
A nonmonotone semismooth inexact Newton method

SILVIA BONETTINI∗, FEDERICA TINTI

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Italy

Abstract

In this work we propose a variant of the inexact Newton method
for the solution of semismooth nonlinear systems of equations. We
introduce a nonmonotone scheme, which couples the inexact features
with the nonmonotone strategies. For the nonmonotone scheme, we
present the convergence theorems. Finally, we show how we can apply
these strategies in the variational inequalities context and we present
some numerical examples.
Keywords: Semismooth Systems, Inexact Newton Methods, Non-
monotone Convergence, Variational Inequality Problems, Nonlinear
Programming Problems.

1 Introduction

The inexact Newton method is one of the methods for the solution of the
nonlinear system of equations

F (x) = 0, (1)

where F : Rn → Rn is a continuously differentiable function. The idea of this
method was presented firstly in [4], with local convergence properties; then
in [7] the authors proposed a global version of the method. Furthermore,
the inexact Newton method was proposed also for the solution of nonsmooth
equations (see for example [12], [8]).

∗Corresponding author. Email bonettini.silvia@unimo.it
This research was supported by the Italian Ministry for Education, University and Re-
search(MIUR), FIRB Project RBAU01JYPN.

1

2

An inexact Newton method is every method which generates a sequence
satisfying the following properties,

‖F (xk) + G(xk, sk)‖ ≤ ηk‖F (xk)‖ (2)
and

‖F (xk + sk)‖ ≤ (1− β(1− ηk))‖F (xk)‖ (3)

where G : Rn×Rn → Rn is a given iteration function, xk+1 = xk + sk, ηk is
the forcing term, i.e. a scalar parameter chosen in the interval [0, 1), and β
is a positive number fixed in (0, 1).

In the smooth case, we could choose G(x, s) = ∇F (x)T s, where ∇F (x)T

is the Jacobian matrix of F , while if F is just semismooth, we can take
G(x, s) = Hs where H is a matrix of the B-subdifferential of F at x (for the
definition of semismooth function and B-subdifferential see for example [17]
and [18]).
The quantity ‖F (xk)‖ on the right hand side of the condition (2) represents
the residual of the nonlinear system (1) at the iterate k. Furthermore, the
condition (2) implies that the vector sk is an approximate solution of the
equation

F (xk) + G(xk, s) = 0, (4)

since the left hand side of (2) is the residual of (4), and the tolerance of such
approximation is given by the term ηk‖F (xk)‖.
The condition (3) implies that the ratio of the norms of the vector F com-
puted in two successive iterates is less than (1− β(1− ηk)), a quantity less
than one.
It is worth to stressing that both conditions are depending by the forcing
term ηk.

There are many advantages in the algorithms with inexact features, from
the theoretical and practical point of view. Indeed, global convergence the-
orems can be proved under some standard assumptions. Furthermore, the
condition (2) tells us that an adaptive tolerance can be introduced in the
solution of the iteration function equation (4), saving unnecessary compu-
tations when we are far from the solution.

A further relaxation on the requirements can be obtained by allowing
nonmonotone choices. The nonmonotone strategies (see for example [10])
are well known in the literature for their effectiveness in the choice of the
steplength in many line–search algorithms.
In [1] the nonmonotone convergence has been proved in the smooth case
for an inexact Newton line–search algorithm and the numerical experience

3

shows that the nonmonotone strategies can be useful in this kind of algo-
rithm to avoid the stagnation of the iterates in a neighborhood of some
“critical” points.

In this paper we propose to modify the general inexact Newton scheme
(2) and (3) in a nonmonotone way, by substituting (2) and (3) with the
following conditions

‖F (xk) + G(xk, sk)‖ ≤ ηk‖F (x`(k))‖ (5)
and

‖F (xk + sk)‖ ≤ (1− β(1− ηk))‖F (x`(k))‖ (6)

where F is a semismooth function and, given N ∈ N, x`(k) is the element
with the following property

‖F (x`(k))‖ = max
0≤j≤min(N,k)

‖F (xk−j)‖. (7)

The nonmonotone conditions (5)-(6) can be considered as a generalization
of the global method for smooth equations presented in [1], and in this work,
we provide convergence theorems under analogous assumptions.

In the following section we recall some basic definitions and some re-
sults for the semismooth functions; in section 3 we describe the general
scheme of our nonmonotone semismooth inexact method and we prove the
convergence theorems; in section 4 we apply the method to a particular
semismooth system arising from variational inequalities and nonlinear pro-
gramming problems and, in section 5, we report the numerical results.

2 The semismooth case

Now we consider the nonlinear system of equations (1) with a nonsmooth
operator F ; in particular we focus on the case in which the system (1) is
semismooth.

In order to introduce the semismooth notion, we also report the B-
subdifferential and the generalized gradient definitions. We consider a vector-
valued function F : Rn → Rn, with F (x) = [f1(x), . . . , fn(x)]T and we as-
sume that, for each component fi, a Lipschitz condition near a given point
x holds. This means that a function F : Rn → Rn is said locally Lipschitz
near a given point x ∈ Rn, if there exists a positive number δ such that each
fi satisfies

‖fi(x1)− fi(x2)‖ ≤ li‖x1 − x2‖ ∀x1, x2 ∈ Nδ(x), li ∈ R

4

where Nδ(x) is the set {y ∈ Rn : ‖y − x‖ < δ} and L = (l1, . . . , ln) is called
rank of F .
The function F : Rn → Rn is locally Lipschitz if, for any x ∈ Rn, F is locally
Lipschitz near x.
Rademacher’s Theorem asserts that F is differentiable almost everywhere
(i.e. each fi is differentiable almost everywhere) on any neighborhood of x
in which F is a locally Lipschitz function.

We denote with ΩF the set of points at which F fails to be differentiable.

Definition 2.1 B-subdifferential ([17])
Let F : Rn → Rn be a locally Lipschitz function near a given point x (with
x ∈ ΩF). The B-subdifferential of F at x is

∂BF (x) = {Z ∈ Rn×n : ∃{xk} * ΩF , with lim
xk→x

∇F (xk)T = Z}.

Definition 2.2 (Clarke’s generalized Jacobian ([3]))
Let F : Rn → Rn be a locally Lipschitz function near a given point x.
Clarke’s generalized Jacobian of F at x is

∂F (x) = co∂BF (x)

where co denotes the convex combinations in the space Rn×n.

