme per outer iteration

are sufficient to satisfy the inner stopping rule.
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