Remark: Clarke’s generalized Jacobian is the convex hull of all matrices Z
obtained as the limit of sequence of the form ∇F (xi)T where xi → x and
xi /∈ ΩF .

Now we can finally define the semismooth function, as follows.

Definition 2.3 ([18]) Let F : Rn → Rn be locally Lipschitzian near a
given point x ∈ Rn. We say that F is semismooth at x if

lim
Z∈ ∂F (x+tv

′
)

v′→v,t↓0

Zv
′

exists for all v ∈ Rn.

The following definition of a BD-regular vector plays a crucial role in estab-
lishing global convergence results of several iterative methods.

5

Definition 2.4 ([16]) Let F : Rn → Rn. We say that a point x ∈ Rn is
BD–regular for F (F is BD–regular at x) if F is locally Lipschitz near x and
if all the elements in the B–subdifferential ∂BF (x) are nonsingular.

The next results play an important role in establishing the global conver-
gence of the semismooth Newton methods.

Proposition 2.1 ([17]) If F : Rn → Rn is BD–regular at x∗, then there
exists a positive number δ and a constant K > 0 such that for all x ∈ Nδ(x∗)
and all H ∈ ∂BF (x), H is nonsingular and

‖H−1‖ ≤ K

Proposition 2.2 ([16]) If F : Rn → Rn is semismooth at a point x ∈ Rn

then for any ε > 0 there exists a δ > 0 such that

‖F (y)− F (x)−H · (y − x)‖ ≤ ε‖y − x‖
for all H ∈ ∂BF (y), for all y ∈ Nδ(x).

3 Nonmonotone semismooth inexact Newton meth-
ods

We define a nonmonotone semismooth Newton method every method which
generates a sequence {xk} such that

‖F (xk) + Hksk‖ ≤ ηk‖F (x`(k))‖ (8)
and

‖F (xk + sk)‖ ≤ (1− β(1− ηk))‖F (x`(k))‖ (9)

where x`(k) is defined in (7), xk+1 = xk + sk, Hk ∈ ∂BF (xk), ηk ∈ [0, 1) and
β is a positive parameter fixed in (0, 1).
We will call the vector sk which satisfies (8) nonmonotone semismooth in-
exact Newton step at the level ηk.
For a sequence satisfying (8) and (9) it is possible to prove the following
convergence result which is fundamental for the convergence proofs of the
algorithms presented in the following.
In [7, Theorem 3.3] and [19] an analogous result can be found for the smooth
case.

6

Theorem 3.1 Let F : Rn → Rn be a locally Lipschitz function. Let {xk}
be a sequence such that limk→∞ F (xk) = 0 and for each k the following
conditions hold:

‖F (xk) + Hksk‖ ≤ η‖F (x`(k))‖, (10)

‖F (xk+1)‖ ≤ ‖F (x`(k))‖, (11)

where Hk ∈ ∂BF (xk), sk = xk+1 − xk and η < 1. If x∗ is an accumulation
point 1 of {xk}, then F (x∗) = 0. Furthermore, if F is semismooth at x∗ and
F is BD-regular at x∗ , then the sequence {xk} converges to x∗.

Proof. If x∗ is an accumulation point of the sequence {xk}, there exists
a subsequence {xkj} of {xk} convergent to x∗. By the continuity of F , we
obtain

F (x∗) = F

(
lim

j→∞
xkj

)
= lim

j→∞
F (xkj) = 0.

Furthermore, since {x`(k)} is a subsequence of {xk}, also the sequence {F (x`(k))}
converges to zero when k diverges. From Proposition 2.1, there exist δ > 0
and a constant K such that each H ∈ ∂BF (x) is nonsingular and ‖H−1‖ ≤ K
for any x ∈ Nδ(x∗); we can suppose that δ is sufficiently small such that
Proposition 2.2 implies

‖F (y)− F (x∗)−Hy(y − x∗)‖ ≤ 1
2K

‖y − x∗‖

for y ∈ Nδ(x∗) and for any Hy ∈ ∂BF (y). Then for any y ∈ Nδ(x∗) we have

‖F (y)‖ = ‖Hy(y − x∗) + F (y)− F (x∗)−Hy(y − x∗)‖
≥ ‖Hy(y − x∗)‖ − ‖F (y)− F (x∗)−Hy(y − x∗)‖
≥ 1

K ‖y − x∗‖ − 1
2K ‖y − x∗‖

= 1
2K ‖y − x∗‖.

Then
‖y − x∗‖ ≤ 2K‖F (y)‖ (12)

holds for any y ∈ Nδ(x∗). Now let ε ∈ (0, δ
4) and since x∗ is an accumulation

point of {xk}, there exists a k sufficiently large that

xk ∈ N δ
2
(x∗)

1We say that x∗ ia an accumulation point for the sequence {xk} if for any positive
number δ there exists an index j such that ‖xj − x∗‖ < δ.
We say that the sequence {xk} converges to a point x∗ (or, equivalently, that x∗ is the
limit point of the sequence {xk}) if for any positive number δ there exists an integer n
such that ‖xj − x∗‖ < δ for any j ≥ n.

7

and

x`(k) ∈ Sε ≡
{

y : ‖F (y)‖ <
ε

K(1 + η)

}
.

Note that since x`(k) ∈ Sε then also xk+1 ∈ Sε because ‖F (xk+1)‖ ≤
‖F (x`(k))‖. For the direction sk, by (10), (11) and since ‖H−1

k ‖ ≤ K, the
following inequality holds:

‖sk‖ ≤ ‖H−1
k ‖(‖F (xk)‖+ ‖F (xk) + Hksk‖)

≤ K(‖F (x`(k))‖+ η‖F (x`(k))‖)
= K(1 + η)‖F (x`(k))‖ < ε < δ

2 .

Since sk = xk+1 − xk, the previous inequality implies ‖xk+1 − x∗‖ < δ and
from (12) we obtain

‖xk+1 − x∗‖ ≤ 2K‖F (xk+1)‖ < 2K
ε

K(1 + η)
<

δ

2

that implies xk+1 ∈ N δ
2
(x∗). Therefore x`(k+1) ∈ Sε, since ‖F (x`(k+1))‖ ≤

‖F (x`(k))‖. It follows that, for any j sufficiently large, xj ∈ Nδ(x∗), and
from (12)

‖xj − x∗‖ ≤ 2K‖F (xj)‖.
Since F (xj) converges to 0 we can conclude that xj converges to x∗. ¤

3.1 A line–search semismooth inexact Newton algorithm

In this section we describe a line–search algorithm: once computed a semis-
mooth inexact Newton step, the steplengh is reduced by a backtracking
procedure until an acceptance rule is satisfied.
In the remaining of the section, we prove that the proposed algorithm is well
defined.

Algorithm 3.1

Step 1 Choose x0 ∈ Rn, β ∈ (0, 1),0 < θmin < θmax < 1, ηmax ∈ (0, 1). Set
k = 0;

Step 2 (Search direction)
Select an element Hk ∈ ∂BF (xk).
Determine η̄k ∈ [0, ηmax] and s̄k that satisfy

‖Hks̄k + F (xk)‖ ≤ η̄k‖F (x`(k))‖;

8

Step 3 (Linesearch)
While ‖F (xk + αks̄k)‖ > (1− αkβ(1− η̄k))‖F (x`(k))‖
Step 3.a Choose θ ∈ [θmin, θmax];

Step 3.b Set αk = θαk;

End

Step 4 Set xk+1 = xk + αks̄k;

Step 5 Set k = k + 1 and go to Step 2.

The steplength is represented by the damping parameter αk which is
reduced until the backtracking condition

‖F (xk + αks̄k)‖ ≤ (1− αkβ(1− η̄k))‖F (x`(k))‖ (13)

is satisfied. Condition (13) is more general than the Armijo condition em-
ployed for example in [8], since it does not require the differentiability of the
merit function Ψ(x) = 1/2‖F (x)‖2.
The final inexact Newton step is given by sk = αks̄k, and it satisfies condi-
tions (8) and (9) with forcing term ηk = 1− αk(1− η̄k).
We will simply assume that at each iterate k it is possible to compute the
vector s̄k which is an inexact Newton step at the level η̄k (see for example
the assumption A1 in [12] for a sufficient condition). The next lemma shows
that, under the previous assumption, the sequence generated by Algorithm
3.1 satisfies conditions (8) and (9).

Lemma 3.1 Let β ∈ (0, 1); suppose that there exist η̄ ∈ [0, 1), s̄ satisfying

‖F (xk) + Hks̄‖ ≤ η̄‖F (x`(k))‖.
Then, there exist αmax ∈ (0, 1] and a vector s such that

‖F (xk) + Hks‖ ≤ η‖F (x`(k))‖ (14)

‖F (xk + s)‖ ≤ (1− βα(1− η))‖F (x`(k))‖ (15)

hold for any α ∈ (0, αmax], where η ∈ [η̄, 1), η = (1− α(1− η̄)).

Proof. Let s = αs̄. Then we have

‖F (xk) + Hks‖ = ‖F (xk)− αF (xk) + αF (xk) + αHks̄‖
≤ (1− α)‖F (xk)‖+ α‖F (xk) + Hks̄‖
≤ (1− α)‖F (x`(k))‖+ αη̄‖F (x`(k))‖
= η‖F (x`(k))‖,

9

so (14) is proved. Now let

ε =
(1− β)(1− η̄)

‖s̄‖ ‖F (x`(k))‖, (16)

and δ > 0 be sufficiently small (see Proposition 2.2) that

‖F (xk + s)− F (xk)−Hks‖ ≤ ε‖s‖ (17)

whenever ‖s‖ ≤ δ. Choosing αmax = min(1, δ
‖s̄‖), for any α ∈ (0, αmax]

we have ‖s‖ ≤ δ and then, using (16) and (17), we obtain the following
inequality

‖F (xk + s)‖ ≤ ‖F (xk + s)− F (xk)−Hks‖+ ‖F (xk) + Hks‖
≤ εα‖s̄‖+ η‖F (x`(k))‖
= ((1− β)(1− η̄)α + (1− α(1− η̄)))‖F (x`(k)‖
= (1− βα(1− η̄))‖F (x`(k))‖
≤ (1− βα(1− η))‖F (x`(k))‖,

that completes the proof. ¤

A consequence of the previous lemma is that the backtracking loop at
the step 3 of Algorithm 3.1, at each iterate k, terminates in a finite number
of steps. Indeed, at each iterate k the backtracking condition (13) is satisfied
for α < αmax, where αmax depends on k. Since the value of αk is reduced
by a factor θ < θmax < 1, then there exists a positive integer p such that
(θmax)p < αmax and so the while loop terminates at most after p steps.
When, at some iterate k, it is impossible to determine the next point xk+1

satisfying (8) and (9), we say that the algorithm breaks down. Then, Lemma
3.1 yields that assuming that it is possible to compute the semismooth inex-
act Newton step s̄k satisfying (8), then Algorithm 3.1 does not break down
and it is well defined.

3.2 Convergence Analysis

The next theorem proves, under appropriate assumptions, that the sequence
{xk} generated by Algorithm 3.1 converges to a solution of the system (1).
The proof is carried out by showing that limk→+infty ‖F (xk)‖ = 0, so that
the convergence of the sequence is ensured by Theorem 3.1.

10

Theorem 3.2 Suppose that {xk} is the sequence generated by Algorithm
3.1, with 2β < 1− ηmax. Assume that the following conditions hold:

A1 There exists an accumulation point x∗ of the sequence {xk}, such that
F is semismooth and BD-regular at x∗;

A2 At each iterate k it is possible to find a forcing term η̄k and a vector
s̄k such that the inexact residual condition (8) is satisfied;

A3 For every sequence {xk} converging to x∗, every convergent sequence
{sk} and every sequence {λk} of positive scalars converging to zero,

lim sup
k→+∞

Ψ(xk + λksk)−Ψ(x`(k))
λk

≤ lim
k→+∞

F (xk)T Hksk,

where Ψ(x) = 1/2‖F (x)‖2, whenever the limit on the left-hand side
exists;

A4 For every sequence {xkj} such that αkj converges to zero, then ‖s̄kj‖
is bounded.

Then, F (x∗) = 0 and the sequence {xk} converges to x∗.

Proof. Assumption A1 implies that the norm of the vector ‖s̄k‖ is bounded
in a neighborhood of the point x∗. Indeed, from Proposition 2.1, there
exists a positive number δ and a constant K such that ‖H−1

k ‖ ≤ K for any
Hk ∈ ∂BF (xk), for any xk ∈ Nδ(x∗).
Thus, the following conditions hold:

‖s̄k‖ ≤ ‖H−1
k ‖(‖F (xk)‖+ ‖F (xk) + Hks̄k‖)

≤ K(‖F (x`(k))‖+ ηmax‖F (x`(k))‖)
= K(1 + ηmax)‖F (x`(k))‖
≤ K(1 + ηmax)‖F (x0)‖.

Furthermore, the condition A2 ensures that the Algorithm 3.1 does not
break down, thus it generates an infinite sequence.
Now we consider separately the two following cases:

a) There exists a set of indices K such that {xk}k∈K converges to x∗ and
lim inf

k→+∞,k∈K
αk = 0;

b) For any subsequence {xk}k∈K converging to x∗ we have lim inf
k→+∞,k∈K

αk =

τ > 0.

11

a)Since ‖F (x`(k))‖ is a monotone nonincreasing, bounded sequence, then
there exists L ≥ 0 such that

L = lim
k→∞

‖F (x`(k))‖. (18)

From the definition (7) it follows that ‖F (x`(k))‖ ≥ ‖F (xk)‖, thus

L ≥ lim
k→+∞,k∈I

‖F (xk)‖ (19)

where {xk}k∈I is a subsequence of {xk} such that the limit of the sequence
{‖F (xk)‖}k∈I exists.
Since αk is the final value after the backtracking loop, we must have

‖F (xk +
αk

θ
s̄k)‖ >

(
1− αk

θ
β(1− η̄k)

)
‖F (x`(k))‖ (20)

which yields

lim
k→+∞,k∈K

‖F (xk +
αk

θ
s̄k)‖ ≥ lim

k→+∞,k∈K

(
1− αk

θ
β(1− η̄k)

)
‖F (x`(k))‖.

(21)
If we choose K as the set of indices with the property a), exploiting the
continuity of F , recalling that η̄k is bounded, that ‖s̄k‖ is bounded and sub-
sequencing to ensure the existence of the limit of αk , we obtain ‖F (x∗)‖ ≥ L.
On the other hand, from (19) we have also that L ≥ ‖F (x∗)‖, thus it follows
that

L = ‖F (x∗)‖. (22)

Furthermore, by squaring both sides of (20), we obtain the following in-
equalities

‖F (xk +
αk

θ
s̄k)‖2 >

(
1− αk

θ
β(1− η̄k)

)2
‖F (x`(k))‖2

≥
(
1− 2

αk

θ
β(1− η̄k)

)
‖F (x`(k))‖2.

This yields

‖F (xk +
αk

θ
s̄k)‖2 − ‖F (x`(k))‖2 > −2

αk

θ
β(1− η̄k)‖F (x`(k))‖2. (23)

Dividing both sides by αk
θ , passing to the limit and exploiting the assumption

A4, we obtain

lim
k→+∞,k∈K

F (xk)T Hksk ≥ lim
k→+∞,k∈K

‖F (xk + αk
θ s̄k)‖2 − ‖F (x`(k))‖2

αk
θ

≥ lim
k→+∞,k∈K

−2β(1− η̄k)‖F (x`(k))‖2. (24)

12

Since (22) holds and taking into account that η̄k ≥ 0, we have

lim
k→+∞,k∈K

F (xk)T Hksk ≥ −2β‖F (x∗)‖2. (25)

On the other hand, we have

F (xk)T Hks̄k = F (xk)T [−F (xk) + F (xk) + Hks̄k]
= −‖F (xk)‖2 + F (xk)T [F (xk) + Hks̄k]
≤ −‖F (xk)‖2 + ‖F (xk)‖ · ‖F (xk) + Hks̄k‖
≤ −‖F (xk)‖2 + ηmax‖F (x`(k))‖2, (26)

thus we can write

lim
k→+∞

F (xk)T Hks̄k ≤ lim
k→+∞

−‖F (xk)‖2 + ηmax‖F (x`(k))‖2.

Furthermore, considering the subsequence {xk}k∈K , it follows that

lim
k→+∞,k∈K

F (xk)T Hks̄k ≤ −(1− ηmax)‖F (x∗)‖2. (27)

From (25) and (27) we deduce

−2β‖F (x∗)‖2 ≤ −(1− ηmax)‖F (x∗)‖2.

Since we set (1− ηmax) > 2β, then we must have ‖F (x∗)‖ = 0.
This implies that limk→+∞ ‖F (x`(k))‖ = 0 and, consequently from (7), we
have

lim
k→+∞

‖F (xk)‖ = 0.

Thus, the convergence of the sequence is ensured by Theorem 3.1.
b) Writing the backtracking condition for the iterate `(k), we obtain

‖F (x`(k))‖ ≤ (1− α`(k)−1β(1− η̄`(k)−1))‖F (x`(`(k)−1))‖. (28)

When k diverges, we can write

L ≤ L− L · lim
k→∞

α`(k)−1β(1− η̄`(k)−1), (29)

where L is defined as in (18).
Since β is a constant and 1 − η̄j ≥ 1 − ηmax > 0 for any j, the inequality
(29) yields

L · lim
k→∞

α`(k)−1 ≤ 0

13

that implies
L = 0

or
lim

k→∞
α`(k)−1 = 0. (30)

Suppose that L 6= 0, so that (30) holds. Defining ˆ̀(k) = `(k + N + 1) so
that ˆ̀(k) > k, we show by induction that for any j ≥ 1 we have

lim
k→∞

αˆ̀(k)−j = 0 (31)

and
lim

k→∞
‖F (xˆ̀(k)−j)‖ = L. (32)

For j = 1, since {αˆ̀(k)−1} is a subsequence of {α`(k)−1}, (30) implies (31).
Thanks to the assumption A4, we also obtain

lim
k→∞

‖xˆ̀(k) − xˆ̀(k)−1‖ = 0. (33)

By exploiting the Lipschitz property of F , from |‖F (x)‖−‖F (y)‖| ≤ ‖F (x)−
F (y)‖ and (33) we obtain

lim
k→∞

‖F (xˆ̀(k)−1)‖ = L. (34)

Assume now that (31) and (32) hold for a given j. We have

‖F (x`(k)−j)‖ ≤ (1− α`(k)−(j+1)β(1− η`(k)−(j+1)))‖F (x`(`(k)−(j+1)))‖.

Using the same arguments employed above, since L > 0, we obtain

lim
k→∞

αˆ̀(k)−(j+1) = 0

and so
lim

k→∞
‖xˆ̀(k)−j − xˆ̀(k)−(j+1)‖ = 0,

lim
k→∞

‖F (xˆ̀(k)−(j+1))‖ = L.

Thus, we conclude that (31) and (32) hold for any j ≥ 1. Now, for any k,
we can write

‖xk+1 − xˆ̀(k)‖ ≤
ˆ̀(k)−k−1∑

j=1

αˆ̀(k)−j‖s̄ˆ̀(k)−j‖

14

so that, since we have ˆ̀(k)− k − 1 ≤ N , we have

lim
k→∞

‖xk+1 − xˆ̀(k)‖ = 0. (35)

Furthermore, we have

‖xˆ̀(k) − x∗‖ ≤ ‖xˆ̀(k) − xk+1‖+ ‖xk+1 − x∗‖ (36)

Since x∗ is an accumulation point of {xk} and (35) holds, (36) implies that x∗
is an accumulation point for the sequence {xˆ̀(k)}. From (33) we conclude
that x∗ is an accumulation point also for the sequence {xˆ̀(k)−1}, which
contradicts the assumption made. Indeed, since {xˆ̀(k)−1} converges to x∗,
we should have that αˆ̀(k)−1 is bounded away from zero, from the hypothesis
b). Hence, we necessarily have L = 0, that implies

lim
k→∞

‖F (xk)‖ = 0.

Now Theorem 3.1 completes the proof.
¤

The previous theorem is proved under the assumptions A1–A4: the hypoth-
esis A4 is analogous to the one employed in [1] in the smooth case, while
A3 is the nonmonotone, and weaker, version of the assumption (A4) in [12].
This hypothesis is not required in the smooth case, thanks to the stronger
properties of the function F and of its Jacobian ∇F (x)T (see §3.2.10 in [14]).

4 An application to the Karush–Kuhn–Tucker sys-
tems

In this section we consider a particular semismooth system of equations
derived from the optimality conditions of variational inequalities or nonlinear
programming problems.
We consider the classical variational inequality problem VIP(C,V), which is
to find x∗ ∈ C, such that

< V (x∗), x− x∗ >≥ 0,∀x ∈ C (37)

where C is a nonempty closed convex subset of Rn, < ·, · > is the usual
inner product in Rn and V : Rn → Rn is a continuous function.
When V is the gradient mapping of the real-valued function f : Rn → R, the

15

problem VIP(C,V) becomes the stationary point problem of the following
optimization problem

min f(x).
s. t. x ∈ C

(38)

We assume, as in [20], that the feasible set C can be represented as
follows

C = {x ∈ Rn|h(x) = 0, g(x) ≥ 0, Πlx ≥ l, Πux ≤ u}, (39)

where h : Rn −→ Rneq, g : Rn −→ Rm, Πl ∈ Rnl×n and Πu ∈ Rnu×n; Πl (or
Πu) denotes a matrix given by the rows of the identity matrix with indices
equal to those of the entries of x which are bounded below (above).
Furthermore, nl and nu denote the number of entries of the vector x subject
to lower and upper bounds respectively.
We consider the following conditions, representing the Karush-Kuhn-Tucker
(KKT) optimality conditions of VIP(C,V) or of the nonlinear programming
problem (38):

L(x, λ, µ, κl, κu) = 0
h(x) = 0
µT g(x) = 0 g(x) ≥ 0 µ ≥ 0 (40)
κT

l (Πlx− l) = 0 Πlx− l ≥ 0 κl ≥ 0
κT

u (u−Πux) = 0 u−Πux ≥ 0 κu ≥ 0

where L(x, λ, µ, κl, κu) = V (x) − ∇h(x)λ − ∇g(x)µ − ΠT
l κl + ΠT

u κu is the
Lagrangian function. Here ∇h(x)T and ∇g(x)T are the Jacobian matrices
of h(x) and g(x) respectively.

In order to rewrite the KKT-conditions as a nonlinear system of equa-
tions, we make use of the Fischer’s function, [9], ϕ : R2 → R defined by

ϕ(a, b) :=
√

a2 + b2 − a− b.

The main property of this function is the following characterization of its
zeros:

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Therefore, the KKT-conditions (40) can be equivalently written as the non-

16

linear system of equations

V (x)−∇h(x)λ−∇g(x)µ−ΠT
l κl + ΠT

u κu = 0
h(x) = 0

ϕI(µ, g(x)) = 0
ϕl(κl, Πlx− l) = 0

ϕu(κu, u−Πux) = 0

or, in more concise form,
Φ(w) = 0 (41)

where w = (xT , λT , µT , κT
l , κT

u)T ; ϕI : R2m → Rm with ϕI(µ, g(x)) :=
(ϕ(µ1, g1), . . . , ϕ(µm, gm))T ; ϕl : R2nl → Rnl, with ϕl(κl, Πlx − l) ∈ Rnl;
ϕu : R2nu → Rnu, with ϕu(κu, u−Πux) ∈ Rnu.
Note that the functions ϕI , ϕl, ϕu are not differentiable in the origin, so that
the system (41) is a semismooth reformulation of the KKT-conditions (40).

The system (41) can be solved by the semismooth inexact Newton method
[8], given by

wk+1 = wk + αk∆wk,

with a given starting point w0, where αk is a damping parameter and ∆wk

is the solution of the following linear system

Hk∆w = −Φ(wk) + rk (42)

where Hk ∈ ∂BΦ(wk) and rk is the residual vector and it satisfies the con-
dition

‖rk‖ ≤ ηk‖Φ(wk)‖.

As shown in [20], permuting the equations of the system (42) and changing

17

the sign of the fourth equation, the system (42) can be written as follows:

Rκl
0 0 RlΠl 0

0 Rκu 0 RuΠu 0
0 0 Rµ Rg(∇g(x))T 0

ΠT
l −ΠT

u ∇g(x) −∇V (x) +∇2g(x)µ +∇2h(x)λ ∇h(x)
0 0 0 (∇h(x))T 0

·

·

4κl

4κu

4µ
4x
4λ

= −

ϕl(κl, Πlx− l)
ϕu(κu, u−Πux)

ϕI(µ, g(x))
α

h(x)

+ Pr

where Pr is the permuting residual vector and −α = V (x) − ∇h(x)λ −
∇g(x)µ− (Πl)T κl + (Πu)T κu;

Rg = diag(rg1 , . . . , rgm)

(rg)i =

(
gi√

µ2
i + g2

i

− 1

)
if (gi(x), µi) 6= 0

−1 if (gi(x), µi) = 0

Rµ = diag(rµ1 , . . . , rµm)

(rµ)i =

(
µi√

µ2
i + g2

i

− 1

)
if (gi(x), µi) 6= 0

−1 if (gi(x), µi) = 0

Rl = diag(rl1 , . . . , rlnl
)

(rl)i =

(
((Πlx)i − li)√

(κl)2i + ((Πlx)i − li)2
− 1

)
if ((Πlx)i − li, (κl)i) 6= 0

−1 if ((Πlx)i − li, (κl)i) = 0

Rκl
= diag(rκl1

, . . . , rκlnl
)

(rκl
)i =

(
(κl)i√

(κl)2i + ((Πlx)i − li)2
− 1

)
if ((κl)i, (Πlx)i − li) 6= 0

−1 if ((κl)i, (Πlx)i − li) = 0

18

Ru = diag(ru1 , . . . , runu)

(ru)i =

−

(
(ui − (Πux)i)√

(κu)2i + (ui − (Πux)i)2
− 1

)
if (ui − (Πux)i, (κu)i) 6= 0

−1 if (ui − (Πux)i, (κu)i) = 0

Rκu = diag(rκu1
, . . . , rκunu

)

(rκu)i =

(
(κu)i√

(κu)2i + (ui − (Πux)i)2
− 1

)
if ((κu)i, ui − (Πux)i) 6= 0

−1 if ((κu)i, ui − (Πux)i) = 0.

Now we define the merit function Ψ : Rm+n+neq+nl+nu → R as

Ψ(w) =
1
2
‖Φ(w)‖2. (43)

The differentiability of the function Ψ(w) plays a crucial role in the global-
ized strategy of the semismooth inexact Newton method proposed in [8]. In
the approach followed here, this property is not required, since the conver-
gence theorem 3.2 can be proved without assuming this hypothesis, thanks
to the backtracking rule (28) which is similar to the ones proposed in [7]
and in [12]. Now we introduce the nonmonotone inexact Newton algorithm,
as follows:

Algorithm 4.1

Step 1 Choose w0 = (x0, λ0, µ0, κl0 , κu0) ∈ Rm+n+neq+nl+nu, θ ∈ (0, 1), β ∈
(0, 1/2) and fix ηmax < 1; λ0 = 0, κl0 = 0, κu0 = 0, µ0 = 0.

Step 2 (Stopping criterion)
if ‖Φ(wk)‖ ≤ tol then stop
else

Step 3 (Search direction ∆w)
Select an element Hk ∈ ∂BΦ(wk).
Find the direction ∆wk ∈ Rn and a parameter ηk ∈ [0, ηmax] such
that

‖Hk∆wk + Φ(wk)‖ ≤ ηk‖Φ(w`(k))‖ (44)

19

Step 4 (Linesearch)
Compute the minimum integer h, such that, if αk = θh the following
condition holds

‖Φ(wk + αk∆wk)‖ ≤ (1− βαk(1− ηk))‖Φ(w`(k))‖ (45)

Step 5 Compute wk+1 = wk + αk∆wk go to Step 2.

It is straightforward to observe that Algorithm 4.1 is a special case of Al-
gorithm 3.1. Furthermore, the merit function Ψ(w) is differentiable and
∇Ψ(w) = HT Φ(w) where H belongs to ∂BΦ(w) (see Proposition 4.2 in [8]).
This implies that the hypothesis A3 holds [12].
Moreover we assume that Hk in (44) is nonsingular and that all the iterates
wk belong to a compact set. As a consequence, we have that the norm of
the search direction ∆wk is bounded: indeed, for any k, from (44) we obtain

‖∆wk‖ ≤ M(1 + ηmax)‖Φ(w0)‖

where M = maxwk
‖H−1

k ‖.

5 Numerical results

In this section we report some numerical experiments, obtained by coding
Algorithm 4.1 in FORTRAN 90 using double precision on HP zx6000 work-
station with Itanium2 processor with 1.3 GHz and 2 Gb of RAM, running
HP-UX operating system.
In particular, we set β = 10−4, θ = 0.5, tol = 10−8.
Our aim is to compare the performances of the Algorithm 4.1 with different
monotonicity degrees, by choosing different values for the parameter N .
We declare a failure of the algorithm when the tolerance tol can not be
reached after 500 iterations or when, in order to satisfy the backtracking
condition (45), more than 30 reductions of the damping parameter have
been performed.
The forcing term ηk has been adaptively chosen as

ηk = max
(

1
1 + k

, 10−8

)
.

The solution of the linear system (44) is computed by the LSQR method
[15] with a suitable preconditioner proposed in [20]. The stopping criterion

20

for the inner linear solver is the condition (44).

The test problems we considered are the nonlinear programming prob-
lems and the complementarity problems listed in Table 1, where we also
report the number of variables n, the number of equality and inequality
constraints, neq and m respectively, and the number of lower, and upper
bounds, nl and nu respectively.

Tables 2 and 3 summarize the results obtained on this set of test prob-
lems. The tables report a comparison of the performances of the algorithm
with different choices of the parameter N (N = 1, 3, 5, 7) in terms of num-
ber of external and inner iterations, in the rows with the “ext.” and “inn.”
symbols respectively, and of number of backtracking reductions (the rows
denoted by “back”).
The case N = 1 is the usual monotone case.

Tables 2 and 3 show that the nonmonotone strategies can produce a sen-
sible decrease not only of the number of backtracking reduction, but also of
the number of inner iterations. Furthermore, in some cases, also the number
of external iterations is reduced, when nonmonotone choices are employed.
This fact could be explained by observing that different choices of the pa-
rameter N imply different values of the inner tolerance: since the direction
∆wk computed at the step 3 of Algorithm 4.1 depends on the inner toler-
ance, for different values of N , we obtain different search directions.
Figure 1 depicts the decreasing of the function Ψ(w) defined in (43): the
value Ψ(wk) has been reported in logarithmic scale on the y axis for each
iteration of the Algorithm 4.1 applied to the MCP problem lincont. For
N = 3, N = 5 and N = 7, a nonmonotone decrease can be observed, and
the tolerance of 10−8 is reached after 32, 33 and 34 iterations respectively,
while in the monotone case (N = 1), the same tolerance is satisfied after
46 iterations. A similar behaviour has been observed also for the most part
of the MCP and NLP test problems, for example ehl-kost, ehl-def, optcntrl,
marine, rosenbr.

On the other side, a too large value of the parameter N could, in some
case, produce a degenerate behaviour of the algorithm, as we observed for
example in the MCP problem duopoly.

The decrease of the number of iterations and of the number of backtrack-
ing steps corresponds to a decreasing of the execution time. For example, in
the problem lincont, the execution time of the monotone algorithm is 3.62
seconds: setting N = 3 the time is reduced to 1.37 seconds, which is less
than one half of the monotone algorithm time. The CPU time for N = 5
and N = 7 are 1.36 and 1.42 respectively.

21

A significant reduction has been obtained, for example, also for the test
problem ehl-kost, for which we have obtained 0.43, 0.26, 0.29 and 0.34 sec-
onds with N = 1, N = 3, N = 5 and N = 7 respectively, for the problem
ehl-def (0.23, 0.15, 0.17, 0.21), dtoc6 (0.11, 3.1e-2, 2.3e-2, 2.3e-2), marine
(1.68, 1.06, 1.06, 1.11), opt-cont3 (10.3, 18.7, 18.7, 18.7).

Since the execution time related to the other test problems is very small
(less than one seconds), we report in the graphs of figures 2 and 3 the ratio
between the execution time of the nonmonotone algorithms obtained with
the different values of N and the execution time of the monotone algorithm.
Thus, the value 1 on the y axis represents the time employed by the mono-
tone algorithm.
In general, the nonmonotone choice improved the execution times, but we
observed that, for large values of the parameter N , the number of inner
iterations could decrease while the number of external iterations could rise.
This leads to an increase of the execution time.

Thus, we can conclude that the nonmonotone strategies are effective in
improving the performance of the Algorithm 4.1, but the nonmonotonicity
parameter N has to be chosen very carefully.

Acknowledgements. The authors are grateful to the referees for their
comments, which helped to improve the presentation of the paper.

22

Table 1: Test Problems
NLP Problem Ref. n neq m nl nu
harkerp2 [2] 100 0 0 100 0
himmelbk [2] 24 14 0 24 0
optcdeg2 [2] 295 197 0 197 0
optcdeg3 [2] 295 197 0 197 99
optcntrl [2] 28 19 1 20 10
aug2dc [2] 220 96 0 18 0
minsurf [6] 225 0 0 225 0
marine [6] 175 152 0 15 0
steering [6] 294 236 0 61 60
dtoc2 [2] 294 196 0 0 0
dtoc6 [2] 298 149 0 0 0
lukvle8 [11] 300 298 0 0 0
blend * 24 14 0 24 0
branin * 2 2 0 2 0
kowalik * 4 0 0 4 4
osbornea [2] 5 0 0 5 5
rosenbr [2] 2 0 0 0 0
hs6 [2] 2 0 1 0 0
mitt105 [13, Ex.5.5] 65 45 0 65 65

α = 0.01, N = 5
mitt305 [13, Ex.4] 70 45 0 25 50

α = 0.001, N = 5
mitt405 [13, Ex.3] 50 25 0 25 50

α = 0.001, N = 5
MCP Problem Ref. n neq m nl nu
ehl-kost [5] 101 0 0 100 0
ehl-def [5] 101 0 0 100 0
bertsek [5] 15 0 0 10 0
choi [5] 13 0 0 0 0
josephy [5] 4 0 0 4 0
bai-haung [5] 4900 0 0 4900 0
bratu [5] 5929 0 0 5625 5625
duopoly [5] 69 0 0 63 0
ehl-k40 [5] 41 0 0 40 0
hydroc06 [5] 29 0 0 11 0
lincont [5] 419 0 0 170 0
opt-cont1 [5] 1024 0 0 512 512
opt-cont2 [5] 4096 0 0 2048 2048
opt-cont3 [5] 16384 0 0 8192 8192

*http://scicomp.ewha.ac.kr/netlib/ampl/models/nlmodels/

23

Table 2: Nonmonotone results in the NLP problems
NLP Problem N=1 N=3 N=5 N=7
harkerp2 ext. 105 104 104 104

inn. 471 404 415 438
back 37 20 14 8

himmelbk ext. 22 23 27 25
inn. 114 96 149 110
back 22 60 83 58

optcdeg2 ext. - - 87 75
inn. - - 294 278
back - - 313 289

optcdeg3 ext. - 100 73 68
inn. - 266 158 134
back - 315 133 82

optcntrl ext. 31 25 23 23
inn. 78 54 45 45
back 135 70 54 54

aug2dc ext. 7 7 7 7
inn. 12 7 7 7
back 0 0 0 0

minsurf ext. 5 5 5 5
inn. 10 8 8 5
back 0 0 0 0

marine ext. 94 68 67 72
inn. 436 296 284 287
back 473 327 287 309

steering ext. 11 - - -
inn. 30 - - -
back 37 - - -

dtoc2 ext. 7 7 7 7
inn. 11 8 8 8
back 1 1 1 1

dtoc6 ext. 21 9 9 9
inn. 21 9 9 9
back 39 1 0 0

lukvle8 ext. - 20 21 25
inn. - 418 365 455
back - 34 34 34

blend ext. 23 20 19 19
inn. 79 112 82 75
back 225 98 72 72

branin ext. 8 8 8 8
inn. 8 8 8 8
back 11 2 2 2

kowalik ext. 37 11 22 20
inn. 37 11 22 20
back 149 1 14 6

24

NLP Problem N=1 N=3 N=5 N=7
osborne1 ext. 121 16 16 16

inn. 121 16 16 16
back 443 0 0 0

rosenbr ext. 180 14 9 9
inn. 180 14 9 9
back 1121 4 2 2

hs6 ext. 8 7 7 7
inn. 8 7 7 7
back 14 11 11 11

mitt105 ext. 11 9 8 8
inn. 19 13 9 9
back 13 4 0 0

mitt305 ext. 31 24 24 20
inn. 71 47 46 37
back 195 105 102 68

mitt405 ext. 32 26 19 19
inn. 77 54 39 39
back 227 144 81 81

− the algorithm does not converge

References

[1] S. Bonettini (2005). A Nonmonotone Inexact Newton Method, Optim.
Meth. Software, 20, 4-5, 475–491 .

[2] I. Bongartz, A.R. Conn, N. Gould and Ph. L. Toint (1995). CUTE:
Constrained and Unconstrained Testing Environnment, ACM Transac-
tions on Mathematical Software, 21, 123–160.

[3] F. H. Clarke (1983). Optimization and Nonsmooth Analisys, John Wiley
& Songs, New York,

[4] R. S. Dembo, S. C. Eisenstat and T. Steihaug (1982). Inexact Newton
methods, SIAM Journal on Numerical Analysis, 19, 400–408.

25

Table 3: Nonmonotone results in the MCP problems
MCP Problem N=1 N=3 N=5 N=7
ehl-kost ext. 14 12 14 16

inn. 104 50 50 48
back 17 0 0 0

ehl-def ext. 14 12 14 16
inn. 103 50 50 48
back 17 0 0 0

bertsek ext. 6 6 6 6
inn. 8 7 6 6
back 0 0 0 0

choi ext. 5 5 5 5
inn. 5 5 5 5
back 0 0 0 0

josephy ext. 6 6 7 7
inn. 8 7 7 7
back 2 2 2 2

bai-haung ext. 6 6 6 6
inn. 13 9 9 9
back 0 0 0 0

bratu ext. 5 5 5 5
inn. 10 6 6 6
back 0 0 0 0

duopoly ext. 44 38 48 ∗
inn. 135 127 140 ∗
back 225 158 81 ∗

ehl-k40 ext. ∗ ∗ 203 333
inn. ∗ ∗ 1292 2056
back ∗ ∗ 2252 3230

hydroc06 ext. 5 5 5 5
inn. 8 6 6 6
back 1 1 1 1

lincont ext. 46 32 33 34
inn. 385 165 144 170
back 220 89 77 73

opt-cont1 ext. 10 10 10 10
inn. 49 33 21 19
back 0 0 0 0

opt-cont2 ext. 9 9 9 11
inn. 101 52 42 42
back 0 0 0 0

opt-cont3 ext. 8 8 8 8
inn. 22 15 14 14
back 0 0 0 0

∗ maximum number of backtracking reductions reached

26

Figure 1: Decrease of the merit function

0 10 20 30 40
10

−10

10
−5

10
0

N=1

0 10 20 30 40
10

−10

10
−5

10
0

N=3

0 10 20 30 40
10

−10

10
−5

10
0

N=5

0 10 20 30 40
10

−10

10
−5

10
0

N=7

Figure 2: Time comparison for the MCP problems

ehl−kost ehl−def bertsek choi josephy bai−haung bratu duopoly hydroc06 lincont opt−cont1opt−cont2opt−cont3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
MCP

N=3
N=5
N=7

27

Figure 3: Time comparison for the NLP problems

harkerp2 himmelbk optcntrl aug2dc minsurf marine dtoc2 dtoc6 blend
0

0.2

0.4

0.6

0.8

1

1.2

1.4
NLP

N=3
N=5
N=7

branin kovalik osborne1 rosenbr hs6 mitt1 mitt2 mitt3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

28

[5] S. P. Dirkse and M. C. Ferris (1995). A collection of nonlinear mixed
complementarity problems, Optimization Methods and Software, 5,
123–156.

[6] E.D. Dolan, J. J. Moré and T. S. Munson (2004). Benchmarking op-
timization software with COPS 3.0, Technical Report ANL/MCS-TM-
273, Argonne National Laboratory, Illinois, USA.

[7] S. C. Eisenstat and H. F. Walker (1994). Globally convergent Inexact
Newton methods, SIAM Journal on Optimization, 4, 393–422.

[8] F. Facchinei, A. Fischer and C. Kanzow (1996). Inexact Newton meth-
ods for semismooth equations with applications to variational inequality
problems, in G. Di Pillo and F. Giannessi (eds.), Nonlinear Optimiza-
tion and Applications, Plenum Press, New York 1996, 125-139.

[9] A. Fischer (1992). A special Newton-type optimization method, Opti-
mization, 24, 269–284.

[10] L. Grippo, F. Lampariello and S. Lucidi (1986). A Nonmonotone line
search technique for Newton’s method, SIAM Journal on Numerical
Analysis 23, 707–716.

[11] L. Lukšan and J. Vlček (1999). Sparse and partially separable test prob-
lems for unconstrained and equality constrained optimization, Technical
Report 767, Institute of Computer Science, Academy of Science of the
Czech Republic.

[12] J. M. Martinez and L. Qi (1995). Inexact Newton methods for solving
nonsmooth equations, J. Comput. Appl. Math., 60, 127–145.

[13] H. D. Mittelmann and H. Maurer (1999). Optimization techiques for
solving elliptic control problems with control and state constraints: Part
1. Boundary control, Computational Optimization and Applications,
16, 29–55.

[14] J. M. Ortega and W. C. Rheimboldt (1970). Iterative solution of non-
linear equations in several variables, Academic Press, New York.

[15] C. C. Paige and M. A. Saunders (1982). LSQR: An Algorithm for
Sparce Linear Equations and Sparse Least Squares, ACM Transactions
on Mathematical Software, 8, 1, 43–71.

29

[16] J. S. Pang and L. Qi (1993). Nonsmooth equations: Motivations and
algorithms, SIAM J. Optim., 3, 443–465.

[17] L. Qi (1993). A convergence analysis of some algorithms for solving
nonsmooth equations, Mathematical of Operator Research, 18, 227–
244.

[18] L. Qi, J. Sun (1993). A nonsmooth version of Newton method, Mathe-
matical Programming, 58, 353–367.

[19] W.C. Rheinboldt (1998). Methods for Solving Systems of Nonlinear
Equations, Second Edition, SIAM, Philadelphia.

[20] V. Ruggiero and F. Tinti (2005). A preconditioner for solving large-
scale variational inequality problems by a semismooth inexact approach,
Tech. Rep. n. 69, Dipartimento di Matematica, Università di Modena
e Reggio Emilia, Modena.